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The Fourier Singular Complement Method

for the Poisson problem. Part I: prismatic domains

P. Ciarlet, Jr, 1 B. Jung, 2 S. Kaddouri, 3 S. Labrunie, 4 J. Zou 5

Abstract

This is the first part of a threefold article, aimed at solving numerically the Poisson problem

in three-dimensional prismatic or axisymmetric domains. In this first part, the Fourier Singular

Complement Method is introduced and analysed, in prismatic domains. In the second part,

the FSCM is studied in axisymmetric domains with conical vertices, whereas, in the third part,

implementation issues, numerical tests and comparisons with other methods are carried out.

The method is based on a Fourier expansion in the direction parallel to the reentrant edges of

the domain, and on an improved variant of the Singular Complement Method in the 2D section

perpendicular to those edges. Neither refinements near the reentrant edges of the domain nor

cut-off functions are required in the computations to achieve an optimal convergence order in

terms of the mesh size and the number of Fourier modes used.

Date of this version : April 18, 2005

1 Introduction

The Singular Complement Method (SCM) was originally introduced by Assous et al
[8, 7], for the 2D static or instationary Maxwell equations without charges. The cases
with charges have been recently solved by Garcia et al [6, 19], including the numerical
solution to the 2D Vlasov-Maxwell system of equations. The SCM has been extended
in [13] to the 2D Poisson problem. Further extensions to the 2D heat or wave equations,
or to similar problems with piecewise constant coefficients, can be obtained easily. As
a matter of fact, this stems from the analysis which is performed hereafter (see Re-
mark 4.1). The primary basis of the SCM is the decomposition of the solution into
regular and singular parts. Methodologically speaking, the SCM consists in adding
some singular test functions to the usual P1 Lagrange FEM so that one recovers the
optimal H1-convergence rate, even in non-convex domains. In 2D, one may simply add
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one singular test function per reentrant corner.

There exist a couple of numerical methods in the literature for accurately solving
2D Poisson problems in non-convex domains. It was shown in [13] that the SCM can
be reformulated so that it coincides with the approach of Moussaoui [27, 1] when L-
shaped domains are considered. The SCM differs from the Dual Singular Function
Method (DSFM) of Blum and Dobrowolski [10] in that it requires no cut-off functions.
Actually, when the numerical implementation of the SCM is carried out, the cut-off
function is traded for a non-homogeneous boundary condition. Note that Cai and Kim
[12] recently proposed a new SFM which involves the evaluations of singular and cut-
off functions and the solution of a nonsymmetric elliptic problem. The SCM is clearly
different from (anisotropic) mesh refinement techniques [28, 3, 24, 4, 2], and can be
applied efficiently to instationary problems (see Remark 4.1), since it does not need
mesh refinement and thus larger timesteps may be allowed. However the anisotropic
mesh refinement methods have one advantage: they require only a partial knowledge
of the most singular part of the solution.

The numerical solution of 3D singular Poisson problems is quite different from the
2D case, and much more difficult. This is a relatively new field of research: most
approaches rely on anisotropic mesh refinement, see for instance [3, 5, 24, 4, 25], and
[2] and Refs. therein. To our knowledge, this series of papers is the first attempt to
generalize the SCM for three-dimensional singular Poisson problems. Specifically, we
shall consider the numerical solution of the Poisson problem:
Find u ∈ H1

0 (Ω) such that
−∆u = f in Ω, (1)

where f ∈ L2(Ω), and Ω is a (right) prismatic domain described by

Ω = ω × Z , (2)

and ω is a two-dimensional general polygonal domain, Z is an interval varying from 0
to a positive constant L on the x3-axis. The bases of the domain are the subsets of the
boundary ∂Ω, which are included in the planes {x3 = 0} and {x3 = L}.

The case of an axisymmetric domain is considered in the companion paper [14].
When the Poisson problem (1) is solved in this class of domains, two difficulties arise.
The first difficulty is that one has to deal with weighted Sobolev spaces, the weights
being functions of the distance to the axis. The second one is that there exist two
kinds of geometrical singularities: reentrant edges like in the prismatic case, and, in
addition, sharp conical vertices. As for implementation issues and comparisons with
other methods (such as variants of our method, the FSCM, or mesh refinement tech-
niques [25]), we refer the reader to [15].

The rest of the paper is organized as follows. In the next Section, some theoretical
results concerning the regularity of the solution to the Poisson problem in prismatic
domains are recalled. A priori regularity results of the solution u to (1), and a first
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splitting of the solution into regular and singular parts, are emphasized. In Section 3,
some results about the Fourier expansion along x3 are recalled and/or proven. This
suggests a framework for building the Fourier Singular Complement Method (FSCM)
for accurately solving the problem (1), using a Fourier expansion in x3, and an improved
variant of the Singular Complement Method [13] in the 2D section ω. In Section 4,
we study the variant of the SCM, based on a theoretical splitting of the solution uµ

to 2D problems of the form −∆uµ + µuµ = fµ in ω (with a parameter µ ≥ 0 related
to the Fourier modes). The main feature of the regular-singular splitting is that it
is chosen independently of µ; this independence is important, and very helpful, from
the computational point of view. Estimates on Sobolev norms of uµ and its splitting
are established. To end this Section, the SCM is considered from a numerical point
of view, to approximate uµ accurately, via the discretization of the splitting: the opti-
mal H1-norm convergence of the order O(h) is recovered. In the last Section, we first
prove a refined splitting of the solution u to the 3D Poisson problem under suitable
assumptions on the right-hand side f , using the Fourier expansion along x3. Then, we
build the numerical algorithms which define the FSCM, and we show that the FSCM
has the optimal convergence of order O(h+N−1), where h is the 2D mesh size and N
is the number of Fourier modes used.

Throughout this paper, when two quantities a and b are such that a ≤ C b, with a
constant C > 0 which depends only on the geometry of the domain, we shall use the
notation a . b.

2 Poisson problem in prismatic domains

Let us recall that a (right, open) cylinder of R
3, with axis parallel to x3, is equal to

D×I, where D is any connected (open) subset of R
2, and I is any (open) interval of R.

Let us proceed then with some remarks on the class of domains Ω, i.e., the prismatic
domains. A priori, such domains could be considered:

• either as truncated infinite cylinders;

• or as polyhedra.

As it happens, considering Ω as a polyhedron is helpful, in a simple manner. Indeed,
from [4, 18], we know that, in any polyhedra, the solution u to (1) can be split as

u = ur + ue + uv, with ur ∈ H2(Ω), (3)

ue =
∑

e

µe(ρe, ze) sin(αeφe), and uv =
∑

v

∑

−1/2<λv<1/2

µv,λv
ρλv

v Φv(θv, φv).

Above, ur is called the regular part, ue the edge singularity part, and uv the vertex
singularity part. Note that when ue 6= 0 or uv 6= 0, they do not belong to H2(Ω).
The summation in ue is taken over all reentrant edges e, (ρe, φe, ze) denote the local
cylindrical coordinates, and π/αe the dihedral angle (so that αe ∈]1/2, 1[). Last, the
summation in uv is taken over all non-convex vertices v and over all eigenvalues λv of
the Laplace-Beltrami operator, which belong to the interval ]−1/2, 1/2[, and (ρv, θv, φv)
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denote the local spherical coordinates.
In our case, i.e., when Ω is a prismatic domain with polygonal bases, it has been shown
[29, 2] that the vertex singularity part uv always vanishes, so (3) reduces to

u = ur + us, with ur ∈ H2(Ω) and us =
∑

e

µe(ρe, ze) sin(αeφe). (4)

Let us describe how one can fall into the other class, that of the infinite cylinders.
The first step is to introduce a suitable continuation ũ of the solution u (odd reflection
at the bases) along the x3 direction from Z to R: one builds a problem to be solved in
the infinite cylinder C∞ = ω × R. Unfortunately, with this continuation technique,
one gets a solution (and data) which is not in L2(C∞). Thus, one introduces in
a second step a smooth truncation function η, such that η(x3) is equal to one for
x3 ∈]−L/2, 3L/2[, and to zero for |x3| > 2L. Then, one multiplies ũ by η, to obtain a
Poisson problem in C∞ with solution uη = u η. This time, one has uη ∈ H1(C∞) (and
fη = −∆uη ∈ L2(C∞)). By construction, the restriction of uη on Ω coincides with u.

