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Abstract: The aim of this work is to evaluate the influence of absorption 

processes on the Time Of Flight (TOF) of the light scattered out of a thick 

medium in the forward direction. We use a Monte-Carlo simulation with 

temporal phase function and Debye modes. The main result of our study is 

that absorption inside the particle induces a decrease of the TOF on a 

picosecond time scale, measurable with a femtosecond laser apparatus. This 

decrease, which exhibits a neat sensitivity to the absorption coefficient of 

particles, could provide an efficient way to measure this absorption. 

©2011 Optical Society of America 
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Turbid media; (290.4210) Multiple scattering. 
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1. Introduction 

The understanding of interactions between light and scattering dense media such as clouds, 

paints or biological tissues is a major issue as far as optical diagnosis is concerned. In order to 

carry out such investigation, model systems made up of spherical particles in suspension in a 

host medium have been widely studied [1, 2]. Femtosecond lasers are bright enough to go 

through very thick media with tunable wavelength [3, 4], and are used in a wide variety of 

optical diagnosis and imaging techniques (SHG [5], THG [6], CARS [7], …). Furthermore, 

thanks to Optical Kerr Gate (OKG) measurements [8] or up-conversion technique [9], it is 

possible to temporally sample the light going out of the sample with a resolution of 

approximately 100 fs [10] (i.e. less than 20 microns spatially). Such experiments are used to 

isolate ballistic and scattered light (ballistic imaging [11, 12], optical density measurement 

[13]) or to study the temporal scattering process itself in order to get information about the 

sample [14–16]. 

The aim of this work is to evaluate the Time Of Flight (TOF) of light going through a 

scattering medium on a femtosecond time scale when the particles are absorbing. The 

influence of absorption processes has been widely studied on longer time scale (nanosecond) 

and backscattered direction [17, 18]. This will not be the goal of our study as we only focus on 

the forward direction (few 10
−4

 Sr around the laser beam). We will demonstrate that 

absorption inside the particle induces a decrease of the TOF on a picosecond time scale. This 

effect appears to be very sensitive to the imaginary part of the particle refractive index. 

The influence of absorption inside the particles is not straightforward as it profoundly 

affects all the microscopic properties of particles: albedo, phase function, absorption and 

scattering cross sections. We will present a complete numerical scheme in order to evaluate 

the TOF of light scattered out of a system made up of absorbing particles in the forward 

direction. We will fully describe how absorption modifies the temporal phase function, the 

weight of Debye modes, the asymmetry factor, and the albedo. We will show that all these 

effects should contribute to a global decrease of the TOF on a picosecond time scale. We will 

then carry out a Monte-Carlo simulation to evaluate the order of magnitude of this effect. We 

will compare the case of large particles (50 µm radii), exhibiting a neat temporal separation of 

the Debye mode, with the case of small particles (5 µm radii). 
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2. Temporal phase function 

The first step consists in determining the temporal phase functions, i.e., the probability for a 

photon to be scattered out of the particle with a given angle θ, and a given delay t. The 

scattering angle θ is the angle between the incident and scattered vectors (0° corresponds to 

the forward scattering direction). The time delay t corresponds to the time difference between 

the outgoing scattered beam and a reference beam propagating through the centre of the 

particle where the particle has been replaced by the host medium. For our entire study, we 

consider ultra short laser pulses (FWHM=100 fs) impinging on spherical particles (refractive 

index npa=1.5) in suspension in a host medium (nhm=1.33). This short laser pulse has a spectral 

bandwidth centred at λ=0.8 µm. For every frequency ω of the laser pulse, we calculate the 

