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We study tilings of the square lattice by linear trimers. For a cylinder of circumference m,
we construct a conserved functional of the base of the tilings, and use this to block-diagonalize
the transfer matrix. The number of blocks increases exponentially with m. The dimension of the
ground-state block is shown to grow as (3/21/3)m. We numerically diagonalize this block for m ≤ 27,
obtaining the estimate S∞ = 0.158520±0.000015 for the entropy per site in the thermodynamic limit.
We present numerical evidence that the continuum limit of the model has conformal invariance. We
measure several scaling dimensions, including those corresponding to defects of dimers and L-shaped
trimers. The trimer tilings of a plane admits a two-dimensional height representation. Monte Carlo
simulations of the height variables show that the height-height correlations grows logarithmically at
large separation, and the orientation-orientation correlations decay as a power law.

PACS numbers:

I. INTRODUCTION

The study of statistics of densely packed polymers has
long been of interest to physicists. Onsager had argued
that solutions of long rod-like molecules should show ori-
entational order at high densities [1]. Flory’s approxi-
mate analysis suggested that linear rod-like molecules on
a two-dimensional lattice should also exhibit an orienta-
tional order at high densities [2]. However, for the case
of dimers on a lattice—the only case that is analytically
soluble—it is known that for all non-zero monomer den-
sities, there is no long-range orientational order [3]. In
the limit of zero monomer density, one gets power-law
decay of correlations for (bipartite) square and hexago-
nal lattices [4, 5], but only short-ranged correlations on
the triangular lattice [6]. Recently there have been stud-
ies of the dimer problem on the cubic lattice [7] and of
interacting classical dimers on the square [8] and cubic
[9] lattices.

Monte-Carlo simulations of Baumgärtner show that for
semi-flexible lattice polymers close to full packing there
is no long range order, no phase transition, and the cor-
relation length is of the order of the size of the poly-
mer [10]. However, the exact solution of a single semi-
flexible polymer that is fully packed on the square lattice
(the so-called Flory model) exhibits a low-temperature
phase of crystalline order and an infinite-order transition
to a disordered, critical high-temperature phase in which
the critical exponents vary continuously with tempera-
ture [11].

It is generally believed, but not proved, that in the
continuum case in three dimensions, long needle-like
molecules would undergo a isotropic-nematic transition.
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In two dimensions, a spontaneous breaking of continu-
ous rotational symmetry is not allowed, but there is a
Kosterlitz-Thouless phase with power-law decay of orien-
tational correlation functions [12, 13]. But the situation
is less clear for systems of hard-core molecules on a lat-
tice. In the limit of high density, one can get a solid-like
phase where one of the sublattices is preferentially occu-
pied, e.g., in the cases of hard squares and hard hexagons
[14]. The same behavior is seen in Monte Carlo studies
with lattice models of extended hard discs [15]. However,
triangular trimers on the triangular lattice can be solved
exactly, and do not show a long-range order even at close
packing [16]. De Gennes has argued that long straight
needles may not show an ordered phase on the square
lattice [17]. There are not many studies of other molec-
ular shapes in lattice models, as realistic modeling of ac-
tual experimental system assemblies of different shaped
molecules (e.g., ellipsoids, banana-shaped molecules, etc.)
is better done in the continuum space. Tilings by L-
shaped trimers and T-shaped tetramers of m×∞ strips,
for m ≤ 5 have been studied using the transfer matrix
technique earlier [18, 19].

In this paper we study random trimer tiling of the
square lattice with horizontal and vertical trimers (Fig.
1). We wish in particular to assess if there is a long-
ranged correlation of the orientational order in this prob-
lem in the limit of zero monomer density. The problem is
first addressed in the geometry of semi-infinite cylinders
of size m×∞. We show how to set up the corresponding
transfer matrix and numerically diagonalize it for m ≤ 27.
We use these data to extrapolate to the m → ∞ limit, de-
termining in particular the entropy per site in a random
trimer tiling in the thermodynamic limit. We also prove
the existence of a family of matrices which commute with
the transfer matrix and show that the transfer matrix de-
composes into a number of blocks which is exponentially
large in m. Our results for the free energy and various
correlation functions are consistent with a conformally
invariant system of central charge c = 2.15 ± 0.2. In
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FIG. 1: A trimer tiling with periodic boundary condition in
vertical direction.
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FIG. 2: Choice of unit vectors

particular, the correlation length ξm is found to increase
linearly with m.

It is known that trimer tilings admit a two-component
height field representation [20]. In the plane, we use
this to study correlations of the height field by Monte-
Carlo simulations, and find that the correlation function
〈h(r)h(0))〉 varies as log(|r|) for large |r|. We have also
studied the orientational correlations in the simulations,
and find that they decay as power laws.

The plan of the paper is as follows: in Section II we
present the construction of a height representation for a
trimer tiling; in Section III the constants of motion are
obtained for trimer tilings on a cylinder; in Section IV the
number of disjoint sectors is calculated by the generating
function formalism; in Section V we set up the transfer
matrix for the problem, and in Section VI we present
the results of numerical diagonalization of the transfer
matrix; in Section VII we discuss the trimer-trimer cor-
relation functions and in Section VIII height-height cor-
relation functions, both obtained by Monte-Carlo simu-
lations. Our conclusions are presented in Section IX. An
appendix adapts the working of Section IV to a more
general tiling problem.

II. TRIMER TILINGS AND HEIGHT

REPRESENTATION

We represent each trimer as a set of three consecutive
squares along a line, oriented horizontally or vertically.
For each tiling of a two-dimensional plane by trimers (Fig.
1), one can define a configuration of a height model at the
vertices of the square lattice, where the heights are two-
dimensional vectors [21, 22] as follows:

Choose two-dimensional vectors e1, e2 and e3 such that
they satisfy the condition e1 + e2 + e3 = 0. A convenient
choice is e1 = (1, 0), e2 = 1

2 (−1,
√

3), e3 = 1
2 (−1,−

√
3),

as shown in Fig. 2. Equivalently the vectors can be repre-
sented as complex numbers e1 = 1, e2 = ω and e3 = ω2,
where ω = e2πi/3. The height h(i, j) at any site (i, j) is
an integer linear combination of basis vectors e1, e2 and
e3.

