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Abstract

Consider the random Dirichlet partition of the interval into n frag-

ments at temperature θ > 0. Some statistical features of this random

discrete distribution are recalled, together with explicit results on the law

of its size-biased permutation. Using these, pre-asymptotic versions of

the Ewens and Donnelly-Tavaré-Griffiths sampling formulae from finite

Dirichlet partitions are computed exactly. From these, new proofs of the

usual sampling formulae from random proportions with GEM(γ) distri-

bution are supplied, when considering the Kingman limit n ↑ ∞, θ ↓ 0
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while nθ = γ > 0 .

Running title: Sampling fom Dirichlet partitions.
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1 Introduction and outline of main results

The joint distribution of unordered (or ordered) frequencies of a sample from

random proportions with GEM (γ) distribution is the Donnelly-Tavaré-Griffiths

formula (or the Ewens sampling formulae).

We consider the same sampling problems and formulae when sampling is

from random proportions with Dirichlet Dn (θ) distribution, hence with a fi-

nite number n of fragments in the partition. We then recover the Ewens and

Donnelly-Tavaré-Griffiths sampling formulae when passing to the Kingman limit

n ↑ ∞, θ ↓ 0, nθ = γ > 0, thereby giving new proofs of these famous formulae.

For an overview of related problems and further connections between sampling

problems, size-biased permutations, combinatorics, random partitions and ran-
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dom mappings, we refer to the proceedings of the International Conference [1].

The organization of this manuscript is thus the following. Basic facts on

the random Dirichlet partition of the interval into n fragments at temperature

θ > 0 are first recalled in Section 2.

In Section 3, explicit results on the law of its size-biased permutation are

recalled. These will prove essential when considering the Donnelly-Tavaré-

Griffiths sampling formula from Dirichlet partitions in subsequent Subsection

4.3, as given in Theorems 12 and 13.

A size-biased permutation of the fragments sizes is the one obtained in a size-

biased sampling process without replacement from a Dirichlet partition. The

main points which we develop are the following: in Proposition 1, it is recalled

that the length of an interval containing a random sample is stochastically

larger than the typical fragments size from a Dirichlet distribution. Its law is

computed. In Theorem 2, the law of the length of the k−th fragment in the

size-biased permutation is supplied. It is also shown there that the consecutive

fragments in the size-biased permutation are arranged in stochastic descending

order. In Theorem 3, we give the joint law of the size-biased permutation

fragments sizes explicitly (or rather its joint moment function).

The main body of our sampling results is in Section 4. Section 4.1 is devoted

to the first Ewens sampling formula when sampling is from Dirichlet partition

Dn (θ). Here the order in which sequentially sampled species arise is irrelevant.
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Section 4.2 concerns the second Ewens sampling formula under the same hy-

pothesis (as a problem of random partitioning of the integers) and Section 4.3

deals with the finite Dirichlet version of the Donnelly-Tavaré-Griffiths sampling

formula. Here, the order of appearance of sampled species is taken into account.

Our main results are displayed in Theorems 6, 9 and Theorems 12 and 13 for

each of the problems alluded to. Several examples and related facts are supplied.

As corollaries to these Theorems, we show how the usual well-known sam-

pling formulae can be deduced in each case when sampling is from GEM distri-

bution which is the limiting version of the size-biased permutation of Dirichlet

partitions in the sense of Kingman.

2 The Dirichlet distribution Dn (θ)

We shall consider the following random partition into n fragments of the unit

interval: let θ > 0 be some parameter which we shall interpret as temperature

or disorder of the partition. Assume that the random fragments’ sizes Sn :=

(S1, .., Sn) (with
∑n

m=1 Sm = 1) is distributed according to the (exchangeable)

Dirichlet Dn (θ) density function on the simplex that is to say

fS1,..,Sn
(s1, .., sn) =

Γ (nθ)

Γ (θ)n

n
∏

m=1

sθ−1
m · δ(

∑

n
m=1

sm−1). (1)

4



Alternatively, the law of Sn := (S1, .., Sn) is characterized by its joint moment

function

E

[

n
∏

m=1

Sqm
m

]

=
Γ (nθ)

Γ (nθ +
∑n

m=1 qm)

n
∏

m=1

Γ (θ + qm)

Γ (θ)
. (2)

We shall put Sn
d
∼ Dn (θ) if Sn is Dirichlet distributed with parameter θ.

If this is so, Sm
d
= Sn, m = 1, .., n, independently of m and the individual

fragments sizes are all identically distributed (id). Their common density on

the interval (0, 1) is given by

fSn
(s) =

Γ (nθ)

Γ (θ) Γ ((n − 1) θ)
sθ−1 (1 − s)

(n−1)θ−1
, (3)

which is a beta(θ, (n − 1) θ) density, with mean value E (Sn) = 1/n, variance

σ
2 (Sn) = n−1

n2(nθ+1) and moment function E [Sq
n] = Γ(θ+q)Γ(nθ)

Γ(θ)Γ(nθ+q) .

Remark: We recall that a random variable, say Ba,b, with Ba,b
d
∼ beta(a, b),

has density function fBa,b
(x) := Γ(a+b)

Γ(a)Γ(b)x
a−1 (1 − x)b−1, a, b > 0, x ∈ [0, 1] and

moment function E
[

Bq
a,b

]

= Γ(a+q)Γ(a+b)
Γ(a)Γ(a+b+q) , with Γ (a) the Euler’s Gamma func-

tion. Also, a random variable T > 0 with gamma(θ) distribution has density

fT (t) := 1
Γ(θ) t

θ−1e−t, θ, t > 0 and moment function E [T q] = Γ (θ + q) /Γ (θ).

We also recall that when θ = 1, the partition model Eqs.(1, 2) corresponds

to the standard uniform partition model of the interval. �
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From Eq. (3), as n ↑ ∞, we next have

nSn
d
→ Γθ,θ

d
∼ gamma(θ, θ) , with density fΓθ,θ

(t) =
θθ

Γ (θ)
tθ−1e−θt, t > 0,

(4)

showing that the sizes of fragments are asymptotically all of order 1/n.

Consider next the sequence S(n) :=
(

S(m); m = 1, .., n
)

obtained while rank-

ing the fragments sizes Sn according to descending sizes, hence with S(1) > .. >

S(m) > .. > S(n). The S(m)s distribution can hardly be derived in closed form.

However, one could prove that, as n ↑ ∞

n(1+θ)/θS(n)
d
→ Wθ and nθ

(

S(1) −
1

nθ
log
(

n (log n)θ−1
)

)

d
→ Gθ (5)

where Wθ is a Weibull random variable, Gθ a Gumbel random variable such

that P (Wθ > t) = exp
[

−tθ/sθ

]

, t > 0 and P (Gθ ≤ t) = exp
[

−s−1
θ exp (−t)

]

,

t ∈ R, sθ := Γ (1 + θ) θ−θ > 0 a scale parameter.

