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1 INTRODUCTION

Musical wind instruments are interesting examples of nonlinear vibrating systems. The way in which a self-
sustained oscillation is formed is surprisingly complex, even for a simplified model. In short, a wind instrument
consists of a resonator and a generator. The resonator is the air column inside the instrument, and is usually
characterized by the linear wave equation. The generator consists of some kind of pressure controlled valve, where
the relationship between air flow and pressure is starkly non-linear. A simplistic model of sound generation can be
based on the assumption that the pressure controlled valve functions as a negative resistance at one of the resonance
frequencies of the resonator. Such a model, however, neglects the modal coupling due to the non-linearities that are
ultimately the primary reason why different wind instument sound so different. The aim of this paper is to study
how limit cycles of a clarinet-like instrument can be treated in the framework of nonlinear normal modes (NNM).
The reason for persunig this subject is to ultimately be able to derive models of reduced complexity, which are of
interest for sound synthesis. Another goal is to identify important control parameters (functions of such entities
as blowing pressure, pincing force and position of the player’s lips on the reed etc) which can be regulated by a
musician in an intuitive way, without a long period of training.

We employ a method devised by Bellizzi and Bouc [11] for computing two-dimensional invariant manifolds of
dynamical systems. The choice of this method is dictated by the wish to treat systems with internal resonances. The
work presented in this paper should not be seen as a mere application of known methods to a particular example,
however. The way the NNMs are treated here is very recent, and it is our hope that part of the work presented will
contribute at least to some extent to the knowledge of how to compute the invariant manifolds.

2 THE CLARINET MODEL

Wind musical instruments have similar principles of functioning: the player, by blowing inside the instrument
destabilizes a valve (a simple reed, a double reed or two lips). The acoustic response of the instrument acts as a
feedback loop which influences the valve behavior. The production of a sound corresponds to the auto-oscillation
of this dynamical system. Obviously, in spite of these similarities, the functioning of each class of instruments
possesses its own specificities. In this section, basic principles of the clarinet functioning are briefly recalled.
Simple models have been proposed by [15], [18], [19], [20], or [21] for example of pioneers.

2.1 The reed

The reed is often modelled as a mass/spring/damper oscillator. However, because of a resonance frequency
(≃ 3000Hz) large compared to the first harmonics of typical playing frequencies, inertia and damping are of-
ten neglected ([18]). This hypothesis leads, considering that reed dynamics is governed by the pressure difference
accross the reed to :
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Figure 1: Embouchure of a clarinet (upper part) and its longitudinal cut (lower part).

ks(z − z0) = (pjet − pmouth) (1)

wherez (z0) is the reed position (at rest)1, ks is the reed surfacic stiffness,pmouth and pjet are the pressure
deviation in the mouth and under the reed tip respectively.

2.2 The air flow

As noted by Hirschberg in [22], in the case of clarinet-like instruments, the control of the volume flow by the reed
position is due to the existence of a turbulent jet. Indeed, a jet is supposed to form in the embouchure (pressure
pjet) after the flow separation from the walls, at the end of the (very short) reed channel (see figure 1). Neglecting
the velocity of air flow in the mouth compared to jet velocityvjet, the Bernoulli theorem applied between the
mouth and the reed channel leads to:

pmouth = pjet +
1

2
ρv2

jet with u = Sivjet (2)

whereSi is the crosssection at the inlet. Since this area can be expressed as the product between the reed opening
z and the reed widthwr (not visible in figure 1 since it is transversal to the plane of the figure), equation (2) can
be re-written as follows:

u = zwr

√

2

ρ
(pmouth − pjet) (3)

whereu is the volume flow accross the reed,wr is the width of the reed andρ is the air density. Combining
equations (1) and (3) leads to the wellknown expression of the volume flow as a function of the pressure difference
across the reed :

u = wr(z0 −
1

ks
(pmouth − pjet))

√

2

ρ
(pmouth − pjet) (4)