The lattice edges are assumed to be oriented rightwards
or upwards, and they are labeled with vectors e1, e2 and
e3 periodically as shown in Fig. 3(a) and (b). The la-
beling is such that moving along a horizontal or vertical
line from any vertex up or right encounters a periodic
sequence of labels e1, e2, e3. This rule still leaves some
freedom in choosing the sequence of bonds; two conve-
nient choices are shown in Figs. 3(a) and (b).

Now, for any given tiling of the square lattice, the
height field h(i, j) is defined so that if the directed edge
ℓ from site a to the site b does not belong to the interior
of a tile (i.e., it forms part of the boundary shared by
two tiles), and it has label eα, then h(b) − h(a) = eα.
This determines the heights at all vertices up to an unim-
portant additive constant. The constant can be fixed by
arbitrarily choosing h(0) = 0.

Note that for the two choices of edge-weights shown in
Fig. 3, the height difference along any edge of trimer has
modulus 1. For (a), it value is

√
7 or 2 for the internal

edges of trimers, and for the choice (b), it only takes the

value
√

7. An example of the values of the height field
following the convention (a) is illustrated in Fig. 3(c) for
a particular configuration of trimers.

The choice (a) has a particular advantage. It can be
shown that any trimer covering of a plane can be obtained
from any other by a sequence of the basic flip operation,
in which three adjacent horizontal trimers are replaced by
three adjacent vertical ones (Fig. 4). Under a basic flip
move, it is easy to check that the height changes only at
four sites and the modulus of the change in height ‖∆(h)‖
is always 3. We can think of the values of the height field
as forming a triangular lattice on the complex plane. This
lattice can be broken into 9 sublattices (Fig. 5), such that
even after any such flip, the value of height stays on the
same sublattice. Also, different sublattices of the height
field are in one-to-one correspondence with a 9 sublattice
decomposition of the original square lattice (Fig. 5).

III. CONSTANTS OF MOTION FOR TRIMER

TILINGS ON A CYLINDER

In this section we consider the geometry where the
square lattice has been wrapped on a cylinder of circum-
ference m. The fully-packing constraint on the trimer
tilings then implies strong constraints on the different
configurations of trimers along a row of length m. In
fact, given some local configuration along a row, many
local configurations along a different row are disallowed.
If we think of the row-to-row transfer matrix as an trimer
evolution operator for configurations on a line these con-
straints can be described in terms of some constants of
motion under this evolution.
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FIG. 3: (a) A trimer tiling of 3× 5 lattice with assignment of
labels to the edges of the lattice (b) An alternative assignment
of labels (c) the height configuration corresponding to label in
(b), where (n1, n2) denotes the height h(n1, n2) ≡ n1e1+n2e2.

FIG. 4: The flip move exchanging three vertical trimers with
three horizontal trimers.

The simplest constant of motion of this type can be
constructed in terms of the invariants for loops [23].
Given a trimer tiling, define an allowed loop as a sequence
of nearest neighbor bonds on the lattice that returns to
the starting point, and does not intersect itself, and none
of the steps crosses a trimer. In other words, an allowed
loop goes along the boundaries of trimers. Define G as
the group generated by two generators a and b, which
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FIG. 5: (a) 3 × 3 superlattice decomposition of the square
lattice into 9 sublattices. (b) Height variables corresponding
to a tiling of the square lattice form a triangular lattice.

satisfy

a3b = ba3

ab3 = b3a. (1)

Now we attach weights (elements from the group G) to
each step of the loop. These read respectively a, a−1,
b, and b−1 for a step of the loop to the right, to the
left, up, and down. Finally, to each loop L we assign a
weight wL ∈ G as the ordered product of the weights at-
tached to the steps along the loop. Eqs. (1) imply that
wL does not depend on the way (starting point and direc-
tion) in which the loop L is traversed when building up
the product weight. Moreover, it is easy to see that for
a non-winding loop (i.e., an allowed loop on the cylinder
which is homotopic to a point), wL is equal to identity.
(The proof goes by induction on the number of trimers
enclosed by the loop.)

Also, wL takes the same value for any allowed loop that
winds around the cylinder. Indeed, let L be such a loop.
Then it is easy to see that wL does not change if the loop
is deformed locally so that the number of trimers below
it changes by ±1. Thus, wL is a constant for the tiling.
However, given two products wL and wL′ of the genera-
tors a±1, b±1, checking whether wL = wL′ by using the
rules (1) is nontrivial. We now describe a different con-
struction that is equivalent to this, but more convenient
to use.

Fig. 6 shows a partial tiling of the plane, starting from a
base (shown hatched in the figure). Each trimer occupies
three horizontally or vertically consecutive squares. Peri-
odic boundary conditions in the horizontal (x) direction
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are assumed. The base is supposed without overhangs,
and can therefore be specified by its height profile, H0(x).
The only constraints about the partial tiling we assume
is that it has no holes, and no overhangs. In particular,
the tiled region can also be described by a height profile
H(x).

We now construct an invariant of the tiling as follows.
First, let A, B and C be any three non-commuting ma-
trices satisfying the condition

A3 = B3 = C3 . (2)

Clearly such matrices exist; one family of possible choices
is given by

A =





1 λ1 µ1

0 ω ν1

0 0 ω2





B =





1 λ2 µ2

0 ω2 ν2

0 0 ω





C =





1 0 0
λ3 ω 0
µ3 ν3 ω2



 (3)

where ω = e2πi/3, and λi, µi, νi are any complex numbers.
Next, we assign to each square one of the three colors a,

b or c, where each color corresponds to a value of its verti-
cal coordinate y (mod 3) (see Fig. 6). The height profile
H(x) can then be characterized by a word l1l2 · · · lm over
the letters a, b, c, where for any x = 1, 2, . . . , m the letter
lx specifies the color corresponding to y = H(x). For ex-
ample, the word characterizing the partial tiling in Fig. 6
reads bbbaaabcccbccba. Correspondingly to this word, we
construct a functional of H(x), denoted by J (H(x)),
which is defined as the trace of a product of matrices
A, B, C, where each factor is obtained from a letter in
the word by replacing a 7→ A, b 7→ B, c 7→ C. For exam-
ple, for the sequence given above, we get the functional

J (H(x)) = Tr [BBBAAABCCCBCCBA] . (4)

Note that by the usual cyclic properties of the trace, the
functional depends only on the height profile, and not on
the starting point. We can therefore write J (H(x)) =
J (H).