In the random division of the interval as in Eq. (1) at disorder θ, although

all fragments are identically distributed with sizes of order n−1, the smallest

fragment’s size grows like n−(θ+1)/θ while the one of the largest is of order

1
nθ log

(

n (log n)
θ−1
)

. The smaller θ is, the larger (smaller) the largest (smallest)

fragments’ size is: hence, the smaller disorder θ is, the more the values of

the Sms are, with high probability, disparate: at low disorder, the size of the

largest fragment S(1) tends to dominate the other ones and the range S(1)−S(n)

increases when θ decreases.

On the opposite, large values of θ correspond to situations in which the range
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of fragments’ sizes is lower: the fragments’ sizes look more homogeneous and

distribution Eq. (1) concentrates on its centre. At high disorder, the diversity

of the partition is large.

In some applications (see [2] and [3] in the context of the heaps process),

Sm, m = 1, .., n, interpret as the random popularities of a collection of n books

arranged on a shelf. If instead of a collection of books, a population of ani-

mals from n different species were considered, popularities verbatim interpret

as species abundance; see [4] and [5] for such interpretations.

Although Sn has a degenerate weak limit when n ↑ ∞, θ ↓ 0 while nθ =

γ > 0, this situation is worth being considered, as first noted by [2], since many

interesting statistical features emerge.

3 Sampling without replacement and size-biased

permutation of Dirichlet partitions

The results on size-biased permutation of Dirichlet distributions presented in

this Section are not new. When θ = 1, they can be found in [6]; they were used

there to address the following sampling problems from finitely broken sticks (1)

What is the sample size if sampling is carried out until the first visit to the

smallest fragment? (2) In what order are new fragments being discovered and

what is the random number of samples separating the discovery of consecutive
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new fragments until exhaustion of the list? They were generalized to all θ > 0

in [7], to solve a problem consisting in computing the search-cost distribution

arising from heaps processes.

Part of them are reproduced here for the sake of completeness and to make

things self-understandable. They will prove useful in the sequel to derive the

Donnelly-Tavaré-Griffiths sampling formula from Dirichlet partitions.

Assume some observer is sampling the unit interval as follows: drop at ran-

dom points onto this randomly broken interval and record the corresponding

numbers of visited fragments. Consider the problem of determining the order

in which the various fragments will be discovered in such a sampling process.

To avoid revisiting many times the same fragment once it has been discovered,

we need to remove it from the population as soon as it has been met in the

sampling process. But to do that, an estimation of its size is needed. We first

do that for the first visited fragment. Once this is done, after renormalizing the

remaining fragments’ sizes, we are left with a population of n−1 fragments, the

sampling of which will necessarily supply a so far undiscovered fragment. Its

size can itself be estimated and so forth, renormalizing again, until the whole

available fragments population has been visited. In this way, not only the visit-

ing order of the different fragments can be understood but also their sizes. The

purpose of this Section is to describe the statistical structure of the size-biased

permutation of the fragments’ sizes as those obtained while avoiding the ones

previously encountered in a sampling process from Dirichlet partition.
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Let Sn := (S1, .., Sn) be the random partition of the interval [0, 1] considered

here with Sm
d
= Sn

d
∼ beta(θ, (n − 1) θ), m = 1, .., n,

∑

m Sm = 1.

Let U be a uniformly distributed random throw on [0, 1] and Ln := Ln (U)

the length of the interval of the random partition containing U . The distribution

of Ln is characterized by the conditional probability

P (Ln = Sm | Sn) = Sm. (6)

In this size-biased picking procedure, long intervals are favored and one expects

that Ln � Sn in the usual stochastic sense that F Ln
(s) ≥ F Sn

(s) , ∀s ∈ [0, 1] .

Let us first check that the size of the interval containing U is stochastically

larger than the typical fragment’s length of the original partition.

3.1 The length of a size-biased randomly chosen fragment

From the size-biased picking construction, it follows (see [8], for example) that

for all non-negative measurable function ϕ on [0, 1],

Eθ [ϕ (Ln) /Ln] = E [E [ϕ (Ln) /Ln | Sn]] = (7)

n
∑

m=1

E [ϕ (Sm) /SmP (Ln = Sm | Sn)] =
n
∑

m=1

E [ϕ (Sm)] .

Taking in particular ϕ (x) = xI (x > s) in Eq. (7), we get the structural distri-

bution

Pθ [Ln > s] := F Ln
(s) =

n
∑

m=1

E [SmI (Sm > s)] .
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Recalling that Sm
d
= Sn, m = 1, .., n, it simplifies to

F Ln
(s) =

n
∑

m=1

∫ 1

s

tdFSm
(t) = n

∫ 1

s

tFSn
(dt) . (8)

Proposition 1 Ln
d
∼ beta(1 + θ, (n − 1) θ) and it holds that

Ln � Sn. (9)

Proof: As Sn
d
∼ beta(θ, (n − 1) θ), one can check directly from Eq. (8) that

Ln
d
∼ beta(1 + θ, (n − 1) θ), with E (Ln) = (1 + θ) / (nθ + 1). The likelihood

ratio between the two distributions being monotone, the stochastic domination

property follows. �

3.2 Size-biased permutation of the fragments: one dimen-

sional distribution

Consider the random partition Sn. Let L1 := Ln be the length of the first ran-

domly chosen fragment M1, so with L1 := SM1
and P (M1 = m1 | Sn) = Sm1

.

A standard problem is to iterate the size-biased picking procedure, by avoid-

ing the fragments already encountered: by doing so, a size-biased permutation

(SBP) of the fragments is obtained. We study here this process in some detail.

In the first step of this size-biased picking procedure,

Sn =: S(0)
n → (L1, S1, .., SM1−1, SM1+1, ..Sn)
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which may be written as Sn →
(

L1, (1 − L1)S
(1)
n−1

)

, with

S
(1)
n−1 :=

(

S
(1)
1 , .., S

(1)
M1−1, S

(1)
M1+1, ..S

(1)
n

)

a new random partition of the unit interval into n − 1 random fragments.

Given L1
d
∼ beta(1 + θ, (n − 1) θ), the conditional joint distribution of the

remaining components of Sn is the same as that of (1 − L1)S
(1)
n−1 where the

(n − 1)−vector S
(1)
n−1

d
∼ Dn−1 (θ) has the distribution of a Dirichlet random

partition into n− 1 fragments (see [9], Chapter 9). Pick next at random an in-

terval in S
(1)
n−1 and call V2 its length, now with distribution beta(1 + θ, (n − 2) θ),

and iterate until all fragments have been exhausted.

With V1 := L1, the length of the second fragment by avoiding the first reads

L2 = (1 − V1) V2. Iterating, the final SBP of Sn is Ln := (L1, .., Ln). We shall

put Ln = SBP(Sn) .