Since the crosssection of the embouchure is large compared to the cross section of the reed channel, it can be
supposed that all the kinetic energy of the jet is dissipated through turbulence with no pressure recovery (like in

1Thus the reed isclosed whenz = 0 and opened whenz > 0
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the case of a free jet). Therefore, the pressure in the jet is (assuming pressure continuity) the acoustic pressurepr

imposed by the resonator response to the incoming volume flowu.
Following [16], we introduce non dimensional pressurep̄ = pr/(ksz0) and volume flow̄u = Zcu/(ksz0) and

equation (4) writes :
ū = ζ(1 + p̄− γ)

√
γ − p̄ (5)

with ζ = Zcl
√

2z0

ks
andγ = pmouth/(ksz0). Whenthe reed closes, i.e.1 + p− γ < 0, the volume is null (̄u = 0).

It has been checked in [24] that a cubic expansion of (5) leads to a reasonably good approximation to the
resulting periodic solutions, at least below the complete closing of the reed. Therefore, we consider that the
volume flow is finally given by :

ū = u0 +Ap̄+Bp̄2 + Cp̄3 (6)

with u0 = ζ(1 − γ)
√
γ,A = ζ 3γ−1

2
√

γ ,B = −ζ 3γ+1

8γ2/3
, C = −ζ γ+1

16γ5/2
.

2.3 Acoustics in the instrument

We consider a cylindrical bore (lengthl) for the clarinet, and follow [23] p60. The model retained is the wave
equation inside the tube, with a source (to take into account the air flow blown inside the instrument) and Neuman
and Dirichlet boundary conditions at the input and the output of the tube respectively :











[

∂2
xx − (j

ω

c
+ α)2

]

P̄ (x) = −jω ρ
S
U(ω)δ(x), ∀x ∈ [0; l]

∂xP̄ (x) = 0 for x = 0

P̄ (x) = 0 for x = l

(7)

The dimensionless pressure fieldp̄(x, t) is decomposed onto the modes of the air column inside the bore :

p̄(x, t) =

∞
∑

n=1

fn(x)pn(t) (8)

where the family{fn}n∈N is a basis of orthogonal eigenmodes of air column. In the case of a close/opened
cylindrical bore with dispersion neglectedfn(x) = cos kn(x), wherekn = nπ

2l andn is an odd positive integer
andl the length of the bore.

Modal coordinatespn(t) are calculated through the projection of equation (7) written in the time domain (with
p̄ replaced by its expansion (8) truncated toN modes) on each mode{fn}.

p̈n(t) + 2αc ṗn(t) + (ω2
n − α2c2) pn(t) =

2c

l
˙̄u(t) (9)

whereωn = knc. As explainedp70 in [23], the damping of each mode is low (αc << ωn) so that the third term
of the left member can be reduced. Moreover, following [23] p72, we consider that the value ofα associated to
each mode may be different and is notedαn ≃ Yn

l whereYn is the value ofthe admittance at frequencyωn/2π.
Finally, equation (9) is rewritten :

p̈n(t) + 2Yn
c

l
ṗn(t) + ω2

npn(t) =
2c

l
˙̄u(t) (10)

2.4 Complete model

Considering equations (10)and (6) leads to the dimensionless model made ofN second order ODE :

p̈n(t) + 2Yn
c
l ṗn(t) + ω2

npn(t) =
2c

l



A+ 2B
N
∑

i=1

pi(t) + 3C

(

N
∑

i=1

pi(t)

)2




N
∑

i=1

ṗi(t)

with A = ζ
3γ − 1

2
√
γ
,B = −ζ 3γ + 1

8γ2/3
, C = −ζ γ + 1

16γ5/2

(11)

The intention now isto apply the concept of nonlinear modes to this equation.
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3 NONLINEAR MODES

We briefly recall here how to characterize the Nonlinear Modes (NMs) in the framework of the invariant manifold
theory using an amplitude-phase transformation. A complete presentation can be found in [8][9][10].

