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Abstract: Model-based fault detection methods allbe/generation of residuals as fault
indicators. Isolation is generally based on thedigiece matrix structure. Simultaneous
faults generate a new fault signature, correspgnttinthe superposition of the fault

effects. With classical decision methods, each faahbination results in a new residual
configuration, leading to an extra column in areexried incidence matrix. This solution
is extremely combinatorial. This work uses the ctital properties of the incidence
matrix corresponding to single faults to reasonualfault combinations. This reasoning
is implemented as a fuzzy inference system to tahkeertainties into account. An

implementation of this algorithm has been appl@drn automotive engine.
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1. INTRODUCTION R F .. K
: . 1 0 .. 1]n
Fault diagnosis is based on three fundamental
functions described by Isermann and Ballé, (1997): |0 1. f (1)
) . . ; - D(Mx N) =
fault detection; fault isolation; fault identifigah. 1 0 . I
Model-based fault detection (MFD) methods allow 0 o
the generation of residuals defined as fault indicsa 0 1 ol r
M

based on a deviation between measurements and L -
model-based computations. The basic MFD methods
such as parity equations (Gertler 1997), or state a
output observers (Patton and Chen, 1997), us
analytical redundancy to achieve the fault isolatio
function. ClassicallyM residualsr; (i=1..M) are
generated. When a fauly, (j=1..N) occurs, some
residuals stay close to zero and others becomdyclea
different from zero. The residual state is usually
translated, using a threshold, into boolean terros 0
1inthe D(M x N) incidence matrix.

The purpose of isolation function is to find which
ofault F; appears in the system. Colunnof the
incidence matrix represents the signature of feplt
The fault isolation capability depends on the
incidence matrix structure (Gertler and Anderson,
1992).

Comparison between the boolean incidence matrix
columns and the residual vector is not an elemgntar
problem. Subsequently, this paper proposes to solve



the problem as a decision making problem in an The fuzzy partition related to each residual is

uncertain environment using fuzzy rules as: assumed to be a normalised fuzzy partition composed
by two numerical fuzzy sets:
IF residual 1 is different from zero « Non Zero (symbol NZ), the grade of
AND residual 2 is close to zero membership of the residualto this fuzzy sub-set
AND ... translates the concept "different from 0". Thus
THEN the fault x occurrence is True.  (2) this function increases when is significantly

_ affectedby faultF; and faultF; occurs.
Moreover, in some systems, several faults may , z7gq (symbolZ), the grade of membership of
appear simultaneously. Usually this situation is  he residuat; to this fuzzy sub-set translates the
encountered when the system has not been concept “close to 0" thus this function increases
interrupted after the first fault occurrence, eithe when no fault occurs or when a faBjtoccurs but
because this fault is not critical or its effect is r; is not significantly affectetly this fault.
gradual, and meanwhile, a second fault appears. Thi g the sake of simplicity, in this paper, the fuzz
situation is more frequent when a reconfiguration partition is limited to two linguistic terms but
method is used. Reconfiguration methods adapt theyqgitional terms like "Undetermined”, "Small", etc.
control law, allowing the production to continue in 4 1d also be introduced.
spite of the fault occurrence.

Based on the fuzzy meaning of the two tei@sand

The rules (2) are no more efficient for multiplailfa Z, that is yyy and i, a symbolic fuzzification of

isolation because the occurrence of two simultasieou _ )
faults in the system leads to a new fault signaturethe residuak; over the setZ, NZ can be obtained

(Koscielny, 1993), corresponding to the superpmsiti  (Foulloy and Galichet, 1995). Using the additive

of the two fault effects. Under the linearity hypesis, ~ notation for discrete fuzzy subsets:
isolation of multiple faults may be processed using
extended incidence matrix, including a new coluom f D(ri) = 0u/Z + 0/NZ (4)

each fault combination, leading to a combinatorial
solution. In the following, this problem is solvading ~ With a1 = (1) andaz = pnz)(r). The fuzzy subset
an original decision method which does not require 2(ri) can also be characterised by its membership
testing of each combination. function /4 and thereforgs,)(2) = a;. Afterwards,
Th ) <ed foll the first i for the sake of simplicity, #,(Z) and

is paper is organised as follows: the first secti . .
describes residual fuzzification while the second Ai(NZ)instead of ibi(Z) and p)(N2) will be
section presents the decision module and theYSed:
symptom aggregation by fuzzy reasoning. Then the
method is illustrated by an application to an

. . 2.2.Fault attribute definitions.
automotive engine.

