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By analogy with the representation of the polarization of light on the Poincaré sphere, we describe the propa-
gation and the reflection/transmission o f l ight i n a  m ultilayer o n a  h yperbolic s urface. W e s how t hat the 
propagation of light corresponds to a classical rotation on this surface and that its reflection/transmission cor-
responds to a hyperbolic rotation. 

1. INTRODUCTION

It is common to describe the evolution of the polarization

of light interacting with birefringent and/or rotator sys-

tems on the Poincaré sphere. This representation per-

mits a simple and elegant geometrical interpretation of

the geometric phase arising when the polarization state of

light evolves by passing through birefringent (or rotator)

devices. In this physical problem, the polarization state

of light is classically described by a complex vector (two

components), whereas its evolution is given by the well-

known 232 Jones matrix of the system.1–3

In the description of the reflection/transmission and of

the propagation of light in a multilayer, the fields are rep-

resented by their forward and backward components (see

Fig. 1), and their evolutions are obtained from the Abelès4

reflection/transmission and propagation 232 matrices.

Thus there is a similarity in the mathematical treatment

between the polarization in birefringent/rotator systems

and the reflection/transmission in a multilayer device.

So it would be of interest to find a geometrical interpreta-

tion of the evolution of the electric field as well as of the

geometric phase5 that appears in a multilayer system.

To obtain such a geometrical representation, we have to

find an invariant quantity for the electric field in the

multilayer system. This task is presented in Section 2 by

considering propagating and conservative waves only, i.e.,

when there are neither absorption nor evanescent waves

in the layers. In Section 3, we study the properties of the

propagation matrix and of the reflection/transmission ma-

trix, and we show that these matrices conserve our invari-

ant quantity. In Section 4, we introduce a three-

dimensional hyperboloid that permits a geometrical

representation of the evolution of the electric field. Then

we show that the propagation matrix acts as classical ro-

tations and that the reflection/transmission matrices act

as hyperbolic rotations. In Sections 5 and 6, we discuss

all these results, and we finally look at the special case of

evanescent waves. We show that, even in that case, a

geometrical representation can be made on the hyperbo-

loid surface by making some assumptions.

2. LOOKING FOR AN INVARIANT: THE
POYNTING VECTOR

To find a geometrical representation of the electric field in

a multilayer system, we will make use of the spinor

theory of polarization.

Classically, the polarization state of a monochromatic

plane wave traveling in the z direction is described by a

two-component complex vector u c& 5 (Ex , Ey), which

forms a unitary spinor (i.e., uExu2
1 uEyu2

5 1). In fact, it

is more practical6,7 to use the following unitary spinor:

uC& 5

1

A2
F1 i

1 2i
G S Ex

Ey
D 5 S Ex 1 iEy

A2

Ex 2 iEy

A2

D . (1)

This polarization state can also be represented in the

three-dimensional real space by a point A with three com-

ponents (x, y, z) given by the following relations:

x 5 ^Cu sxuC& 5 ^CuF0 1

1 0
G uC&, (2)

y 5 ^Cu syuC& 5 ^CuF0 2i

i 0
G uC&, (3)

z 5 ^Cu szuC& 5 ^CuF1 0

0 21
G uC&. (4)
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Here, sx , sy , and sz are the well-known Pauli matrices.

It is straightforward to demonstrate (when there is no po-

larizer or dissipative element) that the components x, y,

and z satisfy

x2
1 y2

1 z2
5 1. (5)

It follows from Eq. (5) that the point A lies on a sphere,

which is called the Poincaré sphere. This result shows

why it is better to use the spinor uC& than u c&: With the

former, a circular polarization corresponds to a pole of the

Poincaré sphere.

As long as there is no dissipative element, the quantity

I1 5 uExu2
1 uEyu2

5 ^Cu s0uC& is invariant (here s0 is

the 232 unity matrix). The subscript 1 in I1 is used to

point out that this invariant is the sum of the squared

modulus of each spinor component.

After that brief recall of the geometrical representation

of a polarization state, let us look at a possible description

of the electric field in a multilayer in terms of spinors.

We consider monochromatic plane waves, and we first re-

strict our study to propagating waves only (that is, we do

not consider the case of evanescent waves or of absorbing

media). The electric (and magnetic) field inside a layer is

described as the superposition of two fields: a forward

field E1(z) traveling in the positive z direction and a

backward field E2(z) traveling in the negative z direction

(see Fig. 1). The amplitudes of both fields form a complex

vector:

u w~z !& 5 S E1~z !