We now have the remarkable theorem:

J (H) = J (H0) . (5)

In other words, J is the same for all valid partial tilings,

grown from the same base, and is equal to its value for

the base.

The proof is by induction on the number of trimers in
the tiling. It is clearly true for no trimers. If we add a
vertical trimer at x, the height increases by 3, and the
letter lx does not change. If we add a horizontal trimer,
it must be done on a locally flat substrate. Then in the
word, the substring aaa may be replaced by bbb, or bbb by
ccc, or ccc by aaa. But by Eq. (2), this does not change
J . Q.E.D.
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FIG. 6: Partial filling on top of a given base (shown hatched).

For the particular choice of A, B, C given in Eqs. (3),
we actually have the additional property A3 = B3 =
C3 = I. For any choice of matrices having this additional
property the word l1l2 · · · lm can be transformed into an
“irreducible word” [24] by recursively deleting any subse-
quent (modulo m) occurrences of three equal letters [i.e.,
lili+1li+2 = aaa, or bbb, or ccc] in the original word. In
the example shown in Fig. 6, the base is characterized by
the (reducible) word cccbbaaaccaaaba, which then corre-
sponds to the irreducible word bbccba. By the theorem,
this is also the irreducible word of any partial tiling built
on that base.

The invariant J is a polynomial function of the pa-
rameters λi, µi, νi in the matrices (3). We can therefore
expand J in multivariable power series in these variables.
By the theorem, all the coefficients in this expansion are
the same for any allowed tiling, and are constants of mo-
tion for the transfer matrix.

For trimers tilings on a torus, we can define other in-
variants J(nx,ny) corresponding to other homotopy classes
of non-contractible loops. The allowed homotopy classes
are characterized by the winding numbers nx, ny along
the two coordinate directions, with nx ∧ ny = 1 and
nx + ny ≥ 1 [25]. Our previous invariant is J = J(1,0).
However, the invariants J(nx,ny) are not all independent,
as can easily be inferred from the simple example when
J(1,0) corresponds to abababab . . .; and there is then only
one possible trimer tiling which completely fixes the val-
ues of all other loop variables.

IV. DECOMPOSITION OF PHASE SPACE INTO

DISJOINT SECTORS

The word associated with the base can be any sequence
of m letters chosen from a, b, c. The number of all pos-
sible base profiles H0(x) (modulo the addition of vertical
trimers) for a cylinder of width m is therefore 3m.

We have already seen that two height profiles H1(x)
and H2(x) are reachable from each other if and only if
J (H1(x)) = J (H2(x)). Hence the transfer matrix for
this problem has a block diagonal structure, with no tran-
sition possible between configurations with different J .

It is straightforward to determine the number of irre-
ducible words of length n ≥ 2 that start with any two
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specified letters. Let us denote by Nd(n) (resp. Ns(n))
the number of irreducible words in which the initial two
letters take fixed different (resp. same) values. Using the
condition that in an irreducible word we cannot have any
three consecutive letters being identical, it is easy to see
that they satisfy the recursion relation

Nd(n + 1) = 2Nd(n) + Ns(n)

Ns(n + 1) = 2Nd(n) (6)

for n ≥ 2, with the initial condition Nd(2) = Ns(2) = 1.
These equations are easily solved giving

Nd(n) =
1

4
√

3
[−(1 −

√
3)n + (1 +

√
3)n] (7)

Ns(n) =
1

12
[(3 +

√
3)(1 −

√
3)n + (3 −

√
3)(1 +

√
3)n]

The total number of irreducible strings tn of length n is
then obtained by taking into account the multiplicities
due to the possible choices of the two initial letters:

tn = 6Nd(n) + 3Ns(n) . (8)

The total number of sectors for a cylinder of width

m (with 3|m) is then
∑m/3

k=0 t3k. Note that this number
is exponentially large in m. For comparison, for dimer
tilings (with 2|m) the number of sectors is just 2m + 1.

Note that each of the tm sectors corresponding to an ir-
reducible word of length m contains only one state of the
transfer matrix (these sectors are “stuck”). On the other
hand, the t0 = 1 sector corresponding to the empty irre-
ducible word comprises a number of states in the transfer
matrix which grows exponentially with m.

It is straightforward to obtain precisely this latter num-
ber, i.e., the number of words of n letters that reduce to
the empty irreducible word. Namely, it corresponds to
the dimension of the transfer matrix in the ground state
sector, i.e., the sector from which the free energy is ob-
tained.

To this end, let us first define

Ga = aaa + abbbaa + aabbba + acccaa

+ aaccca + abbbcccaa + acccbbbaa + ... (9)

as the formal sum over all unfactorizable words with ini-
tial letter a that are reducible to the empty word. Here
unfactorizable means that the words contributing to Ga

must not be the concatenation of two non-empty words
each of which is in turn reducible to the empty word.
Note also that the requirement that the initial letter be
a implies, by the property of unfactorizability, that the
last reduction before reaching the empty word is of the
type aaa 7→ ∅. We similarly define Gb and Gc. The sum
in Eq. (9) can then be expressed as

Ga = a[1 + (Gb + Gc) + (Gb + Gc)
2 + · · · ]

a[1 + (Gb + Gc) + (Gb + Gc)
2 + · · · ]a

= a
1

1 − (Gb + Gc)
a

1

1 − (Gb + Gc)
a . (10)

Now substituting a = b = c = x in Eq. (9) we obtain the
generating function for irreducible words with a formal

weight x per letter:

g(x) = Ga(a = x) =
∞
∑

n=1

g3nx3n , (11)

where g3n is the number of different unfactorizable words
that start with a given fixed letter and are reducible to
the empty word. By Eq. (10), g(x) then satisfies the
equation

g(x)[1 − 2g(x)]2 = x3 . (12)

This is a cubic equation in g(x) and can be solved ex-
plicitly. Among the three solutions for g(x), two can be
discarded as unphysical on the ground that g(0) 6= 0. The
last, physical solution can be expanded into a polynomial
series in x, as

g(x) = x3 + 4x6 + 28x9 + 240x12 + 2288x15

+ 23296x18 + 248064x21 + 2728704x24 + · · · .