From this construction, if (V1, .., Vn−1) is an independent sample with dis-

tribution Vk
d
∼ beta(1 + θ, (n − k) θ), k = 1, .., n − 1, then,

Lk =

k−1
∏

i=1

(1 − Vi) Vk , k = 1, .., n− 1 (10)

Ln = 1 −

n−1
∑

k=1

Lk =

n−1
∏

k=1

(1 − Vi) (11)

is the stick-breaking scheme representation of the size-biased permutation of Sn.

Note that V i := 1 − Vi
d
∼ beta((n − i) θ, 1 + θ) and that Vn should be set to

1. From these well-known construction and properties (see [9], Chapter 9, 9.6,

[10] and [11], we obtain that the Lks, k = 1, .., n are arranged in stochastically

decreasing order. More precisely
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Theorem 2 (i) The law of Lk, for k = 1, .., n, is characterized by

E [Lq
k] =

k−1
∏

i=1

E
[

V
q

i

]

E [V q
k ] =

k−1
∏

i=1

Γ ((n − i) θ + q) Γ ((n − i + 1) θ + 1)

Γ ((n − i) θ) Γ ((n − i + 1) θ + 1 + q)
×

Γ (1 + θ + q) Γ (1 + (n − k + 1) θ)

Γ (1 + θ) Γ (1 + (n − k + 1) θ + q)
.

(12)

(ii) Let B(n−k+1)θ,1
d
∼ beta((n − k + 1) θ, 1). Then,

Lk
d
= B(n−k+1)θ,1 · Lk−1, k = 2, .., n, (13)

where pairs B(n−k+1)θ,1 and Lk−1 are mutually independent for k = 2, .., n.

(iii) L1 � .. � Lk � .. � Ln.

Proof: (i) is a direct consequence of the construction, since V i := 1 − Vi
d
∼

beta((n − i) θ, 1 + θ), i = 1, .., k − 1, Vk
d
∼ beta(1 + θ, (n − k) θ) are mutually

independent. Recalling the expression of the moment function for beta distrib-

utions, the corresponding expression of E [Lq
k] follows.

(iii) being clearly a consequence of (ii), it remains to prove (ii).

Regrouping terms directly from Eq. (12), we have E [Lq
k] = E

[

Lq
k−1

]

E [Bq
k]

with

E [Bq
k] =

Γ ((n − k + 1) θ + q)

Γ ((n − k + 1) θ)

Γ (1 + (n − k + 1) θ)

Γ (1 + (n − k + 1) θ + q)
.

This is the moment function of a beta((n − k + 1) θ, 1) distributed random vari-

able. �
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Let us now compute the joint distribution of the size-biased permutation Ln

of Sn. We shall say in the sequel that, if Ln = SBP(Sn), then Ln
d
∼ SBDn (θ)

assuming that Sn
d
∼ Dn (θ) .

3.3 Joint law of the size-biased permutation of a Dirichlet

partition

Let us first discuss the visiting order of the fragments in the SBP process. For

any permutation {m1, .., mn} of {1, .., n}, with M
′

1, .., M
′

k, k = 1, .., n, the first

k distinct fragments numbers which have been visited in the SBP sampling

process, we have

P
(

M
′

1 = m1, .., M
′

k = mk | Sn

)

=

k−1
∏

i=1

Smi

1 −
∑i

l=1 Sml

Smk
. (14)

Let us now compute the joint distribution of the size-biased permutation Ln of

Sn with Ln
d
∼ SBDn (θ) and Sn

d
∼ Dn (θ) . First, we have

(L1, .., Ln) =
(

SM
′

1

, .., SM ′
n

)

, (15)

and consequently

P (L1 = Sm1
, .., Ln = Smn

| Sn) =
n−1
∏

k=1

Smk

1 −
∑k

l=1 Sml

Smn
. (16)

We shall now rather consider the joint moment function of the random size-

biased permutation Ln = (L1, .., Ln) . We can prove the following result
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Theorem 3 The joint moment function of the SBP Ln = (L1, .., Ln)
d
∼ SBDn (θ)

reads

E

[

n
∏

k=1

Lqk

k

]

=
∑

{m1 6=..6=mn}

E

[

n−1
∏

k=1

Sqk+1
mk

1 −
∑k

l=1 Sml

Sqn+1
mn

]

= (17)

n−1
∏

k=1

{

Γ (1 + (n − k + 1) θ)

Γ (1 + θ) Γ ((n − k) θ)

Γ (1 + θ + qk) Γ ((n − k) θ + qk+1 + .. + qn)

Γ (1 + (n − k + 1) θ + qk + .. + qn)

}

.

Proof: The quantity E [
∏n

k=1 Lqk

k ] has the expression given by the first

equality as a result of (16), summing over all permutations {m1, ..., mn} of

{1, ..., n} and taking the average over Sn.

Next, we observe from Eqs. (10, 11) and the independence of the Vks that

E

[

n
∏

k=1

Lqk

k

]

= E

[

n
∏

k=1

k−1
∏

i=1

V
qk

i V qk

k

]

=
n−1
∏

k=1

E
[

V qk

k V
qk+1+..+qn

k

]

, (18)

with Vk
d
∼ beta(1 + θ, (n − k) θ), V k

d
∼ beta((n − k) θ, 1 + θ), k = 1, .., n − 1.

Finally, suppose V
d
∼ beta(a, b). Then, with V := 1 − V , it holds that

E
[

V q1V
q2

]

=
Γ (a + b)

Γ (a) Γ (b)

∫ 1

0

va+q1−1 (1 − v)
b+q2−1

dv

=
Γ (a + b)

Γ (a) Γ (b)

Γ (a + q1) Γ (b + q2)

Γ (a + b + q1 + q2)
.

Adapting this computation, recalling that Vk
d
∼ beta(1 + θ, (n − k) θ), the quan-

tity E
[

V qk

k V
qk+1+..+qn−1

k

]

appearing in Eq. (18), has the expression displayed

inside the product in the second part of (17). �

Remark: We shall borrow the physical image to the heaps process (see [2]

and [12]). Books’ popularities are assumed to satisfy Sn
d
∼ Dn (θ). When a
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book is demanded, it is removed and replaced (before a next demand) to the

top of the shelf, other books being shifted accordingly; successive demands are

independent. Iterating this heaps process (as a recurrent positive Markov chain

over the set of permutations), there is intuitively a tendency, when the system

has reached equilibrium, to find more popular books to the top of the heap.

At equilibrium indeed (see [3] and references therein to Dies, Hendricks and

Letac’ works), books’ popularities are given by Ln = SBP(Sn)
d
∼ SBDn (θ)

and result (iii) in Theorem 2 stating that L1 � .. � Ln confirms and gives

statistical sense to this intuition. Note from this that Ln = SBP(Ln) (Ln is

invariant under size-biased permutation) and that Ln = SBP
(

S(n)

)

since S(n) is

simply obtained from Sn while rearranging its components in descending order,

observing that the sampling process is blind to the mutual fragments’ positions,

being only sensitive to their sizes. For an application of these results to the

search-cost distribution in a heap under a move-to-front rule, see [7].

