
HAL Id: hal-00093441
https://hal.science/hal-00093441v2

Preprint submitted on 15 Sep 2006 (v2), last revised 22 May 2007 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate and realistic initial data for black hole-neutron
star binaries.

Philippe Grandclement

To cite this version:
Philippe Grandclement. Accurate and realistic initial data for black hole-neutron star binaries.. 2006.
�hal-00093441v2�

https://hal.science/hal-00093441v2
https://hal.archives-ouvertes.fr


cc
sd

-0
00

93
44

1,
 v

er
si

on
 2

 -
 1

5 
Se

p 
20

06
Accurate and realistic initial data for black hole-neutron star binaries.
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(Dated: September 15, 2006)

This paper is devoted to the computation of compact binaries composed of one black hole and one
neutron star. The objects are assumed to be on exact circular orbits. Standard 3+1 decomposition
of Einstein equations is performed and the conformal flatness approximation is used. The obtained
system of elliptic equations is solved by means of multi-domain spectral methods. Results are
compared with previous work both in the high mass ratio limit and for one neutron star with very
low compactness parameter. The accuracy of the present code is shown to be greater than with
previous codes. Moreover, for the first time, some sequences containing one neutron star of realistic
compactness are presented and discussed.

PACS numbers: 04.25.Dm,04.30.Db,04.40.Dg

INTRODUCTION

Motivated by the various gravitational wave detectors coming online [1, 2], numerical simulations of binary compact
objects have been greatly investigated in the last years. With the progress made for the evolution of both binary
neutron stars (BNS) [3] and binary black holes (BBH) [4, 5, 6], it seems timely to turn to the last interesting type of
binary, a system composed of one black hole and one neutron star (BHNS). The evolution synthesis codes indicate
that the detection rate of BHNS with LIGO/Virgo will be as high (if not higher) than the one for BNS systems (see
Table 6 of [7]). Simulations of coalescing binary systems usually proceeds in two steps. First one needs to produce
initial data that verify Einstein constrain equations and that are as physically relevant as possible. Then those initial
configurations are evolved forward in time. Those steps involve rather different techniques and are equally challenging.

Most of the initial data for coalescing binaries rely on the quasiequilibrium hypothesis that assumes that the
objects are on exact closed circular orbits. This is of course only an approximation, no closed orbits existing in
general relativity for such systems. However, for sufficiently large separations, this should be close to reality. The
quasiequilibrium approximation has been applied to BBH and BNS systems (see for example [8, 9, 10, 11]) and the
obtained initial data have been successfully evolved, indeed exhibiting circular-like trajectories [3, 4, 5, 6]. The aim
of this paper is to apply the same technique to a BHNS, without assuming extreme mass ratios like in [12]. On the
contrary, a moderate mass ratio of 5 is used. This value is chosen mainly for comparisons with previous work [13]
but is sufficient to demonstrate the ability of the code to handle binaries with close masses. Let us mention that
the simulations of the formation of compact binaries indicate a slightly lower mass ratio to be more probable [14].
The present work shares some properties with [13] even if some details are different. Moreover, one of the main
shortcomings of [13] is the fact that it consider a NS of unrealistic compactness, as small as 0.0879. This implies a
mass close to 0.7 M⊙ for most of the available EOS, which is much smaller than the canonical value of 1.2 − 1.4 M⊙.
On the contrary, in this work and for the first time, a BHNS with a realistic NS is computed. Indeed, the most
compact star presented here has a compactness of 0.15 which makes its mass in the range 1.2− 1.5 M⊙ depending on
the EOS.

EQUATIONS

The standard 3+1 decomposition of Einstein equations is used, in which the spacetime is foliated by a family of
spatial hypersurfaces. The 4-dimensional metric is given in terms of the lapse function N , the shift vector βi and the
spatial metric γij . The evolution of the spatial metric is described by the second fundamental form: the extrinsic
curvature tensor Kij which is the Lie derivative of γij along the normal to the hypersurfaces.

The conformal factor Ψ is defined by γij = Ψ4γ̃ij and by demanding that the determinant of the conformal metric
γ̃ij is 1 (so that the determinant of γij is Ψ12). A similar conformal decomposition is also performed on the extrinsic
curvature tensor.