Apart from the trivial root in x = 0, g(x) has two non-
trivial coincident roots for x3 = x3

c = 2/27. For x near
xc, g(x) varies as

g(x = xc − δ) =
1

6
− Aδ1/2 + o(δ1/2) . (13)

This implies that for large n

g3n ∼ A

(

27

2

)n
1

n3/2
. (14)

Using g(x), we can now construct the generating func-
tion H(x) of all words (factorizable or not, and with any
initial letter) that are reducible to the empty word. We
have clearly

H = 1 + (Ga + Gb + Gc) + (Ga + Gb + Gc)
2 + · · ·

=
1

1 − (Ga + Gb + Gc)
(15)

Setting a = b = c = x in Eq. (15) as before, we get

H(x) =

∞
∑

n=1

H3nx3n , (16)

where H3n is the total number of words of length n that
are reducible to the empty word. The leading terms of
the polynomial series are

H(x) =
1

1 − 3g(x)
(17)

= 1 + 3x3 + 21x6 + 183x9 + 1773x12 + 18303x15

+ 197157x18 + 2189799x21 + 24891741x24 + · · · .

For x near xc, H(x) ≈ H(xc)−A(xc−x)1/2, whence H3n

also varies as

H3n ∼ A

(

27

2

)n
1

n3/2
. (18)

for large n, where A is the same constant as in Eq. (14).
The coefficients appearing in Eq. (17) coincide with the

observed dimension of the transfer matrix in the ground-
state sector (see Table I below).

Finally, let us note that the working of this section can
be adapted to a more general tiling problem. This is
relegated to Appendix A.
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FIG. 7: Labeling of the R matrix.

V. SETTING UP THE TRANSFER MATRIX

The number of ways Nn(m) to tile a cylinder of width
m (with 3|m) and height n, with periodic boundary con-
ditions in the m-direction and free boundary conditions
in the n-direction, can be found as 〈0|(Tm)n|0〉. Here, Tm

is the transfer matrix that adds one row of width m, |0〉
is an initial state corresponding to an initial horizontal
base, and 〈0| is a projection operator on the state corre-
sponding to a final horizontal base. For finite n, diago-
nalizing T by means of a similarity transformation leads
to an expression of the form Nn(m) =

∑

i αi(m)[λi(m)]n,
where λi(m) are the eigenvalues of T . The correspond-
ing amplitudes αi(m) depend on our choice of boundary
conditions in the n-direction. We are mainly interested
in the limit n ≫ 1, for which one has simply

Nn(m) ≈ [λ1(m)]n (19)

where λ1(m) is the largest eigenvalue of Tm. The corre-
sponding entropy per site is then

Sm =
1

m
log λ1(m) . (20)

We shall now describe two different ways of construct-
ing the transfer matrix.

A. First construction

The first construction is conveniently described in
terms of a more general tiling problem (cf. Appendix A)
of tiling the plane by horizontal p-mers (of size p× 1 ele-
mentary squares) and vertical q-mers (of size 1× q). The
trimer case is recovered for p = q = 3.

We first shift the tiling by half a lattice spacing, both
horizontally and vertically, with respect to the underlying
square lattice. The tile boundaries then intersect some of
the lattice edges, and it is natural to describe the tiling
by assigning an appropriate variable (‘spin’) si to each
lattice edge i.

An edge i intersecting a tile boundary has si = 0. Each
vertical q-mer encloses q − 1 lattice edges which are not
intersected by its boundaries; the lowest of these edges
has si = 1, the second-lowest si = 2, and so on, and
the highest edge has si = q − 1. Each horizontal p-mer
encloses p − 1 lattice edges which are not intersected by
its boundaries; the leftmost of these edges has si = q,
the second-leftmost has si = q + 1, and so on, and the
rightmost edge has si = q + p − 2.

Using a construction well-known from the theory of
integrable systems, the row-to-row transfer matrix can
be written

Tm = Tr0 R0m · · ·R02R01 , (21)

where each of the matrices R0k act on two ingoing edges
(labeled 0 and k), joins them by adding one vertex, and
produces two outgoing edges (labeled k′ and 0′), as shown
in Fig. 7. The trace over the edge 0 corresponds, graphi-
cally, to adding the first horizontal edge of a new row, and
making sure that it joins to a horizontal edge carrying the
same spin s0, once the row has been completed.

It remains to specify the elements of the matrix
R0k(s0, sk; s′k, s′0). These are one for the cases

(s0, sk; s′k, s′0) =



















(0, 0; 1, 0), (0, 0; q, 0)
(0, i; i + 1, 0) with 1 ≤ i ≤ q − 2
(0, q − 1; 0, 0)
(i, 0; 0, i + 1) with q ≤ i ≤ q + p − 3
(q + p − 2, 0; 0, 0)

(22)
and zero for all other cases. Indeed, the first line in
Eq. (22) corresponds to the lower left corner of any tile;
the second line to the interior of a vertical tile; the third
line to the upper right corner of a vertical tile; the fourth
line to the interior of a horizontal tile; and the fifth line
to the upper right corner of a horizontal tile. Finally, the
trace in Eq. (21) is over s0 = 0, q, q + 1, . . . , q + p − 2.

In some applications it might be of interest to give
different weights to horizontal and vertical tiles. This
can readily be done, by attributing the desired weight to
the lower left corner of each tile, corresponding to the
first line of Eq. (22).

The transfer matrix Tm is constructed in the base of
spins states (s1, s2, . . . , sm) corresponding to an initial
row of vertical edges, with each sk ∈ {0, 1, . . . , q−1}. The
factorization (21) of Tm is particularly suited for using
sparse-matrix and hashing techniques, so that Tm can
be multiplied onto an arbitrary initial vector in time ∼
m dim(Tm). The first few eigenvalues of T can be found
by an iterative scheme (the so-called power method [26])
based on iterating such multiplications.

The ground-state sector, corresponding to growing the
tiling from a horizontal base, is obtained by choosing the
initial vector so that the reference state (s1, . . . , sm) =
(0, . . . , 0) carries weight one, and all other states carry
weight zero. The whole state space for the given sec-
tor is constructed automatically in the iterative process.
For the ground state sector, the total number of states
is found to be given by Eq. (17); this constitutes a use-
ful check of the numerical algorithm. Excited sectors,
corresponding to non-horizontal bases, can be similarly
accessed by choosing another appropriate reference state
as the initial vector.