We consider a system of the form

[M] Q̈(t) + F(Q̇(t),Q(t)) = 0 (12)

whereQ(t) is ann-vector,[M] is a non-singular symmetric squaren × n-matrix andF is a (sufficiently regular)
vector function with dimensionn such thatF(0,0) = 0.

3.1 Definition of a nonlinear mode

We focus on motions (solutions of Eq. (12)) where the displacements and velocities,(Q(t), Q̇(t)) are related to a
single pair of amplitude and phase variables,(v(t), φ(t)), according to

{

Q(t) = v(t)X(v(t), φ(t))

Q̇(t) = v(t)Y(v(t), φ(t))
(13)

whereX andY aren-vector functions, which are2π-periodic with respect to the phase variable. The amplitude
and phase variables are governed by the two first order differential equations

{

φ̇(t) = Ω(v(t), φ(t))

v̇(t) = v(t)ξ(v(t), φ(t))
with φ(0) = ϕ andv(0) = a (14)

whereΩ (the frequency function or frequency modulation function) andξ (the damping function or amplitude
modulation function) are two scalar functions, which areeven andπ-periodic with respect to the phase variable
andϕ (∈ [0, 2π]) anda (> 0) are two given constants which set the initial conditions of the motion.

If such motions (13)(14) exist, they define a nonlinear mode for Eq. (12) which is characterized by the four
functionsX, Y, Ω andξ. The modal motion is confined to lie on a two-dimensional invariant manifold ([4][13])
in the phase space, defined by the parametric equations

{

Q = aX(a, ϕ)

Q̇ = aY(a, ϕ)
. (15)

The dynamics of the motion on the invariant manifold is given by Eqs. (14). Ifξ ≡ 0 (i.e. v(t) = a,∀t), the modal
motions defined by Eqs. (13) and (14) will be periodic with a period given by

T (a) =

∫ 2π

0

1

Ω(a, φ)
dφ. (16)

Periodic solutions may also exist if ξ
Ω
6≡ 0 does not keep aconstant sign. Indeed, from Eq.(13), it follows that

dv

dφ
= vτ(v, φ) (17)

whereτ(v, φ) =
ξ(v, φ)

Ω(v, φ)
can be viewed asa "‘generalized damping rate function". Since the right hand side of

Eq. (17) isπ-periodic with respect toφ, periodic solutions (v∗(φ) = v∗(φ+π)) may exist with someξ andΩ (one
necessary condition being thatτ(v, φ) does not keep a constant sign). It follows that

Q(t) = v∗(φ(t))X(v∗(φ(t)), φ(t))

will be aT -periodic function with period

T =

∫ 2π

0

dφ

Ω(v∗(φ), φ)
, (18)

and the stability analysis ofthis periodic function (i.e. a “limit cycle” when Eqs. (13)(14) are a solution in the case
of a nonlinear oscillator) will be easily deduced from the variational equation associated with Eq. (12).
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3.2 Characterization of a nonlinear mode

Substituting Eq. (13) into Eq. (12) and using Eq. (14) and the chain rule yield a set of first order nonlinear Partial
Differential Equations (PDEs) in the two variables(v, φ),

(X + vXv) ξ + XφΩ = Y (19)

[M] (Y + vYv) ξ + [M]YφΩ +
1

v
F(vY, vX) = 0. (20)

where(.)φ denotes thepartial differentiation with respect toφ. The PDEs (19)(20) are independent of time and
contain the unknown vector functionsX andY its partial derivatives with respect tov andφ and the two unknown
scalar functionsΩ andξ.