Interestingly, it has been proven in [21, 26], that a splitting similar to (4) holds for
uη. Furthermore, uη

s can be expressed as

uη
s = γη

e (ρe, x3)ρ
αe

e sin(αeφe). (5)

The function γη
e in (5) is often called in mechanics the stress intensity distribution.

On the one hand, in the original paper [21], γη
e is expressed as a convolution product.

On the other hand, in [26], it is characterized as the solution to a second order PDE.
Finally, the regularity of the singular part uη

s , can be expressed accurately as follows
[26]. Let δ denote the minimal distance between two reentrant edges, and for each
reentrant edge e, let Ωe = {~x ∈ Ω : d(~x, e) < δ/2}. Then





u ∈ H1+α−ε(Ω), ∀ε > 0, α = mine αe,
u ∈ H2(Ω \ ∪eΩ̄e),

ρβe

e ∂iu ∈ H1(Ωe), ∀e, ∀βe > 1 − αe, i = 1, 2,
∂3u ∈ H1(Ω).

(6)

In Section 6, using a Fourier expansion along the x3 axis, we recover some proper-
ties which are very similar to (4-6).

We end this Section with remarks on other possible boundary conditions.

If the boundary condition for u on the bases of the physical domain Ω are the
non-homogeneous Dirichlet boundary condition:

u = g at x3 = 0 and x3 = L,

one can set w = u − g̃ with g̃ being a continuation of g into Ω. Then the problem
reduces to the case with the solution w satisfying the homogeneous Dirichlet boundary
condition, assuming that g̃ ∈ H2(Ω).
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If the boundary condition for u is the homogeneous Neumann boundary condition
∂nu = 0 on ∂Ω, then one can replace the sin(αeφe) factor in (4) by the expected
cos(αeφe). Moreover, to obtain an expression like (5), one uses an even reflection of
u at the bases of the domain. If we have the non-homogeneous Neumann boundary
condition:

∂nu = g at x3 = 0 and x3 = L,

one may then study the solution

w(~x) = u(~x) −
∫ x3

0
g̃(x1, x2, z) dz

first, which satisfies the homogeneous Neumann boundary conditions at the bases of
the domain Ω. Here g̃ is a continuation of g into Ω which is again assumed to belong
to H2(Ω).

From now on, we assume, for ease of exposition, that the polygon ω has only one
reentrant corner C, i.e., with an interior angle larger than π, denoted as π/α, with
1/2 < α < 1. In particular, the summation which defines the singular part us in (4)
reduces to exactly one term.

3 Fourier expansion

We devote this Section to some justifications about the Fourier series expansion of the
Poisson solution to (1). First, one can show, following for instance Heinrich’s proof of
Lemma 3.2 in [23], the well-known result

Lemma 3.1 For any f ∈ L2(Ω), there exist Fourier coefficients defined by

fk(x1, x2) =
2

L

∫ L

0
f(x1, x2, x3) sin

kπ

L
x3 dx3, k = 1, 2, 3, · · · , (7)

such that fk ∈ L2(ω) and

f(x1, x2, x3) =

∞∑

k=1

fk(x1, x2) sin
kπ

L
x3 a.e. in Ω , (8)

and

‖f‖2
L2(Ω) =

L

2

∞∑

k=1

‖fk‖2
L2(ω) <∞. (9)

If f ∈ H1
0 (Ω), then fk ∈ H1

0 (ω) for all k and

‖∇f‖2
L2(Ω) =

L

2

∞∑

k=1

{
‖∇fk‖2

L2(ω) +
(kπ
L

)2
‖fk‖2

L2(ω)

}
<∞. (10)
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For f in L2(Ω), let us introduce the sequence of partial sums (FK)K of the Fourier
decomposition of f , which converges to f in L2(Ω), cf. (8):

FK =

K∑

k=1

fk sin
kπ

L
x3, for K > 0. (11)

We note that when f is in H1
0 (Ω), (FK)K converges to f in H1

0 (Ω), according to (10).
Also, the sine functions can be replaced by cosine functions with the same argument
kπ

L
x3, and (7-10) still holds (for (10), with any f in H1(Ω).)

In our subsequent analysis, summations like

∞∑

k=1

k4‖fk‖2
L2(ω) (12)

will appear. The result below provides a characterization of elements f of L2(Ω), which
are such that (12) is bounded. Let the following Sobolev spaces be introduced:

h1(Ω) := H1(]0, L[, L2(ω)) = {f ∈ L2(Ω) : ∂3f ∈ L2(Ω)} ;

h1
⋄(Ω) := H1

0 (]0, L[, L2(ω)) = {f ∈ h1(Ω) : f|{x3=0} = f|{x3=L} = 0} ;

h2(Ω) := H2(]0, L[, L2(ω)) = {f ∈ h1(Ω) : ∂33f ∈ L2(Ω)}.

Lemma 3.2 Given f ∈ L2(Ω), one has the following equivalences

f ∈ h1
⋄(Ω) ⇐⇒

∞∑

k=1

k2‖fk‖2
L2(ω) <∞ ; (13)

f ∈ h1
⋄(Ω) ∩ h2(Ω) ⇐⇒

∞∑

k=1

k4‖fk‖2
L2(ω) <∞. (14)

Proof. Let f be in L2(Ω).
Assume in addition that f ∈ h1

⋄(Ω). We note that, by the definition of the Fourier
mode fk and integration by parts (f vanishes at the bases), one has

(kπ)fk = −2

∫ L

0
f

(
cos

kπ

L
x3

)′
dx3 = 2

∫ L

0
∂3f cos

kπ

L
x3 dx3.

Since by assumption, ∂3f is in L2(Ω), one gets the expected
∞∑

k=1

k2‖fk‖2
L2(ω) <∞.

Let us prove the reciprocal assertion. For f in L2(Ω), as the sequence (FK)K (see
(11)) converges to f in L2(Ω), one infers that (∂3FK)K converges to ∂3f in H−1(Ω).
Now, if the sum is bounded, (∂3FK)K is a Cauchy sequence in L2(Ω), so it converges
in this space, and its limit ∂3f is in L2(Ω). Since both (FK)K and (∂3FK)K converge
in L2(Ω), (FK)K converges to f in h1(Ω), and, as FK belongs to h1

⋄(Ω) for all K, f is
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also in h1
⋄(Ω), which proves (13).

In order to establish (14), one proceeds similarly, by performing a second integration
by parts. Note that for this additional integration by parts, no assumption is required

on the trace of f at the bases, since the (sin
kπ

L
x3)k vanish there.

k2π2

L
fk = 2

kπ

L

∫ L

0
∂3f cos

kπ

L
x3 dx3 = −2

∫ L

0
∂33f sin

kπ

L
x3 dx3.

With this identity, one concludes the proof easily. ⋄

Now that the general results have been obtained, we focus on the Poisson prob-
lem (1). Consider the weak form of the Poisson problem:

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω) (15)

where a(·, ·) and f(·) are given by

a(u, v) =

∫

Ω
∇u · ∇v dx, f(v) =

∫

Ω
f v dx.

We expand the solution u in (1) in the Fourier sine series:

u(x1, x2, x3) =
∞∑

k=1

uk(x1, x2) sin
kπ

L
x3. (16)

Following again Heinrich’s proof of Lemma 3.2 in [23], the next two Lemmas hold.

Lemma 3.3 For any u, v ∈ H1
0 (Ω), we have

a(u, v) =
L

2

∞∑

k=1

ak(uk, vk), f(v) =
L

2

∞∑

k=1

fk(vk),

where ak and fk are given by

ak(uk, vk) =

∫

ω

{
∇uk · ∇vk +

(kπ
L

)2
ukvk

}
dx1dx2, fk(vk) =

∫

ω
fk vk dx1dx2,

and uk, vk and fk are Fourier coefficients of u, v ∈ H1
0 (Ω) and f ∈ L2(Ω) respectively.