The above construction has enabled us to numerically
diagonalize Tm for m ≤ 27. The corresponding eigenval-
ues are tabulated in Table I.

B. Second construction

The second construction of the transfer matrix is de-
scribed here for the original trimer tiling problem. We
first define the tiling at level n as the set of all tiles that
have at least one square with y-coordinate less than or
equal to n. And Hn(x) is the height profile for this set
of tiles above y = n. Then Hn(x) clearly lies between
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0 and 2, and may be characterized by a sequence of the
type 21222000122110 · · · . The transfer matrix TC,C′ is 1,
if the height configuration C′ can be reached from C by
adding some tiles, otherwise 0.

The transfer matrix is constructed simply as follows:
Let the configuration C be given by some sequence of 0’s,
1’s and 2’s as above. We add trimers to this configura-
tion to all sites with height 0. We can place a horizontal
trimer at any place where three consecutive sites have
height 0. This changes the heights at these sites to 1. We
place zero or more horizontal trimers this way. To each
remaining site with height 0 we add a vertical trimer, so
that the height of that site becomes 3. Now there are no
sites with height 0, and the maximum height is 3. Fi-
nally we measure heights from a new reference point one
unit higher, and decrease all heights by 1. This gives the
new height configuration C′ with heights given again by
a sequence of 0’s, 1’s and 2’s.

There is a simple way to represent this transfer matrix
as a spin hamiltonian. Denote the three possible heights
at site i by a quantum spin that can be in any one of three
orthonormal states |0〉, |1〉 and |2〉. We denote the three
states at site i by |0i〉, |1i〉 and |2i〉. Define the operator
S−

i by

S−
i |hi〉 = |h′

i〉, where h − h′ = 1 (mod 3). (23)

And we define P 0
i as the projection operator for the state

|0i〉, i.e.

P 0
i |0i〉 = |0i〉, P 0

i |1i〉 = P 0
i |2i〉 = 0. (24)

Then it is easy to see that the transfer matrix can be
written as

T = Tr

L
∏

i=1





S−
i P 0

i 0
0 0 P 0

i

P 0
i 0 0



 (25)

To prove this, we only need note that expanding
the product, the only nonzero terms are of the form
S−S−P 0P 0P 0S− . . ., where we have a string of S− at
consecutive sites, interspersed with the product of three
P 0’s at consecutive sites.

As an example, let us consider random horizontal and
vertical trimer tilings of a square lattice with periodic
boundary conditions in the horizontal direction, i.e. , an
infinite cylinder of width m. For convenience we choose
m to be a multiple of 3. A typical tiling of the cylinder is
shown in Fig. 1. It is easy to see that on a 3 ×∞ cylin-
der a horizontal trimer can be followed by three vertical
trimers, or by another horizontal trimer in exactly three
ways due to the periodic conditions in the horizontal di-
rection. The possible height configurations are thus ‘000’,
‘111’, and ‘222’, and the m = 3 transfer matrix is given
by

T =





3 1 0
0 0 1
1 0 0



 . (26)

We can reduce the size of the transfer matrix by work-
ing in a sector where the basis vectors are invariant under
translations and reflections. Thus for 6 ×∞ cylinder, in
the sector where the irreducible word is empty, we have
six basis vectors, ‘000000’, ‘000111’, ‘111111’, ‘000222’,
‘111222’, ‘222222’, and the other vectors are related to
these by symmetry. The number of vectors needed for
the transfer matrix for a 3n × ∞ cylinder is less than
H3n by approximately a factor of 6n. The resulting size
of the transfer matrix for n ≤ 8 is shown in Table I.
By using the rotational and translational symmetries the
reduction in the size of the transfer matrix (still in the
ground state sector) can be judged by comparing the 2nd
and 3rd columns of Table I. The above construction has
enabled us to numerically diagonalize Tm for m ≤ 24. It
is less efficient than the sparse matrix obtained by first
construction but calculating the nonleading eigenvalues
is much easier this way. The corresponding correlation
lengths obtained from the second eigenvalue are given in
Table I.

We have also studied the case when m is not a multiple
of 3. We recall that in the more familiar case of dimer

tilings, for even m, there is a one-dimensional height map-
ping, and accordingly the continuum limit is that of a free
boson with c = 1. For odd m, however, the height rep-
resentation has non-periodic boundary conditions, cor-
responding to a twist operator, which leads to renor-
malization of the effective central charge to ceff = −2
[31]. Returning to the trimer problem, we see that tak-
ing m (mod 3) 6= 0 also introduces twist operators here,
and would change the effective value of central charge.
The entropy per site Sm for m (mod 3) = 1 and 2 is
listed in Table II.

m dim1(Tm) dim2(Tm) Sm ξ2

3 3 3 0.37754275 0.58860147
6 21 6 0.21764117 0.95122814
9 183 19 0.18163298 1.50340426

12 1 773 99 0.17027036 2.15126321
15 18 303 672 0.16557863 2.83712631
18 197 157 5 667 0.16322214 3.54463208
21 2 189 799 52 689 0.16187256
24 24 891 741 520 407 0.16102733
27 288 132 303 0.16046299

TABLE I: The dimension of the transfer matrices Tm,
dim1(Tm), without symmetrization, and dim2(Tm), with sym-
metrization, is shown for different m. Also shown are the
entropy per site Sm and the correlation length ξ2 defined in
Eq. (30).

VI. NUMERICAL DIAGONALIZATION OF THE

TRANSFER MATRIX

Two-dimensional isotropic statistical systems with
short-range interactions at the critical point may exhibit
invariance under conformal transformations [27]. For a
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m Sm m Sm

4 0.15682941 5 0.13541741
7 0.15773925 8 0.15031598

10 0.15789911 11 0.15438343
13 0.15806225 14 0.15603971
16 0.15817988 17 0.15687242
19 0.15825951 20 0.15734824
22 0.15831410 23 0.15764475

TABLE II: Entropy per site Sm for m(mod3) = 1 and 2.

cylinder of width m the finite-size corrections to the en-
tropy per site Sm are then of the form [28]

Sm = S∞ +
πc

6m2
+ o(m−2) (27)

where S∞ is the entropy per site in the thermodynamic
limit m → ∞ (i.e., in the infinite plane) and c is the
central charge (conformal anomaly number) which deter-
mines the universality class of the problem [27].