The Kingman limit

Consider the situation where n ↑ ∞, θ ↓ 0 while nθ = γ > 0. Such an

asymptotics was first considered by [2]; we shall ”star” the results (as in
d
→
∗

)

when referring to such an asymptotics. As noted by this author, Sn
d
∼ Dn (θ)

itself has no non-degenerate limit.

When k = o (n), recalling Vk
d
∼ beta(1 + θ, (n − k) θ), we have Vk

d
→
∗

V ∗
k

d
∼

beta(1, γ) and the SBDn (θ) distribution converges weakly from Eqs. (10, 11) to
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a Griffiths-Engen-McCloskey or GEM (γ) distribution. Namely, (L1, .., Ln)
d
→
∗

(L∗
1, .., L

∗
k, ..) =: L∗ where

L∗
k =

k−1
∏

i=1

V
∗

i V
∗
k , k ≥ 1. (19)

Here (V ∗
k , k ≥ 1) are iid with common law V ∗

1
d
∼ beta(1, γ) and V

∗

1 := 1−V ∗
1

d
∼

beta(γ, 1). Note that L∗
1 � .. � L∗

k � .., and that L∗ is invariant under size-

biased permutation. In the Kingman limit,
(

S(m), m = 1, .., n
)

converges in

law to a Poisson-Dirichlet distribution
(

L∗
(k), k ≥ 1

)

d
∼ PD (γ) with L∗

(1) >

.. > L∗
(k) > ... The size-biased permutation of

(

L∗
(k), k ≥ 1

)

is (L∗
k, k ≥ 1)

d
∼

GEM (γ) (see [9], Chapter 9).

The model (19) generates a random countable partition of the unit interval,

with many fundamental invariance properties (for a review of these results and

applications to Computer Science, Combinatorial Structures, Physics, Biology..,

see [13] and the references therein for example; this model and related ones are

also fundamental in Probability Theory; see [14], [15], [16] and [17].

4 Dirichlet partitions: sampling formulae for un-

ordered and ordered sequences

Ewens’ sampling formula (ESF) gives the distribution of alleles (different types

of genes) in a k−sample from the Poisson-Dirichlet process PD (γ). Alter-
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natively, it can be described in terms of sequential sampling of animals from a

countable collection of distinguishable species drawn from GEM (γ). It provides

the probability of the partition of a sample of k selectively equivalent genes into

a number of alleles as population size becomes indefinitely large. Depending

on whether the order of appearance of sequentially sampled species matters or

not, we are led to the first ESF for unordered sequences or to the Donnelly-

Tavaré-Griffiths (DTG) sampling formula for ordered sequences. A third way

to describe the sample is to record the number of species in the k−sample with

exactly i representatives, i = 0, .., k. When doing this while assuming the species

have random frequencies following GEM (γ) distribution, we are led to a second

Ewens Sampling Formula.

Our goal here is first to supply exact expressions of both first and second

Ewens sampling formulae, when sampling is from finite Dirichlet random par-

titions, assuming sampled population to be made of n elements. Similarly, we

shall supply a DTG formula, when sampling is from finite Dirichlet random

partitions. We shall then show in each case that these sampling formulae give

both ESF and DTG formulae when passing to the Kingman limit, thereby giv-

ing a new proof of these well-known results under the GEM model (see [18] for

further results). To derive the pre-asymptotic DTG sampling formula, the joint

law of the size-biased permutation of a Dirichlet partition will be needed.
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4.1 The first Ewens sampling formula for Dirichlet parti-

tions

We first consider a sampling formula from Dirichlet partitions for which the

order in which the consecutive fragments are being discovered in the sampling

process is irrelevant.

Let Sn be the above Dirichlet random partition at disorder θ > 0. Let k > 1

and (U1, .., Uk) be k iid uniform random throws on [0, 1]. Let then (M1, .., Mk) be

the (conditionally iid) corresponding fragments numbers (or animals’ species),

with common conditional and unconditional distributions

P (M = m | S1, .., Sn) = Sm, m ∈ {1, .., n} (20)

and

Pθ (M = m) := E [P (M = m | Sn)] = ESm =
1

n
. (21)

Let Bn,k (m) =
∑k

l=1 I (Ml = m) count the random number of occurrences of

fragment m in the k−sample. With
∑n

m=1 Bn,k (m) = k, Bn,k (m) has Binomial

distribution and, as a result, for any p ∈ {1, ..n} and any sequence 1 ≤ n1 <

.. < np ≤ n, the following multinomial distribution representation holds:

Lemma 4 With (k1, .., kp) ∈ {0, .., k}
p
, such that

∑p
q=1 kq ≤ k, it holds

P (M1, .., Mk ∈ {n1, .., np} ;Bn,k (n1) = k1, ..,Bn,k (np) = kp | Sn)

=
k!

∏p
q=1 kq!

(

k −
∑p

q=1 kq

)

!

p
∏

q=1

Skq

nq
·

(

1 −

p
∑

q=1

Snq

)k−
∑p

q=1
kq

. (22)
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Let Pn,k :=
∑n

m=1 I (Bn,k (m) > 0) count the number of distinct fragments

which have been visited in the k−sampling process. If now (k1, .., kp) ∈ {1, .., k}
p

are such that
∑p

q=1 kq = k, it follows from the above Lemma 4 that

Corollary 5

P (M1, .., Mk ∈ {n1, .., np} ;Bn,k (n1) = k1, ..,Bn,k (np) = kp; Pn,k = p | Sn)

=
k!

∏p
q=1 kq !

p
∏

q=1

Skq

nq
, (23)

where p satisfies 1 ≤ p ≤ n ∧ k.

Averaging over Sn, observing that the sample function Sn →
∏p

q=1 S
kq
nq is

homogeneous of degree k, applying (ii) of Theorem 1 page 471 of [19], we have

E

[

p
∏

q=1

Skq

nq

]

=
Γ (nθ)

Γ (nθ + k)
E

[

p
∏

q=1

T kq

q

]

=
Γ (nθ)

Γ (nθ + k)

p
∏

q=1

E
[

T kq

q

]

where (Tq ; q = 1, .., p) are iid random variables on (0,∞) with Tq
d
∼ gamma(θ),

q = 1, .., p and E
[

T
kq

q

]

=
Γ(θ+kq)

Γ(θ) =: (θ)kq
. Therefore, we obtain

Pθ (M1, .., Mk ∈ {n1, .., np} ;Bn,k (n1) = k1, ..,Bn,k (np) = kp; Pn,k = p)

=
k!

∏p
q=1 kq !

Γ (nθ)

Γ (nθ + k)

p
∏

q=1

(θ)kq
.