Before solving the constraint equations, there are some quantities that must be chosen. Those are the so-called
“freely specifiable” variables. By this, one means that a solution of the constraint equations can be found for every
choice of those variables. In the standard “thin-sandwich” approach, those variables are: the trace of the extrinsic



2

curvature K and its time derivative ∂tK, the conformal metric γ̃ij and its time derivative ũij = ∂tγ̃ij . By working in
the corotating frame, the quasiequilibrium approximation amounts to neglecting the variations with time for all the
quantities. In particular, one will set ∂tK = 0 and ũij = 0. Maximum slicing K = 0 and conformal flatness γ̃ij = fij ,
fij being the 3-dimensional flat metric are also assumed. Even if the spatial metric for a binary system can not be
flat, this approximation has proven to be more accurate that one could expect for both BBH and BNS [15, 16, 17].
Let us note that the choices for K and γ̃ij are different from the ones made in [13] where the authors used values
derived from the Kerr-Schild metric.

The mathematical problem is then to solve the following set of five elliptic coupled equations for the two scalars Ψ
and N and the vector field βi :

∆N = 4πNΨ4 (E + S) + NΨ4ÃijÃ
ij
− 2D̄i ln ΨD̄iN (1)

∆Ψ = −2πΨ5E −

Ψ5

8
ÃijÃ

ij (2)

∆βi +
1

3
D̄iD̄jβ

j = 16πNΨ4 (E + p)U i + 2Ãij
(

D̄jN − 6ND̄j ln Ψ
)

(3)

where all the operators are associated with the flat metric. The conformal extrinsic curvature tensor Ãij = Ψ4Kij

relates to the lapse and shift vector by Ãij = 1/2N
(

D̄iβj + D̄jβi
− 2/3D̄kβ

kf ij
)

. The quantities E, S, p and U i are
matter terms describing the NS fluid. In this paper, a polytropic equation of state relates the pressure to the fluid
baryon number density by p = κnΓ. In all the following Γ is fixed to 2 and κ is varied to construct NS with various
compactness. The star is also assumed to be irrotational so that the fluid dynamic is given by an elliptic equation for
the potential of the flow.

The black hole is described by imposing apparent horizon boundaries on a sphere (see [18] for a detailed review
on such conditions). This idea has been used successfully in the BBH field (see [11] for the last application to date).
However, in this work, like in [9, 10], the lapse is set to 0 on the horizon. Doing so one needs to do small correction
on the shift vector to get a regular extrinsic curvature tensor on the horizon. In the case of the BBH it has been
shown that this correction was small enough [10]. In the BHNS case, the effect of the neutron star on the horizon is
even smaller, making this relative correction very small (. 2 · 10−4 for our innermost configurations). An important
difference with respect to what was done in [10], concerns the rotation state of the black hole. Indeed, it seems unlikely
that it will be synchronized with the orbital motion and one will instead consider an irrotational black hole. Like in
Sec. VB of [11], a local rotation rate is imposed to ensure that the local angular momentum vanishes. This is to be
contrasted with what is done in [13] where the authors imposed irrotationality only to the first order (see Sec. VA of
[11]).

Standard asymptotical flatness is imposed to get appropriate boundary conditions at infinity.

NUMERICS, TESTS AND COMPARISONS

The system (1-3) is solved using the LORENE library [19]. This library is developed mainly at the Meudon site
of Paris observatory and has been successfully apply to the computation of various problems in general relativity
(see references at [19]). The basic features of Lorene are the following. Spectral methods in spherical coordinates
are employed, mainly using spherical harmonics or trigonometrical functions for the angles (θ, ϕ) and Chebyshev
polynomials for the radial coordinate r. Space is decomposed in various spherical-like shells, the spectral expansion
being done in each of those domains. Space is compactified by means of the variable u = 1/r in the outermost
domain. This enables to impose exact boundary conditions at infinity, the computational domain covering the whole
space. Two sets of such domains are used, one centered around each compact object and the equations (1-3) are
split on those two sets of domains (see for example [8] and [10] for explicit implementations of this method). For
the NS, the first domain is adapted to match the surface of the star, thus getting rid of any Gibbs phenomenon that
would be caused by some discontinuities at the surface. With such methods, solving elliptic equations amounts to
inverting some matrices. Explicit examples are given in [20]. Let us mention that the code of [13] is also based the
LORENE library. However the two codes have been written completely independently and the details of the two
implementations are not the same.