(m,m + 3) S∞ c (m,m + 3) S∞ c (m, m + 3) S∞ c
(3,6) 0.16434064 3.664674 (4,7) 0.16728470 -0.319490 (5,8) 0.16121121 -1.231563
(6,9) 0.15282642 4.456333 (7,10) 0.15818038 -0.041283 (8,11) 0.15986633 -1.167350

(9,12) 0.15566128 4.017785 (10,13) 0.15805270 -0.029334 (11,14) 0.15895040 -1.055394
(12,15) 0.15723777 3.584218 (13,16) 0.15829869 -0.076314 (14,17) 0.15871184 -1.000265
(15,18) 0.15786649 3.314046 (16,19) 0.15840838 -0.111719 (17,20) 0.15862738 -0.968649
(18,21) 0.15813526 3.147735 (19,22) 0.15845364 -0.133847 (20,23) 0.15858708 -0.946406
(21,24) 0.15826623 3.037424
(24,27) 0.15833844 2.957992

TABLE III: Estimates of entropy S∞ and the central charge c from fits using successive pairs of cylinder widths m.

It is important that estimates of S∞ obtained by ex-
trapolating of data for different values of m (mod 3) have
to be consistent with each other. Estimates for S∞ and
c obtained by fitting pairs (Sm, Sm+3) to Eq. (27) are
shown in Table III. Clearly, there is still some residual
m-dependence. In general, in conformal field theory, one
can also have a non-universal 1/md correction to scaling
term in Eq. (27),

Sm = S∞ +
πc

6m2
+

e

md
, (28)

with 2 < d ≤ 4. Here we adopt the following strategy:
we choose trial values of d and S∞ and obtain c and

e from Eq. 28 by sequential 2-point fits. We find that
for different m values there is reasonable convergence for
d = 2.78 ± 0.10 and S∞ = 0.158520± 0.000015. In table
IV, we have listed the values of c and e obtained by two-
term sequential fits for Sm with m = 0, 1 and 2 (mod 3),
using the fitting form Eq. (28). The estimate for central
charge is c = 2.15 ± 0.2. Our estimate for the effective
charge is ceff = −0.28 ± 0.02 for m = 1 (mod 3), and
ceff = −0.79 ± 0.02 for m = 2 (mod 3).

(m, m + 3) c e (m, m + 3) c e (m, m + 3) c e
(3,6) 4.48761407 -0.8859 (4,7) -0.11255023 0.0932 (5,8) -0.77423123 -0.5984
(6,9) 2.24822274 3.8068 (7,10) -0.26174392 0.4455 (8,11) -0.78830675 -0.5615

(9,12) 1.85242965 4.9419 (10,13) -0.27727375 0.4938 (11,14) -0.79454721 -0.5406
(12,15) 1.98106106 4.4810 (13,16) -0.27266918 0.4762 (14,17) -0.79175635 -0.5519
(15,18) 2.09438199 3.9984 (16,19) -0.27314362 0.4784 (17,20) -0.78906173 -0.5645
(18,21) 2.14525639 3.7489 (19,22) -0.27959514 0.5114 (20,23) -0.78903295 -0.5647
(21,24) 2.15734045 3.6821
(24,27) 2.14936018 3.7310

TABLE IV: Estimates of c and e from 2-point fits with e/md correction for d = 2.774 and S∞ = 0.15852 for m (mod 3) = 0, 1
and 2.

To inquire further into the critical behavior of trimer

tilings, we can measure as well S
(i)
m = 1

m log λi(m), where

λi(m) is some sub-leading eigenvalue (i 6= 1). From con-
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FIG. 8: Convergence of Sm with 1/m for m(mod3) = 0 (⋆),
m(mod3) = 1 (�), m(mod3) = 2 (◦). Continuous lines are
fits from Eq. 28 that converges to S∞ = 0.15852 for d = 2.774
and c and e as listed in Table IV.

formal field theory we expect to get corrections to follow
the behavior [29]

S∞ − S(i)
m =

(

2∆i −
c

6

) π

m2
+ o(m−2) , (29)

where ∆i = hi + h̄i is the scaling dimension of the field
corresponding to the excited state described by λi. Al-
ternatively, Eq. (29) may be stated in terms of the corre-
lation length

ξi =
1

log (λ1/λi)
(30)

of the excitation on the cylinder. This then reads

ξi =
m

2π∆i
, (31)

i.e., the correlation length is proportional to the cylinder
width.

We shall now give numerical evidence that Eq. (29)
holds true for a number of excitations (i.e., that the re-
sulting finite-size estimates for ∆i converge as m → ∞).
This is support for the hypothesis that trimer tilings are
conformally invariant. (We note that Kenyon has proved
[30] that dimer tilings are conformally invariant.)

The first kind of excitation i = 2 in the ground state
sector (i.e., with the tilings grown on flat base) has al-
ready been mentioned above. The corresponding correla-
tion length ξ is shown in Table I and plotted against m in
Fig. 9. One finds a slope a = 1

2π∆2

≃ 0.23, corresponding
to ∆2 ∼ 0.69.

We have also studied the case of 3|m, but with tilings
grown from a non-planar base. For simplicity we shall
consider only the two simplest sectors. The first one cor-
responds to taking the initial state s1 = 1, and sk = 0
for k = 2, . . . , m, in the notation of Section VA. The
associated exponent ∆D describes physically the decay
of the correlation function between a pair of widely sep-
arated dimer defects in the surrounding soup of trimers.
The second sector that we shall consider is built from the

 1

 2

 3

 0  3  6  9  12  15  18m

ξ

FIG. 9: The correlation length ξ plotted against the cylinder
width m. The dotted line has the slope a = 0.23.

m S
(D)
m ∆D S

(L)
m ∆L

6 0.11284785 0.10663883
9 0.13675337 0.511103 0.13215832 0.634525

12 0.14560151 0.537242 0.14225002 0.684513
15 0.14988060 0.559121 0.14733680 0.725974
18 0.15229423 0.577165 0.15029069 0.761116
21 0.15379778 0.592680 0.15217226 0.791808

TABLE V: Entropy per site for tiling of non-planar bases and
estimates of scaling dimensions with 1/md correction with d =
2.774 correction.

initial state s1 = 1, s2 = 2, and sk = 0 for k = 3, . . . , m.
The associated exponent ∆L corresponds to a pair of L-
shaped defects (or closely bound compounds of a dimer
and a monomer).