The above probability is independent of the sequence n1 < .. < np. As there

are
(

n
p

)

such sequences, if Bn,k (q), q = 1, .., p, stand for the numbers of animals

of species q where the Pn,k species observed were labelled in an arbitrary way

(independently of the sampling mechanism), we finally obtain
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Theorem 6 (i) It holds

Pθ (Bn,k (1) = k1, ..,Bn,k (p) = kp; Pn,k = p)

=

(

n

p

)

k!
∏p

q=1 kq !

1

(nθ)k

p
∏

q=1

(θ)kq
. (24)

(ii) With

Bk,p (x1, x2, ..) :=
∑

ai≥0:
∑

k
i=1

iai=k;
∑k

i=1
ai=p

k!
∏k

i=1 i!aiai!

k
∏

i=1

xai

i

the Bell polynomials, we have

Pθ (Pn,k = p) =
n!

(n − p)!

1

(nθ)k

Bk,p ((θ)1 , (θ)2 ...) . (25)

(iii) It holds that

Pθ (Bn,k (1) = k1, ..,Bn,k (p) = kp | Pn,k = p)

=
k!

p!

1

Bk,p ((θ)1 , (θ)2 ...)

p
∏

q=1

(θ)kq

kq!
. (26)

Proof: Part (i) has already been proven. Part (ii) is not obvious at this

stage. It will be proven rigorously as a consequence of the second Ewens For-

mula for Dirichlet partitions derived in Theorem 9 of Subsection 4.2. Part (iii)

is a consequence of (i) and (ii). The problem consisting in calculating the prob-

ability Pθ (Pn,k = p) is known as the Chinese Restaurant Problem. �

Example: As a particular example, we consider the critical case θ = 1. In

this case, the above formula simplifies to

P1 (Bn,k (1) = k1, ..,Bn,k (p) = kp; Pn,k = p) =

(

n
p

)

(

n+k−1
k

) ,

20



which is independent of the cell occupancies (k1, .., kp) (the probability is uni-

form).

As there are
(

k−1
p−1

)

sequences kq ≥ 1, q = 1, .., p satisfying
∑

kq = k, we get

P1 (Pn,k = p) =

(

n
p

)(

k−1
p−1

)

(

n+k−1
k

) , p = 1, .., n ∧ k.

As a result,

P1 (Bn,k (1) = k1, ..,Bn,k (p) = kp | Pn,k = p) =
1

(

k−1
p−1

) . �

Remark (the law of succession): To be complete, we would like to briefly

revisit a related question raised in [11] and [20], concerning the law of succession.

(i) Consider Eq (23) and let

P (M1...Mk ∈ {n1, .., np} ; Mk+1 new;Bn,k (n1) = k1, ..Bn,k (np) = kp; Pn,k = p | Sn)

be the probability that a (k + 1)
th

sample is not amongst the ones {n1, .., np}

previously encountered (and so is new), given Sn. From Eq (23), this probability

may be written as

k!
∏p

q=1 kq!

p
∏

q=1

Skq

nq

(

1 −

p
∑

q=1

Snq

)

.

The function Sn →
∏p

q=1 S
kq

nq

(

1 −
∑p

q=1 Snq

)

is homogeneous with degree k+1.

Taking the average over Sn, applying the usual trick, this probability reads

k!
∏p

q=1 kq !

Γ (nθ)

Γ (nθ + k + 1)

p
∏

q=1

(θ)kq
× (n − p) θ.
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Summing over the sequences {n1, .., np} and conditioning, Eq (24) yields

Pθ (Mk+1 is new | Bn,k (1) = k1, ..,Bn,k (p) = kp; Pn,k = p) =
(n − p) θ

nθ + k
, (27)

which is independent of cell occupancies k1, .., kp but depends on the number p

of distinct fragments already visited by the k−sample. Note that p ≤ (n − 1)∧k

if this probability is to be strictly positive.

(ii) Similarly, consider Eq (23) and, with nr ∈ {n1, .., np}, let

P (M1...Mk ∈ {n1, .., np} ; Mk+1 = nr;Bn,k (n1) = k1, ..Bn,k (np) = kp; Pn,k = p | Sn)

be the probability that the (k + 1)
th

sample is one from the previously encoun-

tered fragment already visited kr times, given Sn. This probability is also

k!
∏p

q=1 kq !

p
∏

q=1
q 6=r

Skq

nq
× Skr+1

nr
.

Averaging over Sn, summing over the sequences {n1, .., np} and conditioning,

we easily get, proceeding as in (i)

Pθ (Mk+1 ∈ species seen kr times | Bn,k (1) = k1, ..,Bn,k (p) = kp; Pn,k = p)

=
θ + kr

nθ + k
, (28)

which is independent of kq , q ∈ {1, .., p}\ {r}, and also of p. �

The Kingman limit

Consider the situation where n ↑ ∞, θ ↓ 0 while nθ = γ > 0. We recover

a result first given in [21] in a way which constitutes a new proof of the ESF.

Indeed, we have
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Corollary 7 In the Kingman limit, Pθ (Bn,k (1) = k1, ..,Bn,k (p) = kp; Pn,k = p)

converges to

P
∗
γ (Bk (1) = k1, ..,Bk (p) = kp; Pk = p) =

k!

p!

γp

(γ)k

∏p
q=1 kq

. (29)

Proof: From Stirling formula, we have
(

n
p

)

∼ np

p! and Γ(nθ)
Γ(nθ+k) ∼ 1

(γ)
k

, where

(γ)k := γ (γ + 1) .. (γ + k − 1).

Furthermore,
∏p

q=1
Γ(θ+kq)

Γ(θ) = θp
∏p

q=1
Γ(θ+kq)
Γ(1+θ) ∼ θp

∏p
q=1 (kq − 1)!. �

Summing over k1, .., kp satisfying kq ≥ 1, q = 1, .., p and
∑

kq = k gives the

limiting probability P
∗
γ (Pk = p) that there are p ≤ k distinct species visited in

the k−sample. So

Corollary 8 With sk,p the absolute value of the first kind Stirling numbers, it

holds that

P
∗
γ (Pk = p) =

γpsk,p

(γ)k

, p = 1, .., k (30)

and

P
∗
γ (Bk (1) = k1, ..,Bk (p) = kp | Pk = p) =

k!

p!

1

sk,p

∏p
q=1 kq

. (31)

Proof: One of the expressions of sk,p := [γp] (γ)k (as the coefficient of γp in

the development of (γ)k) is

sk,p =
k!

p!

∑ 1
∏p

q=1 kq
,

where the summation runs over the integers kq ≥ 1, q = 1, .., p satisfying

∑

kq = k (see [21]). �
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Remark (the law of succession): In the Kingman limit, the probabilities

displayed in Examples (27) and (28) converge respectively to

γ

γ + k
and

kr

γ + k
. (32)

These arise in the Pŏlya urn model [22]. �

4.2 The second Ewens formula for Dirichlet populations

Let now An,k (i), i ∈ {0, .., k} count the number of fragments in the k−sample

with i representatives, that is

An,k (i) = # {m ∈ {1, .., n} : Bn,k (m) = i} =
n
∑

m=1

I (Bn,k (m) = i) . (33)

Then
∑k

i=0 An,k (i) = n,
∑k

i=1 An,k (i) = p is the number of fragments vis-

ited by the k−sample and An,k (0) the number of unvisited ones. Besides,

∑k
i=1 iAn,k (i) = k is the sample size.