Lemma 3.4 For any f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the unique weak solution of (15)

and uk and fk be the Fourier coefficients of u and f . Then uk ∈ H1
0 (ω) is the unique

solution of the following 2D weak problem:
Find uk ∈ H1

0 (ω) such that

ak(uk, v) = fk(v) ∀ v ∈ H1
0 (ω). (17)

Moreover, uk satisfies the following a priori estimates:
∫

ω

{
|∇uk|2 +

(kπ
L

)2
u2

k

}
dx1dx2 ≤

( L

kπ

)2
‖fk‖2

L2(ω), k = 1, 2, · · · ,
∞∑

k=1

k2
{
‖∇uk‖2

L2(ω) +
(kπ
L

)2
‖uk‖2

L2(ω)

}
≤ 2L

π2
‖f‖2

L2(Ω).
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This means that the k-th Fourier mode of u is characterized as the unique solution to
the 2D problem
Find uk ∈ H1

0 (ω) such that

−∆uk +

(
kπ

L

)2

uk = fk in ω; uk = 0 on ∂ω. (18)

As Corollaries, one gets a convergence result of the sequence of partial sums (UK)K
of the Fourier decomposition of u, and also the last result of (6).

Corollary 3.1 Let f ∈ L2(Ω), and u be the solution to (1). Then (UK)K converges
to u in H1(Ω), and (∆UK)K converges to −f in L2(Ω).

Proof. The fact that (UK)K converges to u in H1(Ω) is a consequence of Lemma 3.1.
Then, one notes that

−∆UK =

K∑

k=1

(−∆uk +

(
kπ

L

)2

uk) sin
kπ

L
x3

(18)
=

K∑

k=1

fk sin
kπ

L
x3 = FK ,

which yields the result on the convergence of (∆UK)K . ⋄

Corollary 3.2 Let f ∈ L2(Ω), and u be the solution to (1). Then ∂3u ∈ H1(Ω).

Proof. We prove that, for i = 1, 2, 3, ∂i3u belongs to L2(Ω).

For i = 3, thanks to the last bound of the Lemma 3.4, there holds

∞∑

k=1

k4‖uk‖2
L2(ω) <∞.

Result (14) yields u ∈ h1
⋄(Ω) ∩ h2(Ω), so that ∂33u is in L2(Ω).

For i = 1, 2, we note that

∂i3UK = −π
L

K∑

k=1

k∂iuk cos
kπ

L
x3.

According again to the last estimate in Lemma 3.4,

∞∑

k=1

k2‖∂iuk‖2
L2(ω) < ∞, so ∂i3u is

in L2(Ω). ⋄

To conclude this Section, we note that the Fourier expansion (16) of u together with
the series of 2D problems (18) suggest the numerical approximation scheme below, i.e.,
define the Fourier SCM (FSCM) approximation of the solution u to (15) as follows:

Uh
N (x1, x2, x3) =

N∑

k=1

uh
k(x1, x2) sin

kπ

L
x3 (19)

where N is the total number of Fourier modes used in the approximation, and uh
k is a

suitable approximation of uk, to be studied in the next two Sections.
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4 Regular-singular decomposition in the 2D do-

main ω: theoretical study

The main interest of this paper is to propose some efficient numerical method for solving
the three-dimensional singular Poisson problem (1) in a prismatic domain. Basically,
the method reduces the 3D problem into a series of 2D Poisson-like problems, see (18),
by the Fourier expansion of the 3D solution along the x3-direction. This Section will
thus focus on the 2D singular Poisson problem:
Find uµ ∈ H1

0 (ω) such that

−∆uµ + µuµ = f in ω. (20)

In the case of the Fourier expansion, one considers µ = k2π2/L2 and f = fk in (20).
Due to the presence of the Fourier mode index k, the coefficient µ varies in a large
range, from π2/L2 to N2π2/L2, where N is the number of Fourier modes required
subsequently in the numerical approximation (cf. Section 6). This brings in one of the
main difficulties in the subsequent error estimates, which should hold for all µ’s in a
large range.

As a preliminary remark, we note that, according to [22], the most singular part of
the solution to (20) is of the form ρα sin(αθ), compared to (4) in 3D.

Let γ1, γ2, · · · , γK be the line segments of ∂ω, where γ1 and γ2 are two line segments
which form the single re-entrant corner of ω. Our numerical method is based on the
following important decomposition of the space L2(ω) [22]:

L2(ω) = ∆[H2(ω) ∩H1
0 (ω)]

⊥
⊕ N , (21)

where N is a space of singular harmonic functions defined by

N =
{
p ∈ L2(ω) : ∆p = 0, p|γk

= 0 in (H
1/2
00 (γk))

′, 1 ≤ k ≤ K
}
.

Above, the space H
1/2
00 (γk) is made up of elements of H1/2(γk), such that their continu-

ation to ∂ω by zero belongs to H1/2(∂ω). Its dual space is denoted by (H
1/2
00 (γk))

′. To
understand that the boundary condition on p holds in this dual space, let us mention

that one can prove that, given any φ̃ in H2(ω) ∩H1
0 (ω), ∂nφ̃|γk

belongs to H
1/2
00 (γk).

Then, the fact that p|γk
= 0 simply reflects a surjectivity property, which states that

the mapping φ̃ 7→ ∂nφ̃|γk
is onto, from H2(ω) ∩H1

0 (ω) to H
1/2
00 (γk).

As the domain ω has only one re-entrant corner, we know dim(N) = 1, and
N=span{ps} for some ps ∈ N \ {0}, see Grisvard [22].

Let φs be an element in H1
0 (ω), which solves the Poisson problem

−∆φs = ps in ω . (22)

9



Then by the decomposition (21), we can split the solution uµ to equation (20) as

uµ = ũµ + cµφs, (23)

where ũµ ∈ H2(ω) ∩H1
0 (ω), and is called the regular part of uµ.

We will devote the rest of this Section to the derivation of some a priori estimates
for the solution uµ, its regular part ũµ and the singularity coefficient cµ, as well as the
solvability of ũµ and cµ. Let us first introduce some notation.

Throughout the rest of the paper, α0 will be a frequently used fixed positive constant
lying in the interval ]12 , α[, where α ∈]12 , 1[ is the singularity exponent. | · |s is used to
denote the semi-norm of the Sobolev space Hs(ω) for any s > 0, (·, ·) and ‖ · ‖0 are
used to denote the inner product and the norm in the space L2(ω). Also, (·, ·) will be
used for the dual pairing between the space H1

0 (ω) and H−1(ω) when necessary.
The following lemma summarizes some a priori estimates on uµ and cµ.

Lemma 4.1 Let uµ be the solution uµ to the Poisson problem (20), then we have the
following a priori estimates:

µ ‖uµ‖0 ≤ ‖f‖0 ,
√
µ |uµ|1 ≤ 1√

2
‖f‖0 , ‖∆uµ‖0 ≤ 2 ‖f‖0 , (24)

|cµ| . µ−
1−α

2 ‖f‖0 (25)

|uµ|1+α0
. µ−

1−α0
2 ‖f‖0 . (26)

Proof. Multiplying equation (20) by uµ and integrating over ω yield

|uµ|21 + µ ‖uµ‖2
0 ≤ ‖f‖0 ‖uµ‖0 ,

which proves the first estimate in (24). Then applying the Cauchy-Schwarz inequality,
we further obtain

|uµ|21 + µ ‖uµ‖2
0 ≤ 1

2
µ ‖uµ‖2

0 +
1

2µ
‖f‖2

0,

which leads to the H1 semi-norm estimate in (24).
The last estimate in (24) follows immediately from ∆uµ = µuµ − f and the first

inequality in (24).

As far as (25) is concerned, it is a simple matter to check that the singularity
coefficient cµ, multiplied by some constant β⋆, equals the singularity coefficient c(µ) of
[22, pp. 62-69]. Indeed, in Grisvard’s papers, uµ is decomposed into:

uµ = uG
µ + c(µ)e−

√
µρξ(ρ)ρα sin(αφ), uG

µ ∈ H2(ω) ∩H1
0 (ω) (27)

where ξ is a smooth cut-off function, equal to one in a neighborhood of 0.
On the other hand one can decompose the singular part in (23) as (cf. [13] or (46)

below)

cµφs = cµ

(
φ̃+ β⋆ρα sin(αφ)

)
, φ̃ ∈ H2(ω), β⋆ =

1

π
‖ps‖2

0.