E2~z ! D . (6)

These fields can propagate between two interfaces. They

can also be reflected and transmitted at each interface.

These phenomena are described with 232 matrices. The

propagation matrix gives the link between the vector

u w(z i)& describing the field at the coordinate z i and the

vector u w(z j)& describing it at the coordinate z j 5 z i

1 d ji . It can be written as

u w~z j!& 5 @b ji#u w~z i!& 5 Fexp~ib ji! 0

0 exp~2ib ji!
G u w~z i!&,

(7)

with

b ji 5 k i
z~z j 2 z i! 5 k i

zd ji , (8)

where k i
z is the component of the wave vector of light in

the positive z direction in the ith considered medium and

d ji is the distance of propagation in the z direction.

Hereafter, all matrices are denoted with a [ ] symbol.

The reflection/transmission of light at an interface be-

tween two media identified with subscripts i and j 5 i

1 1 is also described by a 232 matrix. It is well-known

that such a matrix is polarization dependent. For sim-

plicity, we consider the case of a TE polarization state

only, but there would be no difficulty to obtain the equiva-

lent expression for a TM polarization state. So, for a TE

polarization, we obtain

u w j& 5

1

2k j
z Fk j

z
1 k i

z k j
z

2 k i
z

k j
z

2 k i
z k j

z
1 k i

zG u w i&

5

1

t ji

F 1 r ji

r ji 1
G u w i& 5 @R ji#u w i&, (9)

where u w i& and u w j& are the electric complex vectors be-

fore and behind the interface. We denote this matrix

@R ji#. In Eq. (9), r ji and t ji are the Fresnel reflection and

transmission coefficients at the interface between the jth

medium and the ith 5 ( jth 2 1) medium.

As for the geometrization of a polarization state, we

need to find an invariant equivalent to that of Eq. (5).

For this, we will write the Poynting vector in two succes-

sive media. The notation is given in Fig. 2. When two

fields EA and EB (with real wave vectors kA and kB) in-

terfere, the Poynting vector can be shown to be

P 5

1

2m0v
@ uEAu2

kA 1 uEBu2
kB#

1

1

4m0v
@EA • EB

* 1 EA
* • EB#~kA 1 kB!,

(10)

where * means complex conjugation. In such an equa-

tion, we assume that both fields have the same polariza-

tion (TE or TM) and that the wave vectors are real. In

the case of Fig. 2, the fields EA and EB correspond to the

couples $E1
1 , E1

2% or $E2
1 , E2

2% with associated wave-

vector components $(k1
x , 0, k1

z ), (k1
x , 0, 2k1

z )% and

$(k2
x , 0, k2

z ), (k2
x , 0, 2k2

z )%, respectively (and we have

k1
x

5 k2
x). By using Eq. (10) with EA 5 E1

1 and EB

5 E1
2 , one can easily find the z component of the Poyn-

ting vector at a point 1 in the first medium just before an

interface. We find

P1
z

5

k1
z

2m0v
@ uE1

1u2
2 uE1

2u2#. (11)

Fig. 1. Decomposition of the electric field in forward and back-
ward components at an interface.

Fig. 2. Notation for the calculation of the Poynting vector of two

interfering fields defined by the wave vectors kA and kB and the

electric fields EA and EB .
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Similarly, we obtain the following at a point 2 in the sec-

ond medium just behind the interface:

P2
z

5

k2
z

2m0v
@ uE2

1u2
2 uE2

2u2#. (12)

Equations (11) and (12) define the invariant quantity for

the multilayer.

To show this, we consider the case of light propagating

from a point 1 with z1 coordinate to another point 2 with

z2 coordinate in the same medium. In that case, using

Eq. (7), we find that the couples $E1
1 , E1

2% and $E2
1 , E2

2%
are simply linked by the two relations

E2
1

5 exp~ib !E1
1 , (13)

E2
2

5 exp~2ib !E1
2 . (14)

Inserting Eqs. (13) and (14) into Eqs. (11) and (12) shows

that P1
z

5 P2
z when light propagates inside the same me-

dium.