FaultF; is associated with four attributes:
2 FUZZIFICATION . Oc_cu_rrence which characterises the fault
materialisation (Occ).

The residuals are never really equal to zero (noise  * Simultaneity Hypothesiswhich characterises

model uncertainties). Hence, the conceptzefo is the hypothesis that another fault (k# j) occurs
vague. The residual sensitive to a fault is thécaty (Sim-Hyp).
just defined as different from zero, but a residsal « Simultaneous which characterises a fault

affected with different amplitudes depending on the  occurring simultaneously with another one (Sim).
fault amplitude and the residual sensitivity to the * Single which characterises the fault
considered fault. Thus the concept afie in the uniqueness (Sig).

incidence matrix is also vague. In the following, Each attribute is represented by a fuzzy subset
fuzzy sets are used in order to translate the gasce defined on the set of two linguistic term3r{e

of "close to 0", and "different from 0", Falsg.

2.1.Residual fuzzification. 3. DECISION STEPS

In the following, the incidence matrix is assumed t The system is assumed to behave such that the
be statistically isolable (Gertler, and Anderson, following hypothesis is consideredhe fault effects
1992). The residual vector is defined at each are approximately added and the new signature

sampling period as : generated by multiple faults is given by an ORdabi
operator between the different single fault signegu
C(k):[rl(k) o (k) ..o, (k)]T_ (3) The proposed method is divided into four steps as

shown in figure 1 and is based on a reasoningechrri



out on each fault independently of the others, thusNow if D(i,j) = 0, thenr; cannot bring any
using the same incidence matrix as the single ¢ask. information about the occurrence of fabjf because
the residualr; might belong to theNZ fuzzy subset
» The first step computes the truth (veracity) of and another fault, (with D(i,k) = 1) might be
the Occurrence attribute for fadlf, using a rule-  affecting the system. This should be taken into
set (Occurrence Rules) based on the knowledgeaccount for the decision concerning faét The
related to the elements equal Xdn the binary  residual may also belong 8Z because of noise or
incidence matrix. modelling errors. To avoid this problem, it is pb$s
« The second step computes the truth of the to write rules, associated with edghwhich use only
simultaneity hypothesis for fauli;, using a rule-  the part of the signature which corresponds tothen
set (Sim-hyp Rules) based on the knowledge incidence matrix:
related to the elements equal @an the binary

incidence matrix. At this stage, multiple faultsais IF riisNZAND D(1j)=1
hypothesis which needs to be further reinforced. AND ry is NZAND D(M,j)=1
« The third step allows the separation between THEN  OcqF) is True.

single faults and multiple faults by computing the
Sig attribute and Sim attribute by aggregation of
the results of the first and second steps.

» Then, the final decision presents the single or

The grade of membership @cdF;) is computed
using equations (5) and (6):

multiple faults which have occurred. Hocq E)(True) = i=-:ll.—..l:/l %%r,jr}ll(ﬂ"( N2) ©®)
Hoc ) (Fals§ = T - conorm(y, (2) . (6)
$CK) _ .
—— Equation (6) means that tii@cc attribute of the fault
F; is False,if one of the residualg belongs strongly
M (+) to Z whenD(i,j) is equal to 1.
chﬂzgince SiFrenu'gZp Example: Let D(i=1..M,j) = [0 1 0 1] be the
signature of the fault, and the residual vector
Howr) () 1 Hem ) CHO=Ir(K) 1K) 1K) r4(K)]". The membership of
L — the faultOcc attribute toTrue is computed using the
Aggregation “min" or "max" operators as T-norm or T-conorm:
,USig(F,)(') v Hsing 5)(‘) T _ N N
| Final decisio | Houx ) (Tru€) = min(ur, (N2), 4, (N2)
¢ Ed Hocq r) (Falsg = max(u, (2)4, (2))
Fig. 1. Decision strategy. 3.2.Simultaneity hypothesis rules.