10



Using this, (23) and (27), we can write

(cµβ
⋆ − c(µ)ξ(ρ))ρα sin(αφ)

= uµ − (ũµ + cµφ̃) − c(µ)ξ(ρ)ρα sin(αφ)

= uG
µ + c(µ)

(
e−

√
µρ − 1

)
ξ(ρ)ρα sin(αφ) − (ũµ + cµφ̃). (28)

Noting that each term on the right-hand side of (28) belongs to H2(ω), we must have
cµ = c(µ)/β⋆. But it is shown in [22, ineq. (2.5.5)] that

|c(µ)| . µ−
1−α

2 ‖f‖0, (29)

which implies (25).

In order to derive the estimate (26), we shall use (27-30), with the additional norm
estimate [22, ineq. (2.5.4)] on the regular part uG

µ , namely

|uG
µ |2 +

√
µ|uG

µ |1 + µ‖uG
µ ‖0 . ‖f‖0. (30)

Indeed, from the estimates

|uG
µ |1 . µ−1/2‖f‖0, |uG

µ |2 . ‖f‖0 ,

we have then by standard interpolation theory that

|uG
µ |1+α0

. µ−
1−α0

2 ‖f‖0.

Next, we use (29) and a direct estimate of the H1+α0 semi-norm to bound the singular
part in (27). Actually, there holds

|v|21+α0
=

∫

~x∈ω

∫

~x′∈ω

|∇v(~x) −∇v(~x′)|2
|~x− ~x′|2+2α0

dω(~x) dω(~x′), ∀ v ∈ H1+α0(ω).

Due to the uniform smoothness (in µ) of e−
√

µρξ(ρ)ρα sin(αφ) for ρ ≥ ρ0 > 0, it is
possible to evaluate the integrals only on ω∞ = {(ρ, φ) ∈]0, ρ0[×]0, π/α[}. Then, one
performs the changes of variables s =

√
µρ, s′ =

√
µρ′, to find

|e−
√

µρξ(ρ)ρα sin(αφ)|H1+α0 (ω∞) ≤ C(α0)µ
−α−α0

2 .

This with (25) leads to (26). ⋄
Now, let us study the solvability of ũµ and cµ in decomposition (23). For conve-

nience, we introduce the notation aµ(·, ·) and the norm ‖ · ‖a:

aµ(w, v) = (∇w,∇v) + µ (w, v) , ‖v‖2
a = aµ(v, v) ,

and the linear mapping Aµ from H1
0 (ω) to H−1(ω), defined by Aµu = −∆u + µu, or

equivalently by

H−1(ω) < Aµw, v >H1
0
(ω)= aµ(w, v) ∀w, v ∈ H1

0 (ω).

11



It is not difficult to verify that Aµ is a one-to-one and onto mapping, so it is invertible.
So, we claim that ũµ and cµ solve the following coupled system:

aµ(ũµ, v) + cµ aµ(φs, v) = (f, v) ∀v ∈ H1
0 (ω) , (31)(

‖ps‖2
0 + µ|φs|21

)
cµ + µ (ũµ, ps) = (f, ps) . (32)

In fact, by multiplying the equation (20) by ps and integrating over ω we obtain

−(∆uµ, ps) + µ (uµ, ps) = (f, ps) ,

then (32) follows readily from the decomposition (23), the orthogonality between ps

and ∆ũµ, along with the relation (22) and its following direct consequence

|φs|21 = (φs, ps). (33)

On the other hand, the solution uµ of (20) also satisfies the weak form:

(∇uµ,∇v) + µ (uµ, v) = (f, v) ∀v ∈ H1
0 (ω).

This and the decomposition (23) lead to the equation (31).

Below, we show the well-posedness of the system (31)-(32).

Lemma 4.2 There exists a unique solution (ũµ, cµ) to the coupled system (31)-(32)
and the following stability estimates hold:

‖ũµ‖a ≤
√

2
(
2
√
µC2

P +
1√
µ

)
‖f‖0 ,

|cµ| ≤ 2
‖f‖0

‖ps‖0
, |ũµ|2 ≤ 4 ‖f‖0 ,

where CP is the constant in the Poincaré inequality.

Proof. To see the unique existence, we rewrite (31) as the following operator form:

Aµũµ + cµAµφs = f in H−1(ω). (34)

As the inverse of Aµ exists, we know from (34) that ũµ can be determined if cµ is
available:

ũµ = A−1
µ f − cµ φs . (35)

This is exactly our original decomposition (23). Substituting this into (32),

(
‖ps‖2

0 + µ|φs|21
)
cµ + µ (A−1

µ f − cµ φs, ps) = (f, ps) .

With (33), we obtain that

cµ =
(f − µA−1

µ f, ps)

‖ps‖2
0

. (36)

12



With cµ uniquely determined, ũµ is clearly uniquely determined by (31) or (35).
Next, we derive the stability estimates in Lemma 4.2. We show that these estimates

are the consequences of (35-36) and of the following inequality

‖A−1
µ g‖0 ≤ 1

µ
‖g‖0 ∀ g ∈ L2(ω). (37)

In fact, if (37) is true, then the desired estimate on cµ follows from (36):

|cµ| ≤
‖f‖ + µ ‖A−1

µ f‖0

‖ps‖0
≤ 2

‖f‖0

‖ps‖0
.

On the other hand, we have from (33) and the Poincaré inequality that

‖φs‖0 ≤ CP ‖∇φs‖0 ≤ C2
P ‖ps‖0 .

Using this and the bound of cµ, we derive from (31) by taking v = ũµ that

‖∇ũµ‖2
0 + µ‖ũµ‖2

0 ≤ ‖f‖0‖ũµ‖0 + |cµ| (‖∇φs‖0‖∇ũµ‖0 + µ ‖φs‖0‖ũµ‖0)

≤ ‖f‖0‖ũµ‖0 + 2CP ‖f‖0‖∇ũµ‖0 + 2µC2
P ‖f‖0‖ũµ‖0 .

Then, an application of the Young inequality yields

‖∇ũµ‖2
0 + µ‖ũµ‖2

0 ≤ 1

2
µ ‖ũµ‖2

0 +
1

µ
‖f‖2

0 +
1

2
‖∇ũµ‖2

0 + 2C2
P ‖f‖2

0 + 4µC4
P ‖f‖2

0 .

This implies

1

2
‖ũµ‖2

a ≤
(

1

µ
+ 2C2

P + 4µC4
P

)
‖f‖2

0 ≤
(

1√
µ

+ 2
√
µC2

P

)2

‖f‖2
0 ,

so the desired estimate on ‖ũµ‖a follows.
We now show the H2-norm estimate. By the decomposition (35), we have uµ =

A−1
µ f = ũµ + cµφs, and

−∆ũµ = −∆uµ + cµ∆φs = f − µuµ − cµps,

which gives
‖∆ũµ‖0 ≤ ‖f‖0 + µ‖uµ‖0 + |cµ| ‖ps‖0.

But we know from Lemma 4.1 that µ‖uµ‖0 ≤ ‖f‖0. This, along with the previous
bound for cµ, leads to

‖∆ũµ‖0 ≤ 4‖f‖0.

Now, for any ~v ∈ H1(ω)2 such that ~v · ~τ = 0 on ∂ω, with ~τ the vector tangential to
∂ω, it is well-known (cf. [17]) that (since ω is a polygon)

∑

1≤k,l≤2

‖∂kvl‖2
0 = ‖curl~v‖2

0 + ‖div~v‖2
0.
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So, by taking ~v = ∇ũµ, one actually finds

|ũµ|2 = ‖∆ũµ‖0 ≤ 4‖f‖0.

Finally, it remains to prove (37). By the definition of aµ(·, ·), we easily see the
following lower bound:

H−1(ω) < Aµv, v >H1
0
(ω)= aµ(v, v) ≥ µ ‖v‖2

0 ∀ v ∈ H1
0 (ω) . (38)

Then for any g ∈ L2(ω) ⊂ H−1(ω), let v = A−1
µ g ∈ H1

0 (ω). One has Aµ v = g in L2(ω)
and it follows from (38) that

‖A−1
µ g‖2

0 = ‖v‖2
0 ≤ 1

µ
(Aµ v, v) =

1

µ
(g,A−1

µ g) =
1

µ
‖g‖0 ‖A−1

µ g‖0,

which proves (37). ⋄

We end this Section with a number of important remarks on the theoretical and
practical range of the splitting into regular and singular parts.