Let us now consider the case of light transmitted from

a point 1 just before an interface to a point 2 just behind

it. Using in that case Eq. (9), we find that the couples

$E1
1 , E1

2% and $E2
1 , E2

2% are now linked by the relations

E2
1

5

1

t21

E1
1

1

r21

t21

E1
2 , (15)

E2
2

5

r21

t21

E1
1

1

1

t21

E1
2 , (16)

where r21 and t21 are the Fresnel reflection and transmis-

sion coefficients at the interface between the second me-

dium and the first medium.

With some easy calculus, it is then simple to see that

the quantities P1
z and P2

z are also equal whatever may be

the polarization (TE or TM). So the z component of the

Poynting vector is an invariant quantity for a multilayer

made of nonabsorbing media when there are no evanes-

cent waves.

The invariant quantities (11) and (12) depend on the

variables E1
1 , E1

2 , E2
1 , and E2

2 but also on the two com-

ponents k1
z and k2

z . To obtain a simpler invariant rela-

tion, we introduce, as in Refs. 8 and 9, the variable

e i
6

5 Ak i
zE i

6 (17)

for the forward and backward fields in the ith medium.

Using Eqs. (11), (12), and (17), we can now introduce the

invariant quantity I2 . When written in the ith medium,

its expression is

I2 5 ue i
1u2

2 ue i
2u2, (18)

which is the same expression as that in Ref. 9. Using the

new ‘‘spinor’’ uF i&, which is expressed as

uF i& 5 S e i
1

e i
2D , (19)

we can write that invariant quantity as

I2 5 ^F iu szuF i&. (20)

In terms of the e i
6 fields only, the new expression of the

@R ji# [Eq. (9)] matrix (which we denote @r ji#) is

@r ji# 5

1

2Ak i
zk j

z
Fk j

z
1 k i

z k j
z

2 k i
z

k j
z

2 k i
z k j

z
1 k i

zG . (21)

Note that, in terms of the e i
6 fields, both matrices @r ji# and

[b] have a unit determinant.

3. GEOMETRICAL REPRESENTATION OF
THE ELECTRIC FIELD

We have shown that in a multilayer where there are nei-

ther absorption nor evanescent waves, I2 is an invariant

quantity. As for the polarization, our aim is now to ob-

tain a three-dimensional geometrical representation of

the state of the field e i
6 in the ith medium. The idea is to

define three coordinates x i , y i , and z i that satisfy an ex-

pression equivalent to that of Eq. (5). Let us define these

coordinates as

x i 5 ^F iu sxuF i& 5 @e i
1*e i

2
1 e i

1e i
2*#, (22)

y i 5 2^F iu syuF i& 5 i@e i
1*e i

2
2 e i

1e i
2*#,

(23)

z i 5 ^F iu s0uF i& 5 ue i
1u2

1 ue i
2u2. (24)

It is easy to verify that these three coordinates satisfy the

following equation:

z i
2

2 x i
2

2 y i
2

5 @ ue i
1u2

2 ue i
2u2#2

5 I
2

2 , (25)

which is the equation of a hyperboloid made of two sheets.

Such a surface is represented in Fig. 3. As in the case of

the geometrical representation of all the different states

of polarization on the Poincaré sphere, we can normalize

the invariant I2 without loss of generality and write

x i 5

^F iu sxuF i&

^F iu szuF i&
, (26)

y i 5 2

^F iu syuF i&

^F iu szuF i&
, (27)

Fig. 3. Hyperboloid surface of two sheets described by the equa-

tion z2
2 x2

2 y2
5 1. The geometrical representation of the

fields e i
6 needs only the positive sheet (z . 0) when all the

sources are positioned at the left of the multilayer.
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z i 5

^F iu s0uF i&

^F iu szuF i&
, (28)

z i
2

5 1 1 x i
2

1 y i
2. (29)

With such definitions of the three coordinates, the posi-

tive sheet of the hyperboloid corresponds to the case

where the Poynting vector is oriented from the left to the

right, whereas the negative sheet corresponds to the case

where the Poynting vector is oriented from the right to

the left. Hereafter, we suppose that the three compo-

nents x i , y i , and z i are normalized by I2 .