The disjunction of two different signatures for
multiple faults may lead to a signature which
preserves all 1 of the respective single fault

The Occurrenceattribute characterises fafifand is ~ Signatures. The simultaneity hypothesis is veriifed

represented by a fuzzy subset as shown in figure 2. at least one of the residuaty [Ji/D(i,j)=0, is
significantly affected and thus has a strong degfee

membership toNZ The computation processes the
Sim-hypfault attribute which describes faul; as
represented in figure 3.

3.1.0ccurrence rules.

Occurrence
Rul
. M) Rules

Z NZ True False ' Hsim-hyg 1)

Sim-hyp

Fig. 2. Occurrence rules. T A AT TN 5
Z Nz True False

Since the occurrence of falf should beTrue, if the
fault affects the system behaviour, only elements
equal to 1 in the signature are useful for the
computation of thécc attribute fuzzy subset. Thus,
fault F; occurs if the residual; belongs strongly to
NZ whenD(i,j) is equal to 1.

Fig. 3. Sim-hyp rules.

The membership of the simultaneity hypothesis
attribute to True is defined by rules using only
explicitly the residuals corresponding to O in the



incidence matrix and testing if they are signifitan ~ The grade of membership of the fakjtSig attribute

affected: to the termTrueis defined by the T-norm:
IF r1isNZAND D(1,)=0 OR ... Usig gy (True) = T-norm (10)
... ORry isNZ AND D(M,j)=0 ‘
THEN  Sim-hygF;) is True. { Hou ) (TIU8), Hsym o 1y (Fals9 }

Hsig gy (True) =T -norm
The grade of membership of the faif Sim-hyp J
attribute to the terriirueis defined by the T-conorm: { ilegﬂg‘D%rerl(#n (NZ))’iJN}B?j”QO(M (2) }

Hsimnyg 5 (Tru€) = T-conorm(z, (N2) . (7) which is similar to the classical rule (2) takingd
account all the elements of the signature ve(@y),

On the other hand, if no residual/D(i,j)=0 is i=1..M.

affected, a combination with another fault is not ) .
possible. This fact makes it possible to generate aExampIe.Let F1 andF; be two fauls the residual

) iy
new rule translating the falseness of the simuitgne  YStO" S G0 =[ra(k) r2(k) r5(k) ra(K)], and the
hypothesis: incidence matrix is:

IF r1isZ AND D(1,)=0 AND ... ~
... AND ry is Z AND D(M,j)=0 D(4x2) =
THEN Sim-hygF)) is False

o O R K
Pk O O R,

The membership degree of the falf Sim-hyp

attribute to the terrFalseis defined by the T-norm: ~ The "min” (resp. "max") operator is used to compute
a T-norm (resp. T-conorm):

Hsimhyg 7y (FAIS® = T-norm (1, (2). (8)

I=L.M /D j)=0 Hocy ry (True) = min(y, (N2, 4, (N2)
Hsig ) (Tru€) = min(y, (N2, 4, (N34, (2.4, ( 2)
3.3.Aggregation. Hsin iy (TTUE)

= min(y, (N2),4, (N2),max@, (NZ)y, (N2)))
Through aggregation, th@cc and Sim-hypattributes —mi
make it possible to determine if a faBjtis a single Hoci i) (TrUe) m_m('uﬁ (N2). 44, (N2)
fault or simultaneous with another fault. Two new Ksig s (Tru€) = min(x, (N3, 4, (9.4, (2.4, ( N2)
attributes are define&®inm(F;) andSig(F)). Hsing 5 (TrU€)
A fault F; can be simultaneous with another fault if = min(g, (N2). 4, (N2),maxiy, (N2)4, (N2))
and only if fault F; occurs and the simultaneity )
hypothesis isTrue. This is defined by the following ~ For the single fault casé{):
rule: H, (NZ) =L u, (Z) =0y, (NZ) =1 p1, (Z) =0;