Jones coefficients S1 and S2 thanks to Mie decomposition: 
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where 1

n
τ  and 2

n
τ  are the angle-dependent functions and an and bn are the Mie scattering 

coefficients and can be found in [1]. The angular phase function P(ω,θ) is directly 

proportional to |S1(ω,θ)|
2
+|S2(ω,θ)|

2
. The temporal and angular phase function P(t,θ) is 

obtained by Fourier transformation of P(ω,θ) [19] and is represented in Fig. 1(a). Different 

modes can be observed for different angles and time delays. In order to understand this 

behaviour, we introduce Debye modes [20]: an (and bn) can be rewritten as followed: 
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where p denotes the order of the Debye mode. T and R denote transmission and reflection 

coefficients through the interface particle/host medium which can be found in [20]. The 

indices a and n (Rn,a, Tn,a) refer to the coefficient an and an equivalent formula can be written 

for bn. By using decomposition (2) in Eq. (1), it is now possible to calculate the partial phase 

function of the different modes. A schematic representation [21] of Debye mode can be found 

on Fig. 2. Note that all phase functions are normalized to the corresponding non temporal 

phase function. The mode 0 (Fig. 1(b)) is mainly directed in the forward direction with 0 

delay. It is a surface mode propagating along the interface host medium/particle. A very small 

part of the energy shows up for greater angle at negative delay, (i.e. before the “zero” 

reference beam) as it corresponds to light reflected at the front interface. The mode 1 

(Fig. 1(c)) mainly corresponds to a transmission of energy through the bulk of the particle. It 

is approximately delayed of �t = (npa-nhm)*(2R/c), compared to the mode 0, where R is the 

radius of the particle, c the speed of light in vacuum, npa, and nhm denote the refractive index 

of the particle and of the host medium respectively. Mode 2 (Fig. 1(d)) undergoes 1 internal 

reflection and is responsible of the rainbow effect. Mode n undergoes n-1 internal reflections. 

One of the key points of our study is to evaluate how absorption modifies the temporal phase 

function and this will be done in the next section. 

#154880 - $15.00 USD Received 16 Sep 2011; revised 28 Oct 2011; accepted 28 Oct 2011; published 20 Dec 2011

(C) 2012 OSA 2 January 2012 / Vol. 20,  No. 1 / OPTICS EXPRESS  34



 
 

 

Fig. 1. 2D plot of normalized temporal phase functions P(t,θ) ((a) total, (b) for mode 0, (c) for 

mode 1 and (d) for mode 2) for a 50 µm particle radius. More than 80% of energy is contained 

inside the rings, i.e. in the forward direction. The mode 1 is delayed by �t compared with the 

mode 0. 

 

Fig. 2. Schematic representation of the first four Debye modes. Mode 0 is a surface reflection 

mode at the interface of the particle. Mode 1 is a transmission mode through the bulk of the 

particle. For information, we also show the second and the third modes which undergo 

respectively one and two internal reflections. 

3. Debye mode weight 

We have carried out calculation of temporal phase functions of the different Debye modes for 

a significant and arbitrary imaginary part of the refractive index of the particle, kpa. The two 

key results of our study are the following. First, we have compared different temporal profiles 

Pθ (t) with and without absorption. No significant change can be observed. However, kpa 

profoundly affects the relative weight of the Debye modes. To show this second result, we 

have calculated the energy Ip scattered for the modes p: 

 ( )2 2
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where k is the wave number. We have calculated the weight of the different modes on a large 

domain of particle size. As soon as the radii are bigger than 1 µm, all the energy is scattered 

either in mode 0 or 1. We represent (Fig. 3) the ratio I1/I0. When kpa = 0, the energy is almost 

equally shared between mode 0 and mode 1, I1/I0 is very close to 1. When kpa increased, the 

weight of mode 1 strongly decreases as it corresponds to a mode going through the absorbing 

0 1 

2 3 

∆t 
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bulk of the particle. Only mode 0 remains as it propagates at the interface. This effect is more 

important for large particles as the energy loss inside the particle is larger. 

 

Fig. 3. Ratio Ι1/Ι0 between the weight of the mode 0 and the mode 1 (Eq. (3)) as a function of 

kpa for different particle radii. 

For non absorbing particles, 50% of the energy goes through mode 1 and is delayed of �t 

= (npa-nhm)*(2R/c). For absorbing particles, 100% of the energy should be scattered through 

mode 0 and not be delayed. As a result, the global TOF should decrease when kpa increases. In 

addition to the scattering process itself, we have to consider the TOF between two scattering 

events. When the phase function is mainly directed in the forward direction, the trajectory of 

light is very straight, and the TOF is very small. As the contrary, when the phase function is 

isotropic, the trajectory of the light is more complex, and the global time of flight is longer. 