The system (1-3) is solved by iteration, until the fields converge to a given threshold (typically 10−7). During the
course of the iteration, various quantities are changed in order to fulfill various requirements. For example, the central
enthalpy of the NS is rescaled at each step in order to get a neutron star of given baryon mass (see Sec. IVD3 of [8]).
The same technique is also used to modify: the radius of the black hole to get a given irreducible mass, the position
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FIG. 1: Deformation indicator χ as a function of the orbital frequency, for various approaches and M̄NS = 0.05 (first panel)
and M̄NS = 0.01 (second panel). The mass ratio is 10.

of the rotation axis to ensure that the total linear momentum vanishes, the local rotation rate of the black hole to
impose irrotationality. The distance between the two objects can also be modified by this means. Like in [8], the
orbital velocity is determined so that the gradient of enthalpy of the fluid lies at the origin of the grid of the NS.

For both objects, space is decomposed on typically 8 or 9 domains, each of them being covered by Nr ×Nθ ×Nϕ =
33× 21× 20 points. The achieved precision can be asserted by some global checks. For instance, if Eq. (2) is fulfilled,
the ADM mass can be computed in two ways: either by the standard integral at infinity, or by a volume integral plus
an integral on the BH horizon (see Sec. IIID of [8]). For all our configurations, the relative difference between the two
values is less than a few 10−5. Other criteria of this kind can be derived that test the other equations (using the total
angular momentum J and the generalized Smarr formula ; see Sec. IIIC and IIID of [9]). However, in those cases,
the precision is also limited by the regularization of the shift on the horizon but the error is at most of the order of
10−2 for the innermost configurations.

Another test is provided by comparing the results from this work with the ones obtained in the extreme mass ratio
in [12]. More precisely, on Fig. 1, one shows the value of χ as a function of the orbital frequency, for a mass ratio
M irr

BH/Mb
NS = 10. M irr

BH denotes the irreducible mass of the BH and Mb
NS the baryonic mass of the NS, both quantities

being kept constant along a sequence. χ is a measure of the deformation of the star. It is 1 for a spherical star and 0
at the mass-shedding limit (see Eq. (52) of [12] for the precise definition). The first panel of Fig. 1 shows the value
of χ for M̄b

NS = 0.05 and the second one for M̄b
NS = 0.01, the masses being expressed in standard polytropic units.

The agreement with [12] is good, especially for the isotropic background. The difference is more important with the
Kerr-Schild approach.

Another comparison can be made with the sequence presented in [13], that relies on an approach similar to the
work presented here. Let us first mention that the “neutron star” presented in [13] is highly non-realistic, having
a compactness as small as Ξ = 0.0879. One can only wonder why such low value has been chosen. Anyway, for
comparison purposes, a sequence with the same parameters has been computed with the code described here. On
the first panel of Fig. 2 the value of χ as a function of ΩM0 is shown. In all the following, M0 denotes the total
gravitational mass for infinite separation, that is the sum of the BH irreducible mass M irr

BH and the gravitational mass

(i.e. the ADM mass) of the isolated NS: Mgrav 0
NS . One of the most striking feature of the first panel is that the data