The vector (An,k (1) , ..,An,k (k)) is called the fragments vector count (or the

species vector count in biology [5]). In this case, we have

Theorem 9 (i) For any ai ≥ 0, i = 1, .., k satisfying
∑k

i=1 iai = k and

∑k
i=1 ai = p, we have

Pθ (An,k (1) = a1, ..,An,k (k) = ak; Pn,k = p) (34)

=
n!

(n − p)!

k!
∏k

i=1 i!aiai!

Γ (nθ)

Γ (nθ + k)

k
∏

i=1

(θ)
ai

i . (35)
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(ii) With Bk,p (x1, x2, ..), the Bell polynomials, we have

Pθ (Pn,k = p) =
n!

(n − p)!

Γ (nθ)

Γ (nθ + k)
Bk,p ((θ)1 , (θ)2 ...) . (36)

(iii) It holds

Pθ (An,k (1) = a1, ..,An,k (k) = ak | Pn,k = p) (37)

=
k!

Bk,p ((θ)1 , (θ)2 ...)

k
∏

i=1

(θ)
ai

i

i!aiai!
. (38)

Proof: Part (i) follows from Proposition 5.1 of [23]; see also Proposition 7

of [19].

(ii) Consider the Bell polynomials (see [24] pages 144− 147, Tome 1)

Bk,p (x1, x2, ..) =
∑ k!

∏k
i=1 i!aiai!

k
∏

i=1

xai

i ,

where the summation runs over the integers ai ≥ 0, i = 1, .., k satisfying

∑k
i=1 iai = k and

∑k
i=1 ai = p. It holds that, with monomials xi particularized

to xi = (θ)i

Pθ (Pn,k = p) =
n!

(n − p)!

Γ (nθ)

Γ (nθ + k)
Bk,p ((θ)1 , (θ)2 ...) .

This result clearly solves the same problem raised in part (ii) of Theorem 6, as

both Eqs (24) and (34) share the same marginal Pθ (Pn,k = p). Part (iii) results

from normalization. �

Example: As a particular example, we consider the case θ = 1. In this case,

the above formula simplifies to

P1 (An,k (1) = a1, ..,An,k (k) = ak; Pn,k = p) =
p!
(

n
p

)

(

n+k−1
k

)

1
∏k

i=1 ai!
.
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Considering Bell polynomials Bk,p (x1, x2, ...) where monomials xi are particu-

larized to xi = (1)i = i!, we have

∑ k!
∏k

i=1 ai!
=

k!

p!

(

k − 1

p − 1

)

.

As a result, we get, as expected

P1 (Pn,k = p) =

(

n
p

)(

k−1
p−1

)

(

n+k−1
k

) , p = 1, .., n ∧ k.

Furthermore, the conditional distribution reads

P1 (An,k (1) = a1, ..,An,k (k) = ak | Pn,k = p) =
p!

(

k−1
p−1

)

1
∏k

i=1 ai!
. �

The Kingman limit

Consider the situation where n ↑ ∞, θ ↓ 0 while nθ = γ > 0. We shall

recover the celebrated Ewens Sampling Formula, [21]. Indeed, we have

Corollary 10 In the Kingman limit, Pθ (An,k (1) = a1, ..,An,k (k) = ak; Pn,k = p)

converges to

P
∗
γ (Ak (1) = a1, ..,Ak (k) = ak; Pk = p) =

k!γp

(γ)k

∏k
i=1 iaiai!

. (39)

Proof:

We have n!
(n−p)! ∼ np, Γ(nθ)

Γ(nθ+k) ∼ 1
(γ)

k

where (γ)k := γ (γ + 1) .. (γ + k − 1)

and
∏k

i=1

(

Γ(θ+i)
Γ(θ)

)ai

= θp
∏k

i=1

(

Γ(θ+i)
Γ(1+θ)

)ai

∼ θp
∏k

i=1 (i − 1)!. �
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Summing over ai ≥ 0, i = 1, .., k satisfying
∑k

i=1 iai = k and
∑k

i=1 ai = p

gives the limiting probability P
∗
γ (Pk = p) that there are p ≤ k distinct species

visited in the k−sample. We find

Corollary 11 With sk,p the absolute value of the first kind Stirling numbers, it

holds that

P
∗
γ (Pk = p) =

γpsk,p

(γ)k

, p = 1, .., k (40)

and

P
∗
γ (Ak (1) = a1, ..,Ak (p) = ak | Pk = p) =

k!

sk,p

∏k
i=1 iaiai!

. (41)

Proof: Another expression of sk,p := [γp] (γ)k (as the coefficient of γp in

(γ)k) is in terms of Bell polynomials Bk,p (x1, x2, ..) when monomials xi are par-

ticularized to xi = (i − 1)! (see [24], pages 146− 147, Volume 1). This may also

be seen directly from Eq. (36), when passing to the Kingman limit, observing

that Bk,p ((θ)1 , (θ)2 , ..) ∼θ↓0 θpBk,p (0!, 1!, 2!, ..). �

4.3 Donnelly-Tavaré-Griffiths sampling formulae for Dirich-

let partitions

We now consider sampling formulae from Dirichlet partitions for which the order

in which the consecutive fragments are being discovered in the sampling process

matters.

Consider the k−sample and let m1 6= m2 6= ... 6= mp denote the ordered
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number of the first, second,..., pth distinct animals sampled from the size-p

sub-sample of Sn corresponding to the p distinct fragments which were visited.

Let Cn,k (q), q = 1, .., p be the number of animals of qth species to appear and

Pn,k :=
∑n

m=1 I (Cn,k (m) > 0) be the total number of distinct visited species.

We have

Theorem 12 (i) For any kq ≥ 1, q = 1, .., p satisfying
∑

kq = k and any

p = 1, .., n ∧ k, it holds

Pθ (Cn,k (1) = k1, .., Cn,k (p) = kp; Pn,k = p) (42)

=

(

n

p

)

k!
∏p

q=1 kq !

Γ (nθ) Γ (pθ + k)

Γ (nθ + k) Γ (pθ)
× (43)

p−1
∏

q=1

{

Γ (1 + (p − q + 1) θ) Γ (1 + θ + kq)

Γ (1 + θ) Γ ((p − q) θ)

Γ ((p − q) θ + kq+1 + .. + kp)

Γ (1 + (p − q + 1) θ + kq + .. + kp)

}

.

(ii) It holds that

Pθ (Pn,k = p) =
n!

(n − p)!

Γ (nθ)

Γ (nθ + k)
Bk,p ((θ)1 , (θ)2 ...) . (44)

(iii) The conditional distribution given Pn,k = p reads

Pθ (Cn,k (1) = k1, .., Cn,k (p) = kp | Pn,k = p) (45)

=
k!

p!