As a result, we need to understand the dependence between the angular distribution and kpa. 

4. Asymmetry factor 

The angular dependence is modified when kpa strongly increases [22]. We introduce the 

asymmetry factor g defined and calculated as followed [1]: 
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This factor g gives information about the sharpness of the phase function (i.e., g very close 

to 1 for sharp phase function and close to 0 for isotropic phase function). By using 

decomposition (2) in this formula, we are able to calculate the asymmetry factor of the total 

and partial phase functions. The results are represented (Fig. 4) for increasing value of kpa. For 

mode 0, g is a constant and almost equal to 1. The phase function of mode 0 is very sharp and 

peaked in the forward direction and the absorption of the bulk does not modify this surface 

mode. On the opposite, mode 1 is more isotropic than mode 0. The total phase function 

becomes more and more peaked in the forward direction when kpa increases (complete overlap 

with mode 0 for great value of kpa as observed in [23]). 
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Fig. 4. Total asymmetry factor (solid black line), asymmetry factors of mode 0 (dotted red line) 

and mode 1 (dotted green line) as a function of kpa for a 50µm particle radius (Eq. (4)). 

The TOF should decrease even more when kpa increases as the angular distribution of the 

scattered light is sharper for mode 0 compared to mode 1. The trajectory of light through the 

medium will be straighter. The time of flight decreases because the asymmetry factor 

increases (straighter trajectory), and because mode 1 is killed (no more �t at the crossing of 

the particle). In the following section, we show that the decrease of TOF can be also due to the 

modification of the scattering/absorbing cross section. 

5. Scattering and absorption cross sections 

One needs to evaluate the influence of kpa over the different cross sections: scattering σsca, 

absorption σabs, and extinction σext. Partial extinction cross-section p

ext
σ verifies the following 

formula: 

 { }2
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p p p

ext n n
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k

π
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∞
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where p

n
a  and p

n
b  can be found in the Eq. (2). We have also carried out similar calculations 

for mie

ext
σ using regular expressions for an and bn based on Mie theory, still valid for absorbing 

particles [1]. We define the different extinction efficiencies p

ext
q : 

 2( )p p

ext ext
q Rσ π=  (6) 

mie

ext
q  denotes the efficiency obtained with the regular Mie theory. We represent (Fig. 5) the 

evolution of three different extinction efficiencies ( 0

ext
q , 0 1

ext ext
q q+  and mie

ext
q ) for increasing 

radii. Without absorption, one can observe 3 regimes: (i) the increase of mie

ext
q  with R for small 

particles corresponds to the Rayleigh regime, (ii) oscillations of mie

ext
q  with R belong to the Mie 

regime and (iii) mie

ext
q  is very close to 2 for large particles in the so-called non selective regime. 

The agreement between 0 1

ext ext
q q+  and mie

ext
q  is very good except for Rayleigh regime where 

more than 2 Debye modes are needed to describe the scattering process. For increasing value 

of kpa, mode 1 is killed. The qext curve overlaps the one obtained for mode 0 only, and 

oscillations disappear. The consequence is a slight increase or decrease of mie

ext
q  when kpa 

increases, depending on the particle radius. This is the well known process called absorption 

edge [1]. 
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Fig. 5. Extinction efficiency qext (Eq. (6)) as a function of the particle radius. Total (solid black 

and dotted red lines) and partial (dotted green and blue lines) extinction efficiencies are plotted 

for different values of kpa. 

We now evaluate the impact of kpa over the scattering and absorbing cross sections when 

we calculate the albedo �: 

 
mie

sca
mie

ext

σ
σ

� =  (7) 

When there is no absorption, all the energy is scattered: mie mie

sca ext
σ σ=  (� = 1). When kpa 

increases, mie

ext
σ  is not modified (if we neglect the absorption edge effect described above). 