4. PROPERTIES OF THE [b] AND [r]
MATRICES

What is the geometric effect associated with the propaga-

tion matrix [b]? After a propagation inside the same me-

dium, the spinor is obtained from

uF j& 5 @b ji#uF i&. (30)

Then the point A j , which represents the new field state ej

on the hyperboloid, is given by the three following coordi-

nates:

x j 5 ^F ju sxuF j&/I2 5 ^F iu@b ji#
†sx@b ji#uF i&/I2 , (31)

y j 5 2^F ju syuF j&/I2 5 2^F iu@b ji#
†sy@b ji#uF i&/I2 ,

(32)

z j 5 ^F ju s0uF j&/I2 5 ^F iu@b ji#
†s0@b ji#uF i&/I2 ,

(33)

where the dagger means the conjugate transpose of the

matrix. After some calculations, we find that (we note

that b ji 5 b)

x j 5 x i cos 2b 2 y i sin 2b, (34)

y j 5 x i sin 2b 1 y i cos 2b, (35)

z j 5 z i . (36)

It follows from Eqs. (34)–(36) that the propagation of the

field inside the same medium is equivalent to a rotation

by the angle 2b about the z axis of the hyperboloid.

Let us now study the geometric effect associated with

the transmission of light at an interface. The same equa-

tions as Eqs. (31)–(33), but with the reflection/

transmission matrix @r ji# instead of @b ji#, give the follow-

ing relations:

x j 5

~k j
2

1 k i
2!x i 1 ~k j

2
2 k i

2!z i

2k ik j

, (37)

y j 5 y i , (38)

z j 5

~k j
2

2 k i
2!x i 1 ~k j

2
1 k i

2!z i

2k ik j

, (39)

where we have dropped the z superscript from the wave

vectors k i and k j to lighten the notation.

Writing

cosh 2u ji 5

k j
2

1 k i
2

2k ik j

, (40)

sinh 2u ji 5

k j
2

2 k i
2

2k ik j

, (41)

we can restate Eqs. (37)–(39) (noting that u ji 5 u) as

x j 5 ~cosh 2u !x i 1 ~sinh 2u !z i , (42)

y j 5 y i , (43)

z j 5 ~sinh 2u !x i 1 ~cosh 2u !z i . (44)

Equations (37)–(39) can be shown to represent a hyper-

bolic rotation around the y axis.

With this notation, we find that the Fresnel reflection

coefficient can be written in the TE polarization case as

r ji 5

k j 2 k i

k j 1 k i

5 tanh u ji . (45)

In a previous paper,10 we introduced a hyperbolic formu-

lation of the reflection, transmission, and propagation ef-

fects in multilayer systems. In that paper, we used a hy-

perbolic angle B defined by [see Eq. (15) of Ref. 10]

sinh B 5

2r

1 2 r2
. (46)

With our present notation, this angle B is simply equal to

the angle 2u of the hyperbolic rotation.

Thus, to every possible state of a plane monochromatic

wave of a given invariant (i.e., I2 5 constant), there cor-

responds one point on the sheet of the hyperboloid [cf. Eq.

(29)] and vice versa. Since 2u ji is positive or negative ac-

cording to whether the wave propagates to a second me-

dium optically denser or less dense than the first [see Eq.

(45)], it follows from Eqs. (42)–(44) that x increases (de-

creases) when light propagates to a denser (less dense)

medium. Figure 4 shows an example of the field state in

a multilayer. The rotations around the z axis correspond

to the propagation, whereas the hyperbolic rotations

correspond to the reflection/transmission between two

media.

5. DISCUSSION

Equations (34)–(36), (37)–(39), and (42)–(44) show that

different states of the field inside a multilayer can have a

Fig. 4. Example of a path on the hyperboloid surface. The

multilayer consists of three media (n1 5 1, n2 5 1.5, n3 5 2 and

d1 5 100 nm, d2 5 301 nm). The wavelength is l50.9 mm.
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geometrical representation on a hyperboloid. To be clear,

we discuss the physical meaning of the various points on

the surface (this is analogous to the interpretation of the

Poincaré sphere where the poles represent circularly po-

larized light, the equator represents linearly polarized

light, and positions around the sphere represent the angle

of polarization). On the hyperboloid, similar consider-

ations can be made:

• Equations (26)–(29) show that the vertex (x 5 y

50, z 5 11) of the upper sheet represents light propagat-

ing in the forward direction only (e i
1 Þ 0, e i

2
5 0, and I2

5 11), whereas the vertex (x 5 y 5 0, z 5 21) of the

lower sheet represents light propagating in the backward

direction only (e i
1

5 0, e i
2 Þ 0, and I2 5 21). To be

clear in what follows, we describe only what happens on

the positive sheet of the hyperboloid.