from [13] behaves in a different manner for large separations. Some of this surely comes from the Kerr-Schild approach
but the fact that the curve exhibits a very sharp maximum seems rather strange. Moreover, for large separations,
χ does not seem to converge to 1 as it should. On the contrary, the curve from this work exhibits a very smooth
behavior and clearly goes to 1 for small values of the orbital frequency. Anyway, the two curves agree reasonably well
for large values of ΩM0, that is for small separations. The second panel of Fig. 2 shows the binding energy of the
binary defined as Eb = MADM/M0 − 1, as a function of ΩM0. The results from the two approaches differ quite a
lot, the configurations from [13] being more bounded by a factor of 3. For comparison, the binding energy from both
Newtonian and 3.5 PN theories are shown (given by Eq. (194) of [21]). The PN result is clearly much closer to the
result of this paper. This closeness is a strong indication that the conformal flatness approximation is rather good
because PN expansion does not make us of it. The disagreement with [13] could come from the differences in the
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FIG. 2: Comparison between this work and [13] for a NS of small compactness (Ξ = 0.0879). The ratio between the BH mass
and the NS mass is 5. The first panel shows the deformation parameter χ and the second one the binding energy, both as a
function of the orbital velocity.

choices of the “freely-specifiable” variables. If this is the case, the difference between their results and the PN ones
seems to indicate that the Kerr-Schild approach is not a valuable one. However, it may be that this disagreement
comes from another effect. We also compared the total angular momentum coming from the two approaches (not
shown here). The agreement is rather good, the difference being only of the order of 4% which is also the order of the
difference with the PN result.

MORE REALISTIC NEUTRON STARS

As already stated, the NS presented in the previous section has a very small compactness. In order to get more
realistic neutron stars, one wishes to increase this parameter. This is done easily by decreasing the parameter κ in the
EOS. The baryon mass of the NS is set so that they all have the same gravitational mass when isolated, i.e. the same
Mgrav 0

NS . Doing so, BHNS with four different compactness parameters (0.075, 0.100, 0.125 and 0.150) are constructed.

As in the previous section the ratio M irr
BH/Mgrav 0

NS is set to 5.
The first panel of Fig. 3 shows the deformation χ as a function of ΩM0. As can be expected, the more compact

stars are less easily deformed and can survive closer to the black hole without being tidally destroyed. The second
panel shows the binding energy of the binaries, along with the 3.5 PN result for point masses. The more compact
configurations have smaller binding energy, which is an effect already observed for irrotational BNS (see for instance
[22]). Once again, the more compact the NS and the closer it can get to the BH. It turns out that for the most
compact star, the binding energy attains a minimum before the NS is destroyed. This means that the system can
reach dynamical instability. This is also marginally the case for a compactness of 0.125. The two less compact stars,
however, are destroyed before reaching the dynamical instability. This explains why all the configurations of [13] are
found to be stable: the compactness of the star is small enough that it is destroyed before reaching the innermost
stable orbit. The nature of the end point of a sequence thus depend on the compactness of the star and this is an
effect that could have some implication on the emitted gravitational signal.

The total angular momentum J can also be computed. When it admits a minimum (i.e. for the two most compact
stars), its position in terms of frequency is consistent with the one for the binding energy (even if they do not coincide
exactly). The relative importance of the BH local rotation can also be investigated by computing the ratio fr (see
Sec. VB of [11]). It turns out that fr is close to one (at most 0.91) which shows that the presence of the neutron star
has a moderate influence on the structure of the BH horizon. fr is almost independent of the compactness of the star.
However its dependence with frequency is different from Eq. (58) of [11]. This is probably simply an effect of the mass
ratio (5 in this work and 1 in [11]). Finally one turns to the viriel theorem which states that the Komar-like mass and
ADM mass should be equal for circular orbits. Contrary to the case of BBH [9, 10, 11], this is not enforced exactly,
the value of the orbital velocity being given by equilibrium of the NS fluid. However, the viriel can be used as a test
of the code. It turns out that the viriel is verified to better than 2% for all configurations, the dependency with the
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FIG. 3: Deformation parameter χ (first panel) and binding energy (second panel) as a function of orbital velocity for four
different compactness parameters Ξ. M

grav 0

NS is the same for all the stars and the mass ratio with respect to the BH irreducible
mass is 5.

compactness of the NS being moderate. The difference between the two masses is greater for tighter configurations.
This behavior is similar to what is found in [13] even if the curves do not match, probably because of the different
choice of “freely specifiable” variables. The viriel violation must be a measure on how the computed configurations
differ from exact circularity. In a sense, it reflects the true nature of the movement: a slow inspiral.

All the configurations presented in this paper have been made public on the LORENE website [19].
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