Half of the total energy that should have been scattered in mode 1 is now absorbed inside the 

particle. As a result, we expect that / 2mie mie mie

abs sca ext
σ σ σ= ≈ . Indeed, when kpa increases, the 

albedo decreases from 1 to 0,5 (Fig. 6). The main consequence for the time of flight is that 

single scattering trajectory will have a more important weight compared to multiple scattering 

trajectory, as there are energy losses after every scattering event. The energy decay is roughly 

equal to 2
-m

 where m is the number of the scattering events. One can note that single scattering 

trajectory corresponds to a shorter pathway, and shows up for earlier delay than multiple 

scattering one. Hence, the absorption inside the particle induces a decrease of the global TOF 

of the light. 

 

Fig. 6. albedo � (Eq. (7)) as a function of kpa for different particle radii. 

6. Monte Carlo scheme 

In order to evaluate the TOF decrease, we developed a Monte Carlo simulation scheme. A 

great part of random tests is explained in [21]: this complex process is simulated by a 
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succession of elementary events (scattering, absorption by the particle). In order to simplify 

our study, we consider a medium without interfaces. We have carefully compared our 

simulation code with published result in the case of non absorbing particle [3,24]. In order to 

obtain the best signal to noise ratio, we use a semi-analytical Monte Carlo approach [25] for 

small particles, and a full Monte Carlo for large particles [26]. We have carefully checked the 

agreement of these two approaches for a great variety of radii. We consider a small detector in 

the forward direction. The solid angle is equal to 5.10
−4

 Sr. We consider an optical path of 1 

cm, and an Optical Thickness O.T. = 20. We verified that O.T. is not significantly modified 

for the value of kpa we considered. 

In Fig. 7, we report the relative scattered intensity as a function of time delay for particles 

of 5 µm. For kpa = 0.001, we observe a global decrease of the intensity, and a small but yet 

measurable decrease of TOF (few picoseconds can be detected with a streak camera [14] or 

femtosecond laser experiment [11]). For stronger value (kpa = 0.01), the reduction of TOF is 

more visible. The scattered light tends to overlap the ballistic light (ballistic distribution is 

centred on zero-delay and has 100 fs line width (FWHM)). 

 

Fig. 7. Relative scattered intensity as a function of TOF for different values of kpa and for a 5 

µm particle radius. 

Within the same conditions as above, we now study larger particles (R = 50 µm). With no 

absorption, two separated lobes can be observed (Fig. 8). In order to understand the physical 

origin of these two lobes, we represent (Fig. 9) the partial TOF curve, as we have kept track of 

the amount of mode 0 and mode 1 scattering events in our modelling scheme. The first lobe 

corresponds to pathways with only “0 mode” scattering events. A single “mode 1 scattering” 

event in the pathway greatly reduces the efficiency of collection. This is due to the asymmetry 

factor of mode 1 that spreads the angular distribution of the scattered light. As we only detect 

energy in the forward direction with a small solid angle, the collection efficiency dramatically 

decreases. The high efficiency of collection in “pure mode 0 pathway” completely balances its 

very poor probability of occurrence. As a result, a very neat temporal separation between the 2 

lobes can be observed. Indeed, the delay shift observed between pure 0 scattering pathway and 

single mode 1 event scattering pathway is roughly equal to �t. The “0 lobe”, also called 

“snake-like photon”, completely overlaps the ballistic contribution (not represented here as it 

is thousand times smaller compared to the “snake-like contribution”). A slight increase of the 

absorption (kpa = 10
−5

) induces a detectable change in the temporal distribution: we can 

observe a neat decrease of the delayed lobe. Here again, for high values of kpa, only the mode 

0 remains whereas higher modes are absorbed. 
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Fig. 8. Relative scattered intensity as a function of TOF for different values of kpa, and for a 50 

µm particle radius. 

 

Fig. 9. Relative scattered intensity as a function of TOF for different amount of mode 1’s event 

when kpa = 0 and for a 50 µm particle radius. 