Remark 4.1 Equation (20) is also useful when the 2D heat equation is considered in
ω:

∂u

∂t
− ∆u = f in ω×]0, T [,

with initial condition and (homogeneous) Dirichlet boundary condition. As a matter
of fact, assume it is first discretized in time, with a time-step δt, at times tm = mδt,
m = 0, 1, · · · : let um = u(tm). Then one has to solve in space the implicit problems
(with θ ∈]0, 1] given)
Find um+1 ∈ H1

0 (ω) such that

−∆um+1 +
1

θδt
um+1 = f(tm+1) +

1 − θ

θ
f(tm) +

1

θδt
um +

1 − θ

θ
∆um, in ω.

Above, θ = 1 (resp. θ = 1/2) corresponds to the implicit Euler (resp. Crank-Nicolson)
scheme. This is precisely (20) with µ = 1/θδt.
Clearly, implicit schemes for the 2D wave equation

∂2u

∂t2
− ∆u = f in ω×]0, T [,

lead to other instances of Equation (20).

Remark 4.2 Both φs and ps in (22) are chosen independent of µ, f and uµ, so their
norms will be regarded as some generic constants (i.e., independent of µ, f and uµ.)

Remark 4.3 Instead of the decomposition (23), it seems more natural [21, 22] to take
the decomposition uµ = ũ′µ +cµφµ, where φµ ∈ H1

0 (ω) depends on the parameter µ, and
it is the solution to the problem: −∆φµ + µφµ = pµ in ω, with pµ ∈ Nµ \ {0}, where
Nµ is given by

Nµ =
{
p ∈ L2(ω) : (−∆ + µ I) p = 0, p|γk

= 0 in (H
1/2
00 (γk))

′, 1 ≤ k ≤ K
}
.

But the decomposition (23) has an important advantage: the singular part φs is in-
dependent of the parameter µ. As we shall see, this will be much less expensive than
using the above more natural decomposition.
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5 Discrete formulation in the 2D domain ω: the

SCM

In this Section we shall formulate the generalized SCM for solving the coupled sys-
tem (31)-(32) and derive the error estimates of the approximate solutions. The SCM
was first introduced by Assous et al [8] for solving the 2D static or unsteady Maxwell
equations without charges, and then used in [13] for the 2D Poisson problem. As we
will see, the formulation of the SCM for the 2D Poisson-like problem (18) is quite
different here due to the involvement of the parameter µ.

Let Th be a regular triangulation of the domain ω, with vertices {Mj}Ni+Nb

j=1 and

the last Nb vertices lying on the boundary ∂ω. We define V h to be the continuous
piecewise linear finite element space on Th with the standard basis functions {ψj}Ni+Nb

j=1

(cf. [16]). We further define V h
0 to be the subspace of V h with all functions vanishing

on the boundary of ω. The interpolation associated with the space V h will be denoted
by Πh.

5.1 Approximation of the singular function ps

We start with the finite element approximation of the singular function ps ∈ N in (22).
Recall the splitting (see [13])

ps = p̃+ p
P
, p̃ ∈ H1(ω), p

P
= ρ−α sin(αφ) .

As ps is harmonic in ω, one can directly verify that the regular part p̃ in the splitting
solves the problem:
Find p̃ ∈ H1(ω) such that p̃ = s on ∂ω and

(∇p̃,∇v) = 0 ∀ v ∈ H1
0 (ω) (39)

where the boundary function s is given by

s = 0 on γ1 ∪ γ2; s = −p
P

on γk (3 ≤ k ≤ K).

For the finite element approximation of the problem (39), we shall use the simple
treatment of the boundary condition:

πh s =

Ni+Nb∑

j=Ni+1

s(Mj)ψj . (40)

Then we approximate ps by ph
s = p̃h+p

P
, where p̃h is the piecewise linear finite element

solution to the problem (39). Namely, p̃h = πhs+ p0
h where p0

h ∈ V 0
h solves

(∇p̃h,∇vh) = 0 ∀ vh ∈ V h
0 . (41)

The error estimates for the singular function ps and its finite element approximation
ph

s are summarized in the following lemma.
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Lemma 5.1 We have 6

|ps − ph
s |1 . hα0 , ‖ps − ph

s‖0 . h2α0 .

Proof. We introduce a smooth continuation of s into ω:

s̃ = −p
P
(1 − ξ(ρ)) .

Clearly, s̃ = s on ∂ω and s̃ ∈ H2(ω). Let p0 = p̃ − s̃. It is known that p̃ ∈ H1+α0(ω),
so we have p0 ∈ H1+α0(ω) ∩H1

0 (ω). It follows from (39) that

(∇p0,∇v) = −(∇s̃,∇v) ∀ v ∈ H1
0 (ω) . (42)

Recall Πh is the interpolant associated with V h, thus we can rewrite the finite element
solution p̃h to the system (41) as p̃h = Πhs̃+ p0

h with p0
h ∈ V h

0 now solving

(∇p0
h,∇vh) = −(∇Πhs̃,∇vh) ∀ vh ∈ V h

0 , (43)

by noting Πhs̃ = πh s on ∂ω.
Now we are ready to derive the error estimates. It is clear from (42) and (43) that

(∇(p0 − p0
h),∇vh) = (∇(Πhs̃− s̃),∇vh) ∀ vh ∈ V h

0 . (44)

Using this, we obtain for any qh ∈ V h
0 that

‖∇(p0 − qh)‖2 ≥ ‖∇(p0 − p0
h)‖2 + 2(∇(Πhs̃− s̃),∇(p0

h − qh)),

taking qh = Πhp
0 above and using the Young inequality leads to

|p0 − p0
h|21 ≤ |p0 − Πhp

0|21 + 2 |Πhs̃− s̃|1 (|p0
h − p0|1 + |p0 − Πhp

0|1)

≤ 2 |p0 − Πhp
0|21 +

1

2
|p0

h − p0|21 + 3 |Πhs̃− s̃|21 .

Then by the standard interpolation results we obtain

|p0 − p0
h|21 ≤ 4 |p0 − Πhp

0|21 + 6 |Πhs̃− s̃|21 . h2α0 |p0|21+α0
+ h2 |s̃|22.

This leads to the desired H1-norm error estimate:

|ps − ph
s |1 = |p̃ − p̃h|1 = |p0 + s̃− p0

h − Πhs̃|1
≤ |p0 − p0

h|1 + |s̃− Πhs̃|1 . hα0 + h|s̃|2 . hα0 .

Finally, we apply the Nitsche trick to derive the L2-norm error estimate. Let
w ∈ H1

0 (ω) be the solution to the variational problem

(∇w,∇v) = (p0 − p0
h, v) ∀ v ∈ H1

0 (ω). (45)

6By construction, neither ps nor ph
s

belong to H1(ω), due to the presence of p
P
, but the following holds:

ps − ph

s
= p̃− p̃h ∈ H1(ω).
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By the elliptic theory, we know w ∈ H1+α0(ω) and

|w|1+α0
. ‖p0 − p0

h‖0.

Let wh be the finite element approximation of w: wh ∈ V h
0 solves

(∇wh,∇vh) = (p0 − p0
h, vh) ∀ vh ∈ V h

0 .

Taking vh = wh above and using the Poincaré inequality, we know

|wh|1 . ‖p0 − p0
h‖0.

Also, by the standard error estimate, we have

|w − wh|1 . hα0 |w|1+α0
. hα0‖p0 − p0

h‖0.