• When we move up from that vertex (x 5 y 5 0,

z 5 11) on the hyperboloid, the ratio ue i
1/e i

2u decreases

progressively. The reflected and forward waves have the

same amplitude as z tends to infinity.

• When the amplitudes ue i
1u and ue i

2u are fixed (that is

to say, when z5constant), the phase between the forward

(e i
1) and reverse (e i

2) waves varies as we go around the

hyperbola. A complete rotation around the z axis corre-

sponds to a layer that has an optical thickness of one half-

wave. In particular, in the xz plane ( y 5 0), the for-

ward and reverse waves are in phase for positive values of

x and out of phase for negative values of x. Similarly, in

the yz plane (x 5 0), ue i
1u is exactly p/2 out of phase with

ue i
2u when y is positive and is 2p/2 out of phase with ue i

2u
when y is negative.

• With the above knowledge, one can interpret the

meaning of rotations and hyperbolic rotations: That is,

rotations about the z axis correspond to the phase chang-

ing between the forward and reverse waves but not to a

change in their relative amplitude (they thus correspond

to the propagation of light inside the same layer). The

hyperbolic rotations correspond to a change in the ampli-

tude of the forward and reverse waves, as happens, for ex-

ample, when light passes from one side to the other of a

boundary between two media of different refractive

indices.

We now illustrate such considerations with the simple

example of a device made of two plane-parallel interfaces

separating three media (numbered 1, 2, and 3) with opti-

cal indices of n1 , n2 , and n3 , respectively. We suppose

that n3 . n2 . n1 . Let us also consider that the inci-

dent wave in the first medium n1 propagates in the posi-

tive z direction (i.e., the path stays on the positive sheet).

• Everywhere in the last medium (number 3) e3
2

5 0,

so that the point D of the hyperboloid that corresponds to

the field is located at D [ (xD 5 0, yD 5 0, zD 5 1) [use

Eqs. (22)–(24) and note that for a given multilayer, when

there is only one source of the field (at z 5 2`), the final

state always corresponds to the point D [ (xD 5 0, yD

5 0, zD 5 1)].

• Let us calculate the coordinates of the point C cor-

responding to the field inside medium 2 just before the

last interface. By inverting Eqs. (42)–(44), we obtain the

coordinates of the point C from those of the point D:

xC 5 2~sinh u32!zD , (47)

yC 5 yD , (48)

zC 5 ~cosh u32!zD . (49)

The first of these three equations shows that, as expected,

xC is negative (positive) when n2 , n3 (n2 . n3).

• We now calculate the coordinates of the point B cor-

responding to the field inside medium 2 just behind the

first interface. By inverting Eqs. (34)–(36), we obtain the

coordinates (xB , yB , zB) from the knowledge of

(xC , yC , zC):

xB 5 ~cos 2b!xC 1 ~sin 2b!yC , (50)

yB 5 2~sin 2b!xC 1 ~cos 2b!yC , (51)

zB 5 zC . (52)

This point B is thus obtained from a rotation of C by the

angle 22b around the z axis (the rotation angle is positive

when going from B to C).

• The point A in the front of the first interface is ob-

tained from B by using equations similar to Eqs. (47)–

(49).

• Another example is the case when the final point D

corresponding to the field in the last medium is the same

as the initial point A. This can, for example, be the case

when an electromagnetic wave propagates through a ho-

mogeneous nonabsorbing film. Figure 5, which repre-

sents only the projection of the path of light on the Oxy

plane, illustrates the problem. The refraction of light at

an interface being always described by a rotation around

the Oy axis [Eqs. (42)–(44)], such a case can occur only

when the point C (corresponding to the field just before

the second and last interface) is on the Ox axis (see Fig.

5).

• Two cases can then be considered:

• The first case corresponds to Fig. 5(a). This figure

shows that two conditions have to be satisfied. The first

is 2b 5 2pm, where m is an integer. With the use of Eq.