Γ (pθ + k)

Γ (pθ) Bk,p ((θ)1 , (θ)2 ...)

1
∏p

q=1 kq !
× (46)

p−1
∏

q=1

{

Γ (1 + (p − q + 1) θ) Γ (1 + θ + kq)

Γ (1 + θ) Γ ((p − q) θ)

Γ ((p − q) θ + kq+1 + .. + kp)

Γ (1 + (p − q + 1) θ + kq + .. + kp)

}

.

Proof: (i) Let {n1, ...np} be any sequence of integers satisfying 1 ≤ n1 <

.. < np ≤ n. There are
(

n
p

)

such sequences. Given Sn, the probability that the
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k−sample falls in
(

Sn1
, .., Snp

)

is
(
∑p

1 Snq

)k
. The function Sn →

(
∑p

1 Snq

)k

is homogeneous with degree k and if Tq
d
∼ gamma(θ), q = 1, .., p, are iid,

E
[

(
∑p

1 Tq)
k
]

= Γ(pθ+k)
Γ(pθ) . Averaging over Sn, the probability of this event is

thus given by

E





(

p
∑

1

Snq

)k


 =
Γ (nθ)

Γ (nθ + k)

Γ (pθ + k)

Γ (pθ)
.

Relabel {n1, ...np} as {1, .., p} and consider the new partition of the interval

(S1, .., Sp;Sn−p), moving S1, .., Sp to the front and shifting the n− p remaining

terms accordingly to form Sn−p. Consider then the p−partition of the unity

Σp defined upon scaling by: (S1, .., Sp;Sn−p) =: (
∑p

1 Sq ·Σp;Sn−p). It holds

that Σp and
∑p

1 Sq are independent; furthermore Σp
d
∼ Dp (θ). This results

from the well-known fact that for Dirichlet partitions, Sm = Tm/
∑n

1 Tk, m =

1, .., n where (Tk; k = 1..n) are iid gamma(θ) distributed, together with classical

properties of gamma random variables.

Given the k−sample fell in (S1, .., Sp), consider then the random p−partition

of unity Σp = (Σ1, .., Σp), so with
∑p

1 Σq = 1.

For any subsequence {m1 6= m2 6= ... 6= mp} of {1, .., p} the joint conditional

probability that the k−sample visited {m1 6= m2 6= ... 6= mp} in that order and

that there are kq sample within each Σmq
, q = 1, .., p is

P
(

M
′

1 = m1, .., M
′

p = mp; Cn,k (1) = k1, .., Cn,k (p) = kp; Pn,k = p | Sn

)

=

(

n

p

)

k!
∏p

q=1 kq !

(

p
∑

1

Sq

)k p
∏

q=1

Σkq

mq

p−1
∏

q=1

Σmq

1 −
∑q

l=1 Σml

Σmp
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=

(

n

p

)

k!
∏p

q=1 kq !

(

p
∑

1

Sq

)k p−1
∏

q=1

Σ
kq+1
mq

1 −
∑q

l=1 Σml

Σkp+1
mp

.

Here M
′

1, .., M
′

p is the sequence of the p first fragments’ numbers obtained from

the sampling process by avoiding the ones previously encountered within Σp;

these were defined in Subsection 3.2. The coefficient k!
∏p

q=1
kq !

is the standard

number of ways the sample could have arisen. The term
∏p−1

q=1

Σmq

1−
∑q

l=1
Σml

Σmp

is the probability that sequence {m1, m2, ..., mp} emerges in that order from

the sampling process within Σp; it results of Eq. (16). The term
∏p

q=1 Σ
kq

mq

arises from the fact that Σmq
is visited kq times, q = 1, .., p. Summing over

{m1 6= m2 6= ... 6= mp} and averaging over Σp, Eq. (17) gives

∑

{m1 6=..6=mp}

E

[

p−1
∏

q=1

Σ
kq+1
mq

1 −
∑q

l=1 Σml

Σkp+1
mp

]

=

p−1
∏

q=1

{

Γ (1 + (p − q + 1) θ)

Γ (1 + θ) Γ ((p − q) θ)

Γ (1 + θ + kq) Γ ((p − q) θ + kq+1 + .. + kp)

Γ (1 + (p − q + 1) θ + kq + .. + kp)

}

.

Putting all this together gives the announced result (i). The results (ii) and

(iii) are consequences of the expression of Pθ (Pn,k = p) in terms of Bell poly-

nomials as shown in part (ii) of Theorem 9. �

Consider now the k−sample and let m1 6= m2 6= ... 6= mp denote the ordered

number of the first, second,..., pth distinct animals sampled from Sn when only

Pn,k = p distinct fragments were visited. Let Cn,k (q), q = 1, .., p be the number

of animals of qth species to appear. We have
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Theorem 13 For any kq ≥ 1, q = 1, .., p satisfying
∑p

1 kq = k and any p =

1, .., n ∧ k, it holds

Pθ (Cn,k (1) = k1, .., Cn,k (p) = kp; Pn,k = p) (47)

=
(k − 1)!

∏p−1
q=1 (k −

∑q
1 ki)

Γ (1 + (n − p + 1) θ) Γ (θ + kp)

Γ (1 + θ) Γ ((n − p + 1) θ + kp) Γ (kp)
× (48)

p−1
∏

q=1

{

Γ (1 + (n − q + 1) θ) Γ (θ + kq)

Γ (1 + θ) Γ ((n − q) θ) Γ (kq)

Γ ((n − q) θ + kq+1 + .. + kp)

Γ ((n − q + 1) θ + kq + .. + kp)

}

.

Proof: Given Sn, the probability of the event in Eq. (47) is

p
∏

q=1

(

k −
∑q−1

i=1 ki − 1

kq − 1

)

×
∑

m1 6=..6=mp

p
∏

q=1

Skq

mq

where {m1 6= .. 6= mp} are realizations of the SBP ordered sample M
′

1, .., M
′

p.

From this and Eq. (14), we get

Pθ (Cn,k (1) = k1, .., Cn,k (p) = kp; Pn,k = p)

=

p
∏

q=1

(

k −
∑q−1

i=1 ki − 1

kq − 1

)

×E

[

p−1
∏

q=1

{

Lkq−1
q

(

1 −

q
∑

i=1

Li

)}

× Lkp−1
p

]

.