In order to characterize the four unknown functionsX, Y, Ω andξ, it is necessary to add two constraint scalar
equations to (19) and (20) (often called normalization conditions). Due to the2π-periodicity with respect the
variableφ, the functionsX can be expressed as

X = Xoc + Xec + Xos + Xes (21)

where(.)oc ((.)ec, (.)os, (.)es, respectively) denotes the odd cosine (even cosine, odd sine, even sine, respectively)
terms in the corresponding Fourier series. We will adopt in this study, without any loss of generality, the following
constraint scalar equations

XocT

[M ]Xoc + Xφ
osT

[M ]Xφ
os = cos2 φ, (22)

XocT

[M ]Xφ
os = 0. (23)

These constraint equations reduce to usual normalization conditions for some important special cases, for example
the linear case in the next section.

A nonlinear mode of the system (12) is obtained by solving Eqs. (19)(20)(22)(23) for the four functionsX, Y,
Ω andξ, recalling that

X(v, φ) = X(v, φ+ 2π),Ω(v, φ) = Ω(v,−φ) = Ω(v, φ+ π) andξ(v, φ) = ξ(v,−φ) = ξ(v, φ+ π). (24)

It is worth noting that depending on the properties of functionF, some functions amongXos, Xes, Xoc, Xec can
be discarded. For example,

if F(Q, Q̇) = F(Q) then Xos ≡ 0, Xes ≡ 0 ,

if F(Q, Q̇) = −F(−Q,−Q̇) then Xec ≡ 0, Xes ≡ 0.

3.3 Linear case

If F(Q, Q̇) = [K]Q + [C] Q̇ where[K] and[C] are square matrices, Eqs. (19)(20)(22)(23) can be easily solved
given

{

X(v, φ) = ψc cosφ− ψs sinφ

Ω(v, φ) = ω, andξ(v, φ) = η
(25)

whereω, η, ψc andψs satisfy the eigenvalue problem

(

[C] [M]

[M] [0]

)

Ψλ+

(

[K] [0]

0 − [M]

)

Ψ = 0

with Ψ =
(

ψT , λψT
)T

, λ = η + iω (assumingω 6= 0) andψ = ψc + iψs with the normalization condition

ψcT

[M ]ψc + ψsT

[M ]ψs = 1,

ψcT

[M ]ψs = 0.

Hence the formulation (13)(14) can be viewed as an extension of the linear modal analysis.

5
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4 Numerical solution of the equations describing the manifold

Eq. (19), (20), (22), and (23) constitute a partial differential algebraic equation (PDAE), wherev acts as a time-like
variable, and the problem has periodic boundary conditions in theφ–direction. One way of solving this PDAE is
to discretise it in thev– andφ–directions, and to employ finite difference approximations of the derivatives. This
approach differs from those in [7] or [10], where use is made of Galerkin methods based on trigonometric terms,
and in the latter case polynomial terms in thev-direction. Although elegant, the Galerkin treatment becomes
prohibitively complex as the number of expansion terms increases. A low order, implicit scheme for step-wise
advancement in thev-direction was also deemed to be better adapted for capturing irregularities in the solution,
which do not readily lend themselves to an accurate description with a polynomial basis.

Since the problem is periodic in theφ–direction, and can be expected to have a smooth solution in this direction,
it is natural to use pseudo-spectral approximations[14] of the∂/∂φ-terms. This pseudo-spectral approximation is
closely related to a Galerkin method with the usual trigonometric basis, but can also be thought of as a usual finite
difference approximation where the number of points, and hence the order of accuracy, is a function of the step-size
hφ in the direction of differentiation. For sufficiently smooth functions, the resulting approximation has spectral
convergence rate, meaning that the error decreases faster than any polynomial inhφ.

The equation is left stated on its implicit form, since it may have physically interesting solutions for which
someξ(v, φ) = 0. By approximating the derivatives in eq. (19), (20), (22), and (23), with the pseudo-spectral
scheme in theφ-direction and a backward difference in thev-direction, an implicit Euler approximation of the
PDAE at hand is obtained. The solution on each newv-level is then found numerically using the Newton method.