The estimates for ∆D and ∆L, obtained by adding a
non-universal 1/md correction to Eq. (29), are shown in
Table V. The dimer defect is the most relevant. In the
continuum limit, described by the two-dimensional height
field, the exponents ∆D and ∆L would describe the de-
cay of vortex-vortex correlation functions. Their final
values appear to be of the order ∆D = 0.62 ± 0.1 and
∆L = 0.82 ± 0.1, but clearly the words of caution on the
slow convergence rate made above when discussing the
extrapolations of c are also applicable here.

VII. CORRELATION FUNCTIONS

Given a trimer tiling, we assign to each lattice face a
state s = 1, 2, . . . , 6 according to its position in the tiling.
Our convention is that horizontal trimers are labeled as

1 2 3 and vertical trimers as
4
5
6

.

Then we can define the correlation function Gij(x,Y)
as the probability that the face at X is in the state s = i
and the face at Y is in the state s = j (with 1 ≤ i, j ≤
6). In the thermodynamic limit, translational invariance
implies that Gij(X,Y) is only a function of (X − Y),
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and we write it as Gij(R) with R = X − Y. However,
all the correlation functions are not independent. For
instance, we can express the function G1j(R) in terms of
the function G2j(R) as

G1j(R) = G2j(R + ex). (32)

Using such equations, one can express the functions where
i or j take values 1, 3, 4 or 6 in terms of the functions
G22, G25 and G55. Again G22 or G55 are related by the
symmetry in the horizontal and vertical direction. This
only leaves the functions G22 and G25. The conditional
probability that the site R is occupied horizontally, given
that the origin is in state 2, is written 1/2 + f(R), so
that the probability of finding a vertical trimer at R is
1/2 − f(R). We therefore have

G22(R) + G22(R + ex) + G22(R − ex) =
1

2
+ f(R)(33)

G25(R) + G25(R + ey) + G25(R − ey) =
1

2
− f(R)(34)

The above equations can be solved as linear inhomoge-
neous equation in G22 and G25, and can be solved if f(R)
is known for all R. Thus we have only one unknown func-
tion f(R). Note that Eq. (33) is a difference equation in
the x-coordinate (the y-coordinate does not change). The
general solution reads

G22(X, Y ) = G0
22(X) + AY sink0X + BY cos k0X (35)

where k0 = 2π/3. But A and B must be zero, since the
function G22(X, Y ) is known to decay to a constant value
1/6 for large X . Thus we can determine G22 and similarly
G25 uniquely in terms of f(R).

VIII. MONTE-CARLO SIMULATIONS

We have already introduced the local move of a block
of three vertical trimers replacing a block of three hor-
izontal trimers, or vice versa (see Fig. 4). It has been
shown that on a square lattice the above move is ergodic,
i.e. , all possible configurations can be reached from any
initial configuration [22]. Starting from any initial config-
uration, say the standard configuration with all trimers
vertical, repeating the local operation at randomly chosen
sites generates a random trimer tiling.

In our Monte Carlo simulation, we start with a L ×
L lattice fully packed with all trimers vertical (L =
15, 45, 60, 90). In one Monte Carlo step, we randomly
select one of the trimers, and check if can be flipped us-
ing the move of Fig. 4. If yes, the flip is made, if no, the
move is rejected, and another site is selected. We discard
the initial 105 steps. Once the steady state is reached, we
calculate the different correlation functions in the steady
state. We generated data for over 105 Monte-Carlo steps
per site (MCS).

To verify that our sampling produces unbiased results,
we have used it to compute the average height on each
of the nine different sublattices. These can also be com-
puted analytically as follows. First, we define the ab-
solute values of the heights by setting the mean height

〈h〉1 = 0 on sublattice 1. To compute 〈h〉2 on sublat-
tice 2, we first note that the height difference between
site A, belonging to sublattice 1, and site B, belonging
to sublattice 2, (i.e., along the horizontal edge joining 1
and 2 in Fig. 5(a)) can either be 1 if the edge overlaps
with the boundary of a horizontal or vertical trimer, or
it can be −2 or 2ω − ω2 if it is one of the internal edges
of a vertical trimer. Hence the mean value of hB − hA is
(1/6)(4+2ω−ω2−2) = −ω2/2, and since B was arbitrary
〈h〉2 = −ω2/2. In a similar way, we find that

〈h〉1 = 〈h〉5 = 〈h〉9 = 0

〈h〉2 = 〈h〉6 = 〈h〉7 = −ω2/2

〈h〉3 = 〈h〉4 = 〈h〉8 = ω/2.

We have found these values of 〈h〉2 and 〈h〉3 to be in
excellent agreement with the numerical results.

To compute the height-height correlation function

H(x, y) =
〈

|h(X + x, Y + y) − h(X, Y )|2
〉

(36)

we averaged the data over all positions (X, Y ). The re-
sults are shown in Fig. 10. For next nearest neighbors,
height difference squared is 1 with probability 2/3, 4 and
7 each with probability 1/6. Hence H(1, 0) = H(0, 1) =
5/2 which has been verified against the results of the sim-
ulations. For system size L, H(x, y) varies for large r as

H(x, y) ≈ ∆2 log
[

(BL)2
{

sin2
(πx

L

)

+ sin2
(πy

L

)}

+ 1
]

(37)

where ∆2 = 0.69 and B = 4. Since H(1, 1) 6= H(1,−1),
there should also be a term depending on sin2(πx/L) −
sin2(πy/L), but this should decay faster for large r,
and we have not included it in our fits. For large

r =
√

x2 + y2 it is easy to see that

H(r) ≈ 2∆2 log(r) (38)

or equivalently we have

c − C(r) ≈ ∆2 log(r) (39)

where c is a constant and C(r) = 〈h(r)h(0)〉. From our
estimates of ∆2 = 0.69 and a = 0.23, from Eq. (31) it is
seen that ∆2 = 1/(2πa) in agreement with the theory of
conformal invariance.