Observing from Eq. (10) that 1 −
∑q

i=1 Li =
∏q

i=1 V i and using the indepen-

dence of the Vis, we get

Q (k1, .., kp) : = E

[

p−1
∏

q=1

{

Lkq−1
q

(

1 −

q
∑

i=1

Li

)}

× Lkp−1
p

]

(49)

=

p−1
∏

q=1

E
[

V kq−1
q V

kq+1+..+kp

q

]

× E
[

V kp−1
p

]

. (50)

Recalling Vk
d
∼ beta(1 + θ, (n − k) θ), V k

d
∼ beta((n − k) θ, 1 + θ), k = 1, .., n −

1, using the same argument which was used in Theorem 3, this last probability
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term Q (k1, .., kp) reads

p−1
∏

q=1

{

Γ (1 + (n − q + 1) θ) Γ (θ + kq)

Γ (1 + θ) Γ ((n − q) θ)

Γ ((n − q) θ + kq+1 + .. + kp)

Γ ((n − q + 1) θ + kq + .. + kp)

}

×

Γ (1 + (n − p + 1) θ) Γ (θ + kp)

Γ (1 + θ) Γ ((n − p + 1) θ + kp)
.

Recalling
∑p

1 kq = k, the number of arrangements term
∏p

q=1

(k−
∑q−1

i=1
ki−1

kq−1

)

is

also (k−1)!
∏p−1

q=1(k−
∑q

1
ki)

1
∏p

q=1
Γ(kq)

and the full result follows from regrouping terms.

�

Remark (the law of succession):

(i) Consider Eq (47) and, with mr ∈ {m1, .., mp}, let

P (Mk+1 = mr | Cn,k (1) = k1, ..Cn,k (p) = kp; Pn,k = p)

be the conditional probability that the (k + 1)
th

sample is one from the previ-

ously encountered fragment already visited kr times. To evaluate this probabil-

ity, the term Q (k1, .., kp) in Eq. (49) has to be replaced by

Q (k1, .., kr+1,.., kp) = E





p−1
∏

q=1:q 6=r

{

Lkq−1
q

(

1 −

q
∑

i=1

Li

)}

Lkr

r

(

1 −

r
∑

i=1

Li

)

Lkp−1
p





substituting kr + 1 to kr in Eq. (49). The correcting term is found to be

Q (k1, .., kr+1,.., kp)

Q (k1, .., kp)

=

r−1
∏

q=1

{

(n − q) θ + kq+1 + .. + kp

(n − q + 1) θ + kq + .. + kp

}

θ + kr

(n − r + 1) θ + kr + .. + kp

=
θ + kr

nθ + k
.
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This shows that, as for the ESF

Pθ (Mk+1 ∈ species seen kr times | Cn,k (1) = k1, ..Cn,k (p) = kp; Pn,k = p)

=
θ + kr

nθ + k
,

which is again independent of kq , q ∈ {1, .., p} \ {r} and also of p.

(ii) Summing over r = 1, ..., p, the conditional probability that Mk+1 ∈

{any one of the species previously seen} is thus
∑p

r=1
θ+kr

nθ+k = pθ+k
nθ+k . Taking its

complement to 1, we obtain

Pθ (Mk+1 is new | Cn,k (1) = k1, ..Cn,k (p) = kp; Pn,k = p) =
(n − p) θ

nθ + k
,

which is independent of cell occupancies k1, .., kp but depends on the number p

of distinct fragments already visited by the k−sample. Note that p ≤ (n − 1)∧k

if this probability is to be strictly positive. �

The Kingman limit

Consider the situation where n ↑ ∞, θ ↓ 0 while nθ = γ > 0. We give below

a new proof of the celebrated Donnelly-Tavaré-Griffiths sampling formula (as

from [25], page 10). Indeed, we have

Corollary 14 In the Kingman limit, the probabilities (42) and (47) both con-

verge to

P
∗
γ (Ck (1) = k1, .., Ck (p) = kp; Pk = p) =

k!γp

(γ)k

∏p
q=1 (kq + .. + kp)

. (51)
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Proof: (i) Consider first the probability displayed in (42). First, we have

(

n
p

)

∼ np

p! , Γ(nθ)Γ(pθ+k)
Γ(nθ+k)Γ(pθ) ∼ (k−1)!pθ

(γ)
k

. Next,

p−1
∏

q=1

{

Γ (1 + (p − q + 1) θ) Γ (1 + θ + kq)

Γ (1 + θ) Γ ((p − q) θ)

Γ ((p − q) θ + kq+1 + .. + kp)

Γ (1 + (p − q + 1) θ + kq + .. + kp)

}

∼

p−1
∏

q=1

{kq ! (p − q) θ}

p−1
∏

q=1

{

Γ (kq+1 + .. + kp)

Γ (1 + kq + .. + kp)

}

=

θp−1 (p − 1)!

p−1
∏

q=1

kq ! × Γ (kp)

p−1
∏

q=2

{

1

kq + .. + kp

}

1

(k1 + .. + kp)!
=

θp−1 (p − 1)!

p
∏

q=1

kq ! ×

p
∏

q=2

{

1

kq + .. + kp

}

1

(k1 + .. + kp)!
=

θp−1 (p − 1)!

p
∏

q=1

kq ! ×

p
∏

q=1

1

kq + .. + kp
×

1

(k − 1)!
.

Multiplying this expression by the factor

(

n

p

)

k!
∏p

q=1 kq !

Γ (nθ) Γ (pθ + k)

Γ (nθ + k) Γ (pθ)
∼

np

p!

k!
∏p

q=1 kq !

(k − 1)!pθ

(γ)k

gives the result, recalling nθ = γ.

(ii) Consider next the probability displayed in (47). In the Kingman limit,

we have

Pθ (Cn,k (1) = k1, .., Cn,k (p) = kp; Pn,k = p)

∼
(k − 1)!

∏p−1
q=1 (k −

∑q
1 ki)

Γ (1 + γ)

Γ (γ + kp)

p−1
∏

q=1

{

Γ (1 + γ)

Γ (γ)

Γ (γ + kq+1 + .. + kp)

Γ (γ + kq + .. + kp)

}

=
γp (k − 1)!

∏p−1
q=1 (k −

∑q
1 ki)

Γ (γ)

Γ (γ + k)
=

γpk!

(γ)k

1
∏p

q=1 (kq + .. + kp)
,

observing that terms in the product cancel pairwise and recalling
∑p

1 kq = k.

These results, with a different proof, can be found in [25], page 10. �
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Summing over {k1, .., kp} satisfying kq ≥ 1, q = 1, .., p and
∑

kq = k gives

the limiting probability P
∗
γ (Pk = p) that there are p ≤ k distinct species visited

in the k−sample. We get

Corollary 15 With sk,p the absolute value of the first kind Stirling numbers, it

holds that

P
∗
γ (Pk = p) =

γpsk,p

(γ)k

, p = 1, .., k (52)

and

P
∗
γ (Ck (1) = k1, .., Ck (p) = kp | Pk = p) =

k!

sk,p

∏p
q=1 (kq + .. + kp)

. (53)

Proof: Another expression of sk,p := [γp] (γ)k (as the coefficient of γp in

(γ)k) is

sk,p = k!
∑ 1

∏p
q=1 (kq + .. + kp)

where the summation runs over the integers kq ≥ 1, q = 1, .., p satisfying

∑

kq = k (see [25], Appendix 2 page 18). �
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