L (NZ)=0; . (Z) =L, (NZ) =0; i, (Z) =1,
IF OcdF;) is True AND Sim-hygF)) is True Hy, (N2) Hy (2) =1 p, (N2) He (2)
THEN Sim(F)isT

in(Fy) is True and for the multiple fault cas€&{andF»):
The membership degree of the faEjtSimattribute 4, (N2) =L, (Z2) =0, 14, (NZ) =L 44, (Z) =G
to the termTrueis defined as an aggregation through 41 (N2) =0; i, (Z) =1 1, (NZ) =1, (Z)=0.
the T-norm: ’ ) ) )

Table 1 Attributes

Hsing ) (True) = T-norm 9)

{ ﬂomﬁ)(Tfue)’/JSim - (Trug } Single fault multiple fault

(True) = T - norm Hoaqr (TTU9) 1 1

Hsin( ) - Hsigr (TTUE) 1 0

{ T,;norm (4, (N2), T - conorrty, (N2)) } Hsu iy (TrI0 0 1

Hocq i) (True) 0 1

A fault F; is a single fault if it occurs and the Hsum(TMU® 0 0

simultaneity hypothesis Balse This is established  Hsins) (TTUe) 0 1

by the rule:

The attribute computation results in table 1. Tihst f
IF OcqF;) is True AND Sim-hy|fF;) is False column describes that faui; is a single fault and
THEN SigF;) is True. fault F, has not occurred. The second column



describes that faulF; occurs simultaneously with analytical equations such as incompressible aiv flo
another fault, and fauk, occurs simultaneously with  equations. A modified form of the discretised
another fault. equations is presented below. Explicit residuaks ar
functions of specific parameters that are not
described for reasons of confidentiality.
3.4.Final decision.
Sensor variables are the throttle angte, the
The final decision must inform the operator abdet t manifold pressur®m the manifold temperaturem,
faults affecting the system along with their the ambient pressuiea and the ambient temperature
membership degrees. The choice of a single faultTa. The air mass at the intake port is computed as a
affecting the system is made by searching for fault state variable. Residuals are computed as the
which has the highest grade of membership ofSiige  difference between the data sensors and their model
attribute to the ternTrue If this fault exists, it is  based predictions. The incidence matrix (Tables2) i
chosen if its grade of membership of g attribute statistically isolable.
to the termTrueis greater than or equal to the grade

of membership of th&im attribute to the terrTrue rn=fla ,Pn, Ta;r2=f(a ,Py);
of any other faulf, (n=1..N with n# j). If no single r3=f(Pm, Tm); r2a=f(Pm, Pa, To);
fault is found, then all the fauls, will be chosen so rs=f(a , Tm,Ta)

that their grade of membership of tBanattribute to

the termTrue are greater than the greatest grade of Table 2 Incidence Matrix

membership of th&ig attribute to the ternTrue of

all faultsF; (i=1..N). a Pm ™ Pa Ta

. . i ) ry 1 1 0 0 1

The final decision is aN-column vectoi-d: 0 1 0 0 1 0

B rs 0 1 1 0 0

Hsig(r,) (True) = rrg%((//sig(Fn)(True)) (11) rs 0 1 0 1 1

IF Hgige,) (True) nrl]lf'?‘.if(ﬂsm‘ﬁ)(ﬁue)) s 1 0 1 0 1

Fd :[0 - Hsige,) (True) 0]

ELSE 4.2.Results.