In Fig. 11, we have plotted f(R, θ) for three different di-
rections θ = 0, π/4, π/2. We used a lattice of size 90×90,
and 105 MCS to get the data. In each case, we see that in
each direction, the function f(R, θ) decreases as a power,
f ∼ R−x, with x ≈ 1.5. However it is observed that the
effective exponent decreases with R and it is difficult to
make meaningful estimates due to large fluctuations in
the data.

IX. CONCLUSIONS

We have studied the problem of tiling the plane with
trimers, and seen that it differs from the well-known
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FIG. 10: Correlation function H(x,y) for L=60.
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FIG. 11: |f(R, θ)| as functions of R for θ = 0 (·), θ = π/4
(◦), θ = π/2 (�). Straight lines have slope -1.5.

dimer tiling problem in a number of ways. First,
the number of sectors in the transfer matrix grows
exponentially rather than linearly with system size.
Second, the natural height mapping has a target space
dimension which is two rather than one. If the tiling
problem is conformally invariant, one could therefore
reasonably expect it to have central charge c = 2. To
check this hypothesis, and the inference on c, we have
performed extensive numerical transfer matrix calcula-
tions, on cylinders of widths m ≤ 27 lattice spacings.
The finite-size corrections exhibit unexpectedly large
correction-to-scaling terms, making difficult the precise
estimations of the critical exponents. The results are
however clearly in favor of conformal invariance, and this
is confirmed by the logarithmic form of the height-height
correlations as obtained by Monte-Carlo simulations.
Our estimate c = 2.15 ± 0.2 is in marginal agreement
with the expectation c = 2, but we cannot definitely
rule out a more complicated behavior. We have also
measured numerically a number of other exponents, in
particular the leading thermal scaling dimension and the
scaling dimensions related to pairs of geometrical defects

(dimers and L-shaped trimers).
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APPENDIX A: IRREDUCIBLE WORDS FOR A

GENERAL TILING PROBLEM

The working of section IV can be adapted to a more
general tiling problem in which there are two types of
straight tiles: horizontal p-mers (i.e., of size p × 1 ele-
mentary squares) and vertical q-mers (of size 1 × q). We
suppose for the rest of this appendix that p ≥ 3 and that
q ≥ 2.

The words describing the sector decomposition of the
transfer matrix are then made of q different letters. An
irreducible word is one in which there is no substring of
p consecutive equal letters. For 1 ≤ k ≤ p − 1 we then
define Nk(n) as the number of irreducible words of length
n in which the last k letters are all equal, but in which
the last k + 1 letters are not all equal.

The initial conditions for the recursion relations are by
convention

Nk(p − 1) = 1 for 1 ≤ k ≤ p − 1 . (A1)

This definition of Nk(n) does not yet take into account
the multiplicity due to the q-dependent number of ways
that one may chose the last p − 1 letters. Denoting this
multiplicity Mk(p − 1) one finds

Mk(p − 1) = qp−1−k(q − 1) for 1 ≤ k ≤ p − 2

Mp−1(p − 1) = q . (A2)

Indeed, one needs to choose the first p− 1− k letters ar-
bitrarily and then complete the word with a single letter,
chosen different from the last one chosen arbitrarily. Note
that the sum of all multiplicities is

∑p−1
k=1 Mk(p − 1) =

qp−1 as expected.
For any n ≥ p− 1 one then has the recursion relations

N1(n + 1) = (q − 1)

p−2
∑

k=1

q1−kNk(n) + q3−pNp−1(n)

Nk(n + 1) = qNk−1(n) for 2 ≤ k ≤ p − 2

Np−1(n + 1) = (q − 1)Np−2(n) . (A3)

This generalizes Eq. (6). Equivalently, the recursion rela-
tions can be written in matrix form by defining the vector
~N(n) with elements Nk(n). One then has ~N(n + 1) =

T ~N(n), where T = {Tij} is a matrix with elements that
can be read off from (A3). Iterating this, one finds

~N(n) = Tn+1−p~1 = SDn+1−pS−1~1 , (A4)

where ~1 = [1, 1, . . . , 1]t and S is the matrix of eigen-
vectors of T that turns T into diagonal form through
D = S−1TS. Writing this out for given values of p and
q will yield an explicit solution generalizing Eq. (7).
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The total number tn of irreducible words of length n is
then obtained by taking into account the multiplicities:

tn =

p−1
∑

k=1

Mk(p − 1)Nk(n) (A5)

This generalizes Eq. (8).
To obtain the total number of words that are irre-

ducible to the empty word, we first define Gℓ as the num-
ber of irreducible unfactorizable words with initial letter
ℓ = 1, . . . , q. Introducing also

G0 =
∞
∑

n=0

(

q
∑

ℓ=2

Gℓ

)n

(A6)

the generalization of Eq. (10) reads

Gℓ = ℓ(G0ℓ)
p−1 . (A7)

The corresponding generating function g(x) then satisfies

g(x) [1 − (q − 1)g(x)]
p−1

= xp . (A8)

The generating function for all words that are reducible
to the empty word is then

H =

∞
∑

n=0

(

q
∑

ℓ=1

Gℓ

)n

=
1

1 −∑q
ℓ=1 Gℓ

(A9)

and reads explicitly

H(x) =
1

1 − q g(x)
. (A10)
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[10] A. Baumgärtner, J. Phys. A: Math. Gen. 17, L971 (1984)
[11] J. L. Jacobsen and J. Kondev, Phys. Rev. Lett. 92,

210601 (2004); Phys. Rev. E 69, 066108 (2004).
[12] D. Frenkel and R. Eppenga, Phys. Rev. A. 31, 1776

(1985).
[13] M. D. Khandkar and M. Barma, Phys. Rev. E 72, 051717

(2005).
[14] R. J. Baxter Exactly solved models in statistical mechan-

ics (Academic Press, London, 1982).
[15] A Bellemans and J Orban, Phys. Rev. Lett. 16, 1038

(1966); J. Chem. Phys. 46, 2922 (1967).
[16] A. Verberkmoes and B. Nienhuis Phys. Rev. Lett. 83,

3986 (1999).
[17] P. G. de Gennes and J. Prost, The physics of liquid crys-

tals (Oxford University Press, 1995) pp. 64-66.
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