7. Discussion 

We want to evaluate independently the influence of the 3 phenomena (albedo, Debye mode 

weight and asymmetry factor). Though, it is not possible to dissociate the angular and 

temporal dependence of the phase function. As a result, we have studied 2 cases. Case a/ kpa 

modifies the angular and temporal distribution (sections 3&4), but we consider that there is no 

energy loss during the scattering process. Case b/ the photon can be lost during the scattering 

process (section 5), but we keep the temporal phase function as if the particles were non 

absorbing. We report (Table 1) the corresponding average delay τ, τa and τb. 

Table 1. Results of the simulation. Index a and b denotes respectively the influence of 

albedo and phase function. 

R kpa O.T. g � τ (ps) 

5 µm 

0 20 0.906 1 3.7 

10−4 20.02 0.907 0.99 3.6 

10−3 20.21 0.913 0.93 τ =2.9 τ a=3.5 τ b=3.1 

10−2 21.45 0.954 0.63 0.4 

50 µm 

0 20 0.955 1 2.54 

10−5 20.01 0.956 0.99 2.47 

10−4 20.03 0.959 0.94 τ =1.83 τ a=2.27 τ b=2.1 

10−3 20.18 0.978 0.65 7.10−3 
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For small and large particles, both effects (albedo and phase function) induce a decrease of 

τ. While considering the two processes, the effect is even stronger. For small particles (Fig. 7), 

the average intensity of scattered light decreases a lot with kpa. This effect could be tracked 

thanks to a non-temporal measurement which is more straightforward. Nevertheless, the TOF 

is an absolute measurement, less sensitive to the fluctuation of the intensity of the laser or 

other experimental noise. This could be relevant to measure kpa bigger than 10
−3

. For large 

particles, a measurement of TOF is even more sensitive as the snake like peak remains 

unchanged and can be used as a reference: it precisely defines the 0 delay, and it allows a 

measurement of the ratio of intensity of the 2 lobes. We have checked that the slight 

attenuation of the snake like peak when kpa = 10
−3

 is only induced by the increase of O.T. 

from 20 to 20.18 (absorption edge). When kpa = 10
−5

, absorption is not detectable with 

classical technique, there is no variation of the optical thickness or modification of the phase 

function (Table 1). 

In order to evaluate the impact of the real part of the refractive index npa compared to kpa, 

we have considered a variation of these two parameters of the same magnitude (�npa = �kpa = 

10
−5

) and calculated the impact on the average time of flight τ. For particle of 50 µm, the 

impact of kpa is 40 times bigger than the impact of npa (20 times for particle of 5 µm). This 

method could be coupled with other methods more sensitive to npa such as refractometry or 

rainbow [27] and might be a powerful tool to measure the absorption coefficient of particle. 

This could be very useful to evaluate the water content of particle, the concentration of 

absorbing molecule at the surface of a particle or the temperature of a water droplet. 

The phenomenon we have simulated is observed on a picosecond time scale and could not 

be observed with a nanosecond apparatus. It is representative of the amount of events “one 

photon crosses the bulk of one particle”. The consequence on the TOF is a delay �t = 60 fs per 

event (case of large particles). For an optical thickness of 20, the global effect is roughly equal 

to 20*60 = 1.2 ps. The real simulation we have carried gives the same order of magnitude 

(2.54 ps). The impact of the global TOF is very small but as soon as it is measurable, it 

exhibits a neat sensitivity to the absorption coefficient of particles. 

8. Conclusion 

We have carried a detailed study of TOF of light going through a scattering media when the 

particles are absorbing. We have demonstrated that TOF is significantly reduced by the 

absorption process inside the particle for 3 main reasons. First, the absorption inside the bulk 

of the particle kills delayed Debye modes. Then, phase functions are more peaked in the 

forward direction. Finally, single scattering trajectories are enhanced compared to multiple 

ones due to the albedo of particles and the energy losses observed for every scattering event. 

We have focused on two particular regimes: small particles R = 5 µm and large particles R = 

50 µm. For small particles, TOF is reduced for value of kpa (≥10
−3

) only. For large particles, 

the effect can be tracked for value of kpa (≥10
−5

). Measurements of the time of flight, coupled 

with other techniques, could be a good way to measure the absorption coefficient of a particle 

with a good sensitivity. 
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