(8), this corresponds to n cos ud 5 ml/2. The other con-

dition to get the final point D [ A is that the hyperbolic

rotation describing the last refraction be the opposite of

the first; that is,

sinh 2u32 5 2sinh 2u21 . (53)

Using Eq. (41), we obtain (in the case of normal incidence)

the condition

~n1 2 n3!~n1n3 1 n2
2! 5 0. (54)

The case of Fig. 5(a) can then be obtained only when the

first and last refractive indices are equal (n1 5 n3).

The second possible case is described in Fig. 5(b). In

that case, similar considerations lead to the two condi-

tions

n cos ud 5 ml/4, (55)

sinh 2u21 5 sinh 2u32 . (56)

The latter condition gives

~n1 1 n3!~n1n3 2 n2
2! 5 0. (57)

5



In this discussion, it is also of interest to know the ex-

pression of the most general matrix @M# for which the

quantity I2 is an invariant. Let the spinors uF2& and

uF1& represent the e fields behind and before a multilayer.

The overall system is then defined by the 232 matrix [M],

and we have

uF2& 5 @M#uF1&. (58)

With the use of Eq. (20), the condition for I2 to be invari-

ant is

^F2u szuF2& 5 ^F1u szuF1&, (59)

so that, with the use of Eq. (58),

@M#†sz@M# 5 sz . (60)

The general expression of the matrix @M# can be easily

found. It is

@M# 5 F r exp~ia ! Ar2
2 1 exp@i~g 2 d 1 a !#

Ar2
2 1 exp~id ! r exp~ig !

G ,

(61)

where r, a, g, and d are the four parameters of the matrix.

If, moreover, we require that det(@M#) 5 1, as for the @r ji#

and [b] matrices, then the above expression is reduced to

@M# 5 F r exp~ia ! Ar2
2 1 exp~2id !

Ar2
2 1 exp~id ! r exp~2ia !

G
5 F a b

b* a*
G , (62)

where a and b are two complex numbers with uau2

2 ubu2
5 1. Such a matrix is known as unimodular and

‘‘second-order quasi-unitary’’11 and belongs to the SU(1, 1)

group.

For propagating waves, the @r ji# and [b] matrices obvi-

ously satisfy Eq. (62). In that case, the @M# matrix in

fact reduces to the propagation matrix given by Eq. (7) by

substituting r51 and a 5 b ji into Eq. (62). It reduces

similarly to the reflection matrix given by Eq. (9) by sub-

stituting r 5 1/t ji and a 5 d 5 0 into Eq. (62). This is

no longer the case when total reflection occurs on one in-

terface. In that other case, exp(6ibji) in Eq. (7) is to be

replaced by exp(6bji), and the Fresnel coefficients r ji and

t ji are complex. Thus the [b] matrix still belongs to the

SU(1, 1) group, but the @r# matrix does not.

6. CONCLUSION

We have thus shown that, in the case where there are nei-

ther absorption nor evanescent waves, the propagation of

light through a multilayer can by illustrated by a path

drawn on a hyperboloid. The case of light propagating in

a multilayer where there are evanescent waves in one or

more layers is more complicated. In fact, in that case

neither the propagation matrix [b] nor the reflection/

transmission matrix @r ji# has the form of Eq. (62). Nev-

ertheless, it is easy to verify that any part of the

multilayer where evanescent waves appear can be glo-

bally described by a matrix of the form (62) provided that

fields are propagative before and after that part. This

means that the state of the field, which is characterized

by a point A in the $x, y, z% space, does not remain on the

hyperboloid when there are evanescent waves but that it

comes back on it when the waves become propagative

again. Of course, it is possible to consider the projection

of the complete path of A on the hyperboloid (as we do for

the description on the Poincaré sphere when using a po-

Fig. 5. Projection on the Oxy plane of the path of the state of light on the hyperboloid of Fig. 3 in the two cases where the electromag-

netic field is the same before and behind a plane-parallel plate. (a) Three media with $n1 , n2 , n3% 5 $1, 2, 1% refractive indices. The

optical path of the light is equal to l/2. (b) Three media with $n1 , n2 , n3% 5 $1, 2, 4% refractive indices (n1n3 5 n2
2). The optical path

of the light is equal to l/2.
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larizer that does not conserve the modulus of the electric

field). We may expect that such a path could lead to the

phase discussed in Ref. 5.

R. Giust can be reached at the address on the title

page, by phone at (33)-3-81-66-63-89, or by e-mail at

remo.giust@univ-fcomte.fr.
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