For the solutions considered in this work, the non-linear modes are the continuations of corresponding linear
modes. Consistent initial conditions of the PDAE are therefore easily obtained from the linear system, or simply
by settingv = 0 in eq. (19)–(23), which then collapses to an algebraic system of equations.

4.1 Computation of time dependent solutions from the manifolds

Knowing the manifoldsX(v, φ), Y(v, φ) and the damping and frequency functionsξ(v, φ) andΩ(v, φ), the time
evolutionsv(t) andφ(t) can be computed numerically solving eq. (14). Since numerical approximations ofξ

andΩ are known only for certain valuesvi andφi, a two-dimensional interpolation procedure is used, employing
trigonometric interpolation in theφ-direction and quadratic interpolation in thev-direction. For solutions repre-
senting a limit cycle, it is necessary to solve eq. (19)–(23) on an interval[0, vmax], wherevmax is slightly above
the amplitude of the limit cycle. An estimate of this limit can be obtained by keeping track of themean damping
function

< τ(v) >=
1

2π

∫ 2π

0

ξ(v, φ)

Ω(v, φ)
dφ,

which is zero nearthe oscillation threshold. The physical variables in phase space are finally given by eq. (13),
where once again the two-dimensional interpolation procedure is employed.

4.2 The numerical scheme applied on the clarinet model

We consider the case of a clarinet model as described in section 2, with three modes (N=3). The method presented
in section 3 is applied to find the NLMs of the system. This corresponds toQ = [p1p2p3]

T . The model parameters
are chosen so as to correspond to amf playing condition. In a first step, the invariant manifolds describing the
components ofp and ṗ, as well asξ andΩ, are computed. The shapes of the manifolds are shown in Fig. (2)
for a case with 31 discretization points in theφ-direction (effectively resolving the first 15 Fourier terms), and 50
discretization points on the intervalv ∈ [0, 0.5]. As expected, the shape ofp1 starts out from a purely trigonometric
shape atv = 0. The shape then changes only slightly as the amplitude grows. Componentsp2 andp3 are zero at
v = 0, but then change dramatically as the amplitude grows.

In a second step, the time evolutionsv(t) andφ(t) are calculated, and from the results, also the time evolutions
of the components ofp(t) andṗ(t). These results are shown in Fig. (4)–(5). The simulation ofv andφ has been
started from a rather arbitrary, non-zero initial conditionv(0) = 0.1, φ(0) = 0. As can be seen, the amplitude of the

6
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Figure 2: The two-dimensional manifolds for the three components ofX andY. Shown atthe bottom are also the
damping and amplitude modulation functions.

first component grows quickly initially, but then stabilize as the limit cycle is approached. The same phenomenon
is visible for the higher modes, but they show relatively a much stronger growth. This is a typical feature for
wind instruments, where the small amplitude oscillations are nearly sinusoidal, whereas nonlinear effects add
increasingly to the timbre as the amplitude grows. In terms of the manifolds, this is seen both as increasing
amplitude of the higher components (n >1) and a minute variation from the harmonic shape.

In order to check the feasibility of the solutions, a reference solution was computed by solving Eq. (11) in
Matlab usingode45 with a small tolerance. The difference between the solution obtained from the manifolds,
and the reference solution is small, and can be seen in Fig. (6)–(7). As can be expected, the error grows slowly in
time due to the numerical phase error in the solution.

4.3 Future work

The work presented in this paper is still in progress. Future work entails the investigation of well-posedness of
the continuous equations (19)–(23). Some problems with divergence of the numerical solution has been observed
for certain values ofv, but it remains to investigate whether this is a numerical problem, or a sign of ill-posedness
of the underlying equations. There are indications that the valuevi, where the instability occurs, converges to a
certain value ashv decreases, indicating a feature of the continuous equation, rather than a numerical problem.
Another thing that remains to be investigated is how bifurcations of NNMs affect the solution.

As far as the numerical integration procedure is concerned, better use of the flexibility of the one-step method
used can be imagined, involving i.e automatic step-size control based on a local error estimates.
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