Now, taking v = p0 − p0
h in (45) and using (44) and the duality argument, we obtain

‖p0 − p0
h‖2

0 = (∇w,∇(p0 − p0
h))

= (∇(w − wh),∇(p0 − p0
h)) + (∇wh,∇(p0 − p0

h))

= (∇(w − wh),∇(p0 − p0
h)) + (∇(Πhs̃− s̃),∇(wh − w))

+(∇(Πhs̃− s̃),∇w)

≤ |w − wh|1 |p0 − p0
h|1 + |Πhs̃− s̃|1 |wh − w|1 + |Πhs̃− s̃|1−α0

|w|1+α0

. h2α0‖p0 − p0
h‖0 + h1+α0 |s̃|2‖p0 − p0

h‖0 ,

which leads to the desired L2-norm error estimate:

‖ps − ph
s‖0 ≤ ‖p0 − p0

h‖0 + ‖s̃− Πhs̃‖0 . h2α0 + h2|s̃|2 . h2α0 . ⋄

Remark 5.1 Following the proof given in [1], one can improve the results of the previ-
ous Lemma. Indeed, one can derive the estimates |ps−ph

s |1 . hα and ‖ps−ph
s‖0 . h2α,

with slightly more restrictive assumptions on the mesh.

5.2 Approximation of the singular part φs

In order to approximate the singular part φs in the decomposition uµ = ũµ + cµ φs, we
recall (cf. [13]) that φs ∈ H1

0 (ω) solves the elliptic problem (22) and has the following
decomposition:

φs = φ̃+ β⋆φ
P
, φ̃ ∈ H2(ω), β⋆ =

1

π
‖ps‖2

0, φ
P

= ρα sin(αφ) . (46)

Using (22), we see that φ̃, satisfying φ̃ = −β⋆φ
P

on ∂ω, solves the variational problem:

(∇φ̃,∇v) = (ps, v) ∀ v ∈ H1
0 (ω). (47)
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The next step is to consider the finite element approximation of φ̃ in V h:

φ̃h = −β⋆
hπhφP + φ0

h,

where πh is defined as in (40), β⋆
h is computed using β⋆

h =
1

π

∫

ω
(ph

s )2dω, and φ0
h ∈ V h

0

is the solution to the problem:

(∇φ̃h,∇vh) = (ph
s , vh) ∀ vh ∈ V h

0 . (48)

Then we propose to compute the finite element approximation of φs by

φh
s = φ̃h + β⋆

hφP
.

Below, we derive the error estimates for this approximation.

Lemma 5.2 The following error estimates hold

|φs − φh
s |1 . h , ‖φs − φh

s‖a .
√
µh .

Proof. We first estimate the error φ̃− φ̃h. Subtracting (48) from (47) yields

(∇(φ̃− φ̃h),∇vh) = (ps − ph
s , vh) ∀ vh ∈ V h

0 ,

thus we obtain for any wh ∈ V h satisfying wh − φ̃h ∈ V h
0 ,

|φ̃− wh|21 = |φ̃− φ̃h|21 + |φ̃h − wh|21 + 2(ps − ph
s , φ̃h − wh),

which with the Young inequality and the Poincaré inequality gives

|φ̃− φ̃h|21 ≤ |φ̃− wh|21 + 2CP ‖ps − ph
s‖0(|φ̃− φ̃h|1 + |φ̃− wh|1)

. 2 |φ̃− wh|21 +
1

2
|φ̃− φ̃h|21 + ‖ps − ph

s‖2
0. (49)

Noting that φ̃ = −β⋆φ
P

on ∂ω, so β⋆
hΠhφ̃ = β⋆φ̃h on ∂ω. Let wh = β⋆

hΠhφ̃/β
⋆, then

wh − φ̃h ∈ V h
0 . With this wh, we derive from (49) and Lemma 5.1 that

|φ̃− φ̃h|21 . h2 + (β⋆)−2|β⋆φ̃− β⋆
hΠhφ̃|21

. h2 + |β⋆ − β⋆
h|2 |φ̃|21 + |β⋆

h|2 |φ̃− Πhφ̃|21. (50)

But using the definitions of β⋆ and β⋆
h, we have

|β⋆ − β⋆
h| =

1

π

∣∣∣‖ps‖2
0 − ‖ph

s‖2
0

∣∣∣ . ‖ps − ph
s‖0 . h2α0 . (51)

It follows from (50) and the property φ̃ ∈ H2(ω) that

|φ̃− φ̃h|1 . h .

This with (51) and the decompositions of φs and φh
s gives the desiredH1-norm estimate:

|φs − φh
s |1 ≤ |φ̃− φ̃h|1 + |β⋆ − β⋆

h| |φP
|1 . h .

Finally, by noting that both φs and φh
s vanish on γ1 and γ2, we can apply the Poincaré

inequality to the function φs − φh
s to get

‖φs − φh
s‖0 ≤ C ′

P |φs − φh
s |1 .

Then the desired estimate on ‖φs − φh
s‖a follows from

‖φs − φh
s‖2

a = |φs − φh
s |21 + µ ‖φs − φh

s‖2
0 . h2 + µh2. ⋄
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5.3 Approximation of ũµ and cµ in decomposition (23)

Noting that ũµ and cµ solve the coupled system (31) and (32), it is natural to formulate
their finite element approximations as follows:
Find ũh

µ ∈ V h
0 and chµ ∈ R

1 such that

aµ(ũh
µ, v) + chµ aµ(φh

s , v) = (f, v) ∀v ∈ V h
0 , (52)

(
‖ph

s‖2
0 + µ|φh

s |21
)
chµ + µ (ũh

µ, p
h
s ) = (f, ph

s ) , (53)

where φh
s and ph

s are the finite element approximations of φs and ps, see Subsect. 5.1-5.2.
However, this formulation requires solving a coupled system, and it poses some

difficulty in getting the error estimates as it does not fall into any existing saddle-
point-like framework. Instead, we are going to propose a more efficient approximation
which enables us to find ũh

µ ∈ V h
0 and chµ separately. In fact, we can use the formula

(36) to first find chµ, and then use (52) to find ũh
µ ∈ V h

0 . This leads to the following

algorithm to find ũh
µ ∈ V h

0 and chµ. Let C⋆ > 0 be a fixed constant.

SCM Algorithm for finding ũh
µ ∈ V h

0 and chµ ∈ R
1.

Step 1. Find zh
µ ∈ V h

0 such that

aµ(zh
µ, v) = (f, v) ∀ v ∈ V h

0 . (54)

Compute chµ as follows:

chµ =
(f − µ zh

µ, p
h
s )

‖ph
s‖2

0

if
√
µ < C⋆ h

− 1

2−α0 ; (55)

and
chµ = 0 if

√
µ ≥ C⋆ h

− 1

2−α0 . (56)

Step 2. Find ũh
µ ∈ V h

0 such that

aµ(ũh
µ, v) + chµ aµ(φh

s , v) = (f, v) ∀v ∈ V h
0 . (57)

Remark 5.2 In practice (see [15]), the conditions (55-56) mean that only a few coef-
ficients (chµ)µ need to be computed, with respect to the total number of Fourier modes.

Below, we shall derive the error estimates on (cµ−chµ) and (ũµ−ũh
µ). Recall the formula

(36) for cµ:

cµ =
(f − µ zµ, ps)

‖ps‖2
0

, (58)

where zµ = A−1
µ f ∈ H1

0 (ω) solves

aµ(zµ, v) = (f, v) ∀ v ∈ H1
0 (ω) . (59)

Clearly zµ = uµ, the solution to the equation (20). But a different notation zµ is used
here for convenience, since the numerical approximation zh

µ is derived with the standard
piecewise linear FEM.
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Lemma 5.3 For the solution zµ to the problem (59) and its piecewise linear finite
element approximation zh

µ in (54), we have the following error estimates

‖zµ − zh
µ‖0 ≤ µ−1‖f‖0 , (60)

‖zµ − zh
µ‖0 . h2α0µα0−1(1 +

√
µh)2‖f‖0 , (61)

while for the coefficient cµ in (58) and its approximation chµ in (55), we have

|cµ − chµ| . (h2α0µα0(1 +
√
µh)2 + h) ‖f‖0 . (62)

Proof. It follows from (59) and (54) that

aµ(zµ − zh
µ, zµ − zh

µ) = aµ(zµ, zµ − zh
µ) = (f, zµ − zh

µ).