Fd:[O...ySim(&:)(True ...,uSim(E)('l'rue)...O] _ _ _
Two examples of faults are shown in this section.
sothatn, s, (Trug > MaX sy, (Trug). Many faults, such as leaks or sensor drifts, could
affect the system. The faults introduced here
correspond to sensor bias. This has been obtaied b

4. APPLICATION TO AN AUTOMOTIVE replacing the sensor connection to the central bgit
ENGINE simulating a wrong sensor signal. In the first case

(figure 5, left), bias has been applied to the ttheo
4.1.Engine modelling. angle sensor and the manifold temperature sensor. |

the second case (figure 5, right), erroneous mkhifo
An example is given to illustrate the multiple faul pressure and ambient temperature were substituted
detection and isolation (MFDI) method developed for the real ones.
above. The system considered is a 3.8L V6 automotiv
engine. Note that the diagnostic systems called OBDCase a;bias over throttle and manifold temperature
are of growing interest for automotive engineers measurements were introduced. According to the
because electronics play a preponderant role inincidence matrix (Table 1), both faults generate a
injection and ignition strategies. new fault signature that corresponds to the logiifal
between thea signature and th&m signature, i.e.
To achieve a compartmentalised model suitable for athe first and the third column of the incidence ninat
diagnostic problem, the engine system has beenThis new signature iSgn =[1110 1].
divided into two sub-systems: the air intake systeah
the fuel supply system. For the sake of clarity the Case b;in this example, a faulty manifold pressure
following example takes into account only the air sensor and ambient temperature sensor were
intake system. Nevertheless, both sub-systemsmust considered. The new fault signature generated by
used to improve the performance of the MFDI. these faults isSgn, = [1 0 1 1 1.

Exact modelling of the air intake involves fluid Diagnostic results are in Table 3 at tike 2 s:
mechanics. Details of the model and derivationhef t ¢ In case a, the MFDI leads to the isolation of fult
equations can be found in (Bidan, et al., 1994 Th a andTmwith respectively 0.82 and 0.91 degrees of
behaviour of the process is modelled with non linea fault. These results are very satisfactory.
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Fig. 4. Residuals witlr (5%) andTm (3%) faults in
the first column; and residuals wiftm (10%) and
Ta (10%) faults in the second column.

Table 3 Decision results

case a)

Residual vector
Fuzzified residual
vector for NZ
Fuzzified residual
vector for Z

Hsig(F) (True)
Hsin( 1) (True)
Fd

[1.73 17.48 -11.3 0.93 3113]
[0.82 1 0.91 0.09 0.93]

[0.18 0 0.09 0.91 0.08]

[0.090 0 0 0.080 0]
[0.82 0.09 0.91 0.09 0.09]
[0.82 0 0.91 0 0]

case b)

Residual vector
Fuzzified residual
vector for NZ
Fuzzified residual
vector for Z

Hsig(F) (True)
Hsin ) (TrUE)
Fd

[2.41-3.5-12.18 -26.8 -2121]
[0.89 0.11 0.94 1 0.63]

[0.11 0.89 0.06 0 0.37]

[0 0.37 0 0.07 0.07]
[0.11 0.63 0.63 0.11 0.63]
[0 0.63 0.63 0 0.63]

* In case b, the MFDI leads to the conclusion that
faults Pm, Tm Ta occur with a degree equal to 0.63
whereas only Pm and Ta measurements were
effectively biased. If the faults over the manifold
pressure and ambient temperature sensors are
isolated, a false alarm involving the manifold
temperature sensor is generated. This can be
interpreted easily. The new fault signature gemerat
by simultaneous faults "includes" another one. The
logical OR between the first and the third fault
signatures automatically causes a false alarm tteer
fourth fault signature. Such false alarms can be
avoided by considering additional residuals: irs thi
specific example, gathering all residuals from both
sub-systems will considerably improve the isolation
procedure.

5. CONCLUSION

A model-based fault detection and isolation hasibee
described to support simultaneous faults. A
qualitative reasoning based on fuzzy logic performs
the decision procedure by aggregating the
complementary information given by the 1 and the 0
of the incidence matrix. The properties of the
incidence matrix structure has been used to reason
about multiple fault without testing each combioati

An implementation of this algorithm has been applie
to an automotive engine.
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