This implies
|zµ − zh

µ|21 + µ ‖zµ − zh
µ‖2

0 ≤ ‖f‖0 ‖zµ − zh
µ‖0,

thus (60) follows by the Young inequality.
We next show (61). Again it follows from (54) and (59) that

‖zµ − zh
µ‖a ≤ ‖zµ − vh‖a ∀ vh ∈ V h

0 .

But, by standard interpolation theory, we know that

|zµ − Πhzµ|1 . hα0 |zµ|1+α0
, and ‖zµ − Πhzµ‖0 . h1+α0 |zµ|1+α0

.

Therefore, we reach

‖zµ − zh
µ‖a . (1 +

√
µh)hα0 |zµ|1+α0

. (63)

On the other hand, for any g ∈ L2(ω), define w ∈ H1
0 (ω) such that

aµ(w, v) = (g, v) ∀ v ∈ H1
0 (ω). (64)

Using the duality and (64), we have

‖zµ − zh
µ‖0 = sup

g∈L2(ω)

(zµ − zh
µ, g)

‖g‖0
= sup

g∈L2(ω)

aµ(w, zµ − zh
µ)

‖g‖0

= sup
g∈L2(ω)

aµ(w − Πhw, zµ − zh
µ)

‖g‖0
≤ sup

g∈L2(ω)

‖w − Πhw‖a ‖zµ − zh
µ‖a

‖g‖0
.

Using the interpolation result and the same derivation as in (63) and the a priori
estimate (26) (with u and f replaced by w and g), we obtain

‖zµ − zh
µ‖0 . sup

g∈L2(ω)

h2α0(1 +
√
µh)2|w|1+α0

|zµ|1+α0

‖g‖0

. h2α0µα0−1(1 +
√
µh)2‖f‖0 ,
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which proves (61).
It remains to prove (62). We have from (55) and (58) that

cµ − chµ =
(f − µ zµ, ps)

‖ps‖2
0

−
(f − µ zh

µ, p
h
s )

‖ph
s‖2

0

=
{(f, ps)

‖ps‖2
0

− (f, ph
s )

‖ph
s‖2

0

}
+ µ

{(zh
µ, p

h
s )

‖ph
s‖2

0

− (zµ, ps)

‖ps‖2
0

}
:= I1 + I2 .

For I1, we have from Lemma 5.1 that

|I1| . h ‖f‖0 .

For I2, we further write it as follows

I2 = µ
(zh

µ − zµ, p
h
s )

‖ph
s‖2

0

+ µ
(zµ, p

h
s − ps)

‖ph
s‖2

0

+ µ (zµ, ps)
{ 1

‖ph
s‖2

0

− 1

‖ps‖2
0

}
.

Then using estimate (61) and Lemma 5.1, we can derive

|I2| . µ ‖zµ − zh
µ‖0 + h ‖f‖0 . (h2α0µα0(1 +

√
µh)2 + h) ‖f‖0 .

This with the estimate of I1 gives (62). ⋄
In the rest of this Section, we shall estimate the error between the solution uµ to the

elliptic problem (20) and its SCM approximation uh
µ. We note that the decomposition

of uµ is equal to:
uµ = ũµ + cµ φs = ũµ + cµ (φ̃+ β⋆φ

P
) . (65)

So, we propose its SCM approximation uh
µ of the form:

uh
µ = ũh

µ + chµ φ
h
s = ũh

µ + chµ (φ̃h + β⋆
hφP

). (66)

We shall derive the error estimate on uµ − uh
µ. Let us start with the estimate of

(ũµ − ũh
µ). We have

Lemma 5.4 The following error estimate holds

‖ũµ − ũh
µ‖2

a .
√
µ (h2 ‖f‖2

0 + |cµ − chµ|2) .

Proof. Subtracting (52) from (31) we have

aµ(ũµ − ũh
µ, vh) + cµaµ(φs, vh) − chµaµ(φh

s , vh) = 0 ∀ vh ∈ V h
0 .

Using this we obtain for any wh ∈ V h
0 ,

‖ũµ − wh‖2
a = ‖ũµ − ũh

µ‖2
a + ‖ũh

µ − wh‖2
a + 2chµaµ(φh

s , ũ
h
µ − wh) − 2cµaµ(φs, ũ

h
µ − wh),

which implies

‖ũµ − ũh
µ‖2

a

≤ ‖ũµ −wh‖2
a + 2cµ aµ(φs − φh

s , ũ
h
µ − wh) + 2(cµ − chµ)aµ(φh

s , ũ
h
µ − wh) (67)

≤ ‖ũµ −wh‖2
a + 2 |cµ| ‖φs − φh

s‖a ‖ũh
µ − wh‖a + 2 |cµ − chµ| ‖φh

s‖a ‖ũh
µ − wh‖a .
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Now, there holds ‖φs‖a −‖φs −φh
s‖a ≤ ‖φh

s‖a ≤ ‖φs‖a + ‖φs −φh
s‖a. Using Lemma 5.2

and ‖φs‖2
a = |φs|21+µ ‖φs‖2

0, we find ‖φh
s‖a ≈ √

µ ‖φs‖0. Using the interpolation results,
we obtain

‖ũµ − Πhũµ‖2
a ≤ |ũµ − Πhũµ|21 + µ ‖ũµ − Πhũµ‖2

0 . h2 |ũµ|22,

thus letting wh = Πhũµ in (67) and using Lemma 4.2, we derive

‖ũµ − ũh
µ‖2

a . h2 |ũµ|22 +
√
µh2‖f‖0 |ũµ|2 +

√
µh |cµ − chµ| |ũµ|2

.
√
µ (h2 ‖f‖2

0 + |cµ − chµ|2) . ⋄

Theorem 5.1 Let uµ be the solution to the equation (20) and uh
µ be its finite element

approximation given in (66). Then the following error estimate holds:

∃C > 0 such that ∀µ, ‖uµ − uh
µ‖a ≤ C µh ‖f‖0.

Proof. It follows from (65) and (66) that

uµ − uh
µ = (ũµ − ũh

µ) + cµ(φs − φh
s ) + φh

s (cµ − chµ).

Then we obtain, using Lemmas 5.4, 5.2 and 4.2, that

‖uµ − uh
µ‖2

a ≤ 3
{
‖ũµ − ũh

µ‖2
a + |cµ|2 ‖φs − φh

s‖2
a + ‖φh

s‖2
a|cµ − chµ|2

}

. µh2 ‖f‖2
0 + µ |cµ − chµ|2 .

To prove the desired estimate, we need simply

|cµ − chµ|2 . µh2 ‖f‖2
0 . (68)

First consider the case (56), i.e.,
√
µ ≥ C⋆ h

− 1

2−α0 . This condition is equivalent to

h−2µα0−2 . 1.

Then (68) comes directly from this condition, chµ = 0 and (25) as follows:

|cµ − chµ|2 = c2µ . µα0−1‖f‖2
0 . µh2 (h−2µα0−2)‖f‖2

0 . µh2 ‖f‖2
0 .

For the remaining case (55), we have
√
µ < C⋆ h

− 1

2−α0 , or h2 . µ−(2−α0). On the

one hand, since α0 < 1,
√
µh . h

1−α0
2−α0 . 1. On the other hand, since 2α0 − 1 > 0,

h4α0−2 . µ−(2α0−1)(2−α0). But one infers from (62) and these inequalities that

|cµ − chµ|2 . (h4α0µ2α0 + h2) ‖f‖2
0 . h2 (µ2α0−(2α0−1)(2−α0) + 1) ‖f‖2

0 .

To conclude, (68) follows from this and the fact that, as α0 ∈]12 , 1[, the exponent of µ
is bounded by

2α0 − (2α0 − 1)(2 − α0) = 2α2
0 − 3α0 + 2 = 1 + (2α0 − 1)(α0 − 1) < 1 . ⋄
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6 Fourier Singular Complement Methods

In order to define the numerical part of the Fourier Singular Complement Method, let
us prove a result which can be viewed as the mathematical foundation of the FSCM,
from the Fourier point of view. It allows to recover (4-6), for sufficiently smooth right-
hand sides.

Let u be the solution to the Poisson problem (1) and uk be its Fourier coefficients
in (16). By Lemma 3.4, we know that uk(x1, x2) solves the 2D problem (17-18). And
using (23) we can decompose uk as follows:

uk = ũk + ck φs (69)

where ũk ∈ H2(ω) ∩H1
0 (ω) and φs ∈ H1

0 (ω) solves (22).

Lemma 6.1 Let f ∈ h2(Ω) ∩ h1
⋄(Ω), and u ∈ H1

0 (Ω) be the solution to (1). Then

u = ũ+ γ(x3)φs, with ũ ∈ H2(Ω) ∩H1
0 (Ω), γ ∈ H2(]0, L[) ∩H1

0 (]0, L[). (70)

Proof. Let (UK)K be the Fourier sequence of u. Recall that (UK)K converges to u in
H1

0 (Ω), and (∆UK)K converges to −f in L2(Ω). From (69), let us split the Fourier
sequence into regular and singular parts, as

UK = ŨK + γK(x3)φs, with ŨK =

K∑

k=1

ũk sin
kπ

L
x3, γK(x3) =

K∑

k=1

ck sin
kπ

L
x3.

We shall prove below that (γK)K converges in H2(]0, L[)∩H1
0 (]0, L[), and (ŨK)K con-

verges in H2(Ω) ∩H1
0 (Ω).

As far as the singular part is concerned, from (14) and the bound on |ck| in

Lemma 4.2, we obtain that

∞∑

k=1

k4|ck|2 <∞. Since we are dealing with the 1D Fourier

sequence (γK)K (with sine functions), it is well-known that it converges to a limit, sub-
sequently called γ, in H2(]0, L[) ∩H1

0 (]0, L[). Then, one finds that (γK φs)K converges
to γ φs in H1

0 (Ω), and that (∆(γK φs))K converges in L2(Ω), to γ′′ φs − γps.

For the regular part, we note that since there holds ŨK = UK − γK φs, (ŨK)K
converges in H1

0 (Ω), to a limit called ũ, which is equal to

ũ = u− γ φs.

Moreover, (∆ŨK)K converges in L2(Ω), to ∆ũ.

To conclude the proof, one has to establish that ũ is an element of H2(Ω). From
Corollary 3.2, we know already that ∂3ũ is in H1(Ω). So one has to check that ∂ij ũ is
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in L2(Ω), for i, j ∈ {1, 2}. But this follows from the estimate on |ũk|2 in Lemma 4.2,
and on the expression of the second order partial derivatives of ŨK , that is

∂ijŨK =

K∑

k=1

∂ij ũk sin
kπ

L
x3. ⋄

Remark 6.1 In the more general case, i.e., f ∈ L2(Ω), one gets only a convergence
of (γK)K in H1−α(]0, L[), see [11]. This precludes a convergence of the singular part
in the desired Sobolev spaces, i.e., H1(Ω) with L2(Ω) Laplacian.

In order to build the numerical schemes which completely define the FSCM, we intro-
duce uh

k(x1, x2) the SCM approximation to uk(x1, x2). It is the same as uh
µ in (66), but

with µ replaced by k2π2/L2, that is,

uh
k = ũh

k + chk φ
h
s .

We then rephrase the 2D SCM Algorithm (54-57). This gives

Step 1. Find zh
k ∈ V h

0 such that

ak(z
h
k , v) = (f, v) ∀ v ∈ V h

0 . (71)

Compute chk as follows:

chk =
(f − k2π2

L2
zh
k , p

h
s )

‖ph
s‖2

0

if k < C⋆L

π
h
− 1

2−α0 ; (72)

and

chk = 0 if k ≥ C⋆L

π
h
− 1

2−α0 . (73)

Step 2. Find ũh
k ∈ V h

0 such that

ak(ũ
h
k , v) + chk ak(φ

h
s , v) = (f, v) ∀v ∈ V h

0 . (74)

As mentioned already, only a few coefficients (chk)k are actually computed.

Following (19), we finally define the FSCM approximation to the solution u to (1)
as follows:

Uh
N (x1, x2, x3) =

N∑

k=1

uh
k(x1, x2) sin

kπ

L
x3 .

Then we have the final error estimate below

Theorem 6.1 Assume that f ∈ h1
⋄(Ω) ∩ h2(Ω).

The following error estimate holds:

‖∇(u− Uh
N )‖L2(Ω) . (h+N−1)

{
‖f‖L2(Ω) + ‖∂33f‖L2(Ω)

}
.
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Proof. Using the Fourier expansion of u and the definition of Uh
N , we have, cf. (10),

‖∇(u− Uh
N )‖2

L2(Ω) =
L

2

N∑

k=1

(
‖∇(uk − uh

k)‖2
0 + (

kπ

L
)2‖uk − uh

k‖2
0

)

+
L

2

∑

k>N

(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

=: I1 + I2.

According to Lemma 3.4, we derive

I2 =
L

2

∑

k>N

(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

≤ L

2
N−2

∑

k>N

k2
(
‖∇uk‖2

0 + (
kπ

L
)2‖uk‖2

0

)

≤
(L
π

)2
N−2 ‖f‖2

L2(Ω) .

For I1, we have

I1 =
L

2

N∑

k=1

‖uk − uh
k‖2

a .

According to Theorem 5.1 we have

‖uk − uh
k‖2

a . k4 h2 ‖fk‖2
0 .

Using this and (14), we obtain the estimate of I1:

I1 . h2
N∑

k=1

k4 ‖fk‖2
0 . h2 ‖∂33f‖2

L2(Ω),

which, together with the previous estimate of I2, leads to the desired error estimate. ⋄

7 Conclusion

The optimal convergence rate of the FSCM in prismatic domains, has been proven for
the Poisson problem with homogeneous Dirichlet boundary conditions. Assuming that
the right-hand side f is slightly more regular than f ∈ L2(Ω), i.e., that f belongs to
h2(Ω) ∩ h1

⋄(Ω), the convergence rate of the FSCM in H1-norm is like

‖u− Uh
N‖1 ≤ Cf (h+N−1),

where h is the 2D mesh size, and N is the number of Fourier modes used.
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The same result also holds for the discretization of the Poisson problem with a
homogeneous Neumann boundary condition, or for the Poisson problem with non-
homogeneous boundary conditions, provided there exist sufficiently smooth liftings.

Further, it is no difficulty to consider the case of a prismatic domain Ω with several
reentrant edges, i.e., ω with several reentrant corners.

As far as the assumptions on the right-hand side f are concerned, a few remarks can
be made. It seems that, in a prismatic domain Ω such as the one we considered here,
the boundary condition on the bases was omitted in [2]. Nevertheless, this condition
does not exist in the case of an axisymmetric domain, see [14], nor in the case of an
infinite cylinder. In other words, f ∈ h2(Ω) is enough in those types of domains. In
the case of a Poisson problem with Neumann boundary conditions, one has to replace
the vanishing trace conditions at the bases by the familiar ∂3f = 0 at the same bases.

As mentioned already, this paper is the first part of a three-part article [14, 15]. In
the companion paper [14], the FSCM is analysed theoretically and its numerical ap-
proximation is built, in axisymmetric domains with conical vertices and reentrant edges.
There are two difficulties which are inherent in this class of domains. The first one is
the weights, which have to be introduced in the 2D sections. The second one is the
addition of sharp vertex singularities, which have to be taken into account separately.
In [15], the FSCM is analyzed from a numerical point of view (complexity, implemen-
tation issues, numerical experiments, etc.), and it is compared to other methods, such
as mesh refinement techniques, or variants of the FSCM (2D SCM with the λ-approach
[13]; 3D discretization of the regular part, etc.) in prismatic or axisymmetric domains.
In particular, the use of the FFT to aproximate the sine functions in x3 is motivated
and justified there.

As noted in Remark 4.1, one can apply the same theoretical and numerical tech-
niques to the 2D heat or wave equations, with any L2-smooth (in space) right-hand
side. For these PDEs, the singular functions ps and φs do not depend on the time-
step.
Finally, the results, can also be viewed as the first effort towards the discretization
of electromagnetic fields in prismatic domains, with continuous numerical approxima-
tions, the importance of which is well-known, cf. [9]. As a matter of fact, the SCM
developed in [8, 7, 19] for 2D electromagnetic computations can be generalized, based
on the results obtained here.
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