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Abstract

This work presents a unified approach to derive decision
procedures for model based fault detection and isolation
(FDI) either from knowledge or from experiments. In the
knowledge-based approach, fuzzy rule weights are defined
directly from model structure. In the supervised learning
approach, the decision procedure is derived from a data set.
The symbolic to numeric integration provided by fuzzy sets in
the proposed framework allows integrating symbolic
symptoms into the decision procedure. The proposed method
is applied to the FDI of a winding machine.

1 Introduction

In model based fault detection and isolation (FDI) methods,
residuals are fault indicators that express the consistency
between the model and the actual behaviour of the process. A
first theoretical step consists in generating relevant residuals,
that allow detecting the faults in a manner robust to other
system perturbations. A second more practical step consists in
deciding on line to which faulty situation the residuals
correspond.

Most of the residual generation methods use estimation
techniques, such as observers or parity space approaches
[Isermann 97]. These methods are closely related. A linear
transformation of the original residuals improves fault
isolation by decoupling the effects of faults from measurable
disturbances and modelling errors.

On line FDI is provided by a decision step that can be
performed by different approaches: Dempster-Shafer
evidential reasoning [Gertler 92], logic voting schemes
[Cassar 92] or fuzzy logic approaches [Montmain 91];
__________________________________
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[Frank 94]; [Isermann 98]. This paper is devoted to this
problem. Most methods are based on the structure of the
models used for residual generation.

In large-scale industrial applications, models are commonly
based on heuristics or experimental data and model structure
may not be clearly defined. Additionally, fault diagnosis may
take into account symbolic information that cannot be directly
integrated into mathematical models. In such cases, analytical
decoupling is not possible, but the design procedure can be
derived from data.

In this work, a general framework based on fuzzy systems is
proposed so that the FDI decision procedure can be designed
either from knowledge of the model structure or derived from
data. The paper is organised as follows. In the second section,
the general framework for fuzzy relations and decision
making is introduced. Section 3 presents the decision
procedure design based on the knowledge of model structure
or derived from data. In section 4, the proposed method is
applied to the FDI of a winding machine; this simple example
is used to appreciate how FDI can be derived from data.

2 Fuzzy systems for decision-making

2.1 Preliminaries

A fuzzy set is denoted by:

( ){ }XxxAxA ∈= ,)(,
~ (1)

where X  is the reference domain, generally a subset of real
numbers, and [ ]1,0: aXA  is the membership function.

The elements of X are described by the symbolic terms in the
descriptor set )(XA . Each symbolic term )(XAi A∈
represents a generalisation of the reference values whose

meaning is the fuzzy set iA
~

. In practical applications, terms

)(XAi A∈  have a linguistic interpretation and the set of all

meanings iA
~

 forms a fuzzy partition of the reference domain.



For every element Xx ∈0 , its description 0

~
X  is a fuzzy set

defined on )(XA . The description 0

~
X  can be represented by

a line vector, defined in the unit cube nI  [Kosko 92], where n
is the cardinality of )(XA  and:

[ ] [ ])()...()()(
~
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Fuzzy descriptions can be related by a set of rules to describe
a linguistic model between several reference domains. Such
models are implemented by fuzzy systems, described next.

2.2 Symbolic Fuzzy Systems

A linguistic model relating variables x and y can be written by
a rule base relating the terms in the descriptor sets )(XAi A∈
and )(YB j B∈ , with rules like:

ji BisythenAisxif . (3)

The rule base is a collection of rules like (3) and can be

represented by the symbolic fuzzy relation Φ
~

 in the cartesian
product )()( YX BA ×  [Foulloy 95]. Rules in the rule base are

weighted by the membership value ),( ji BAΦ  that represents

how much the term iA  is related to the term jB  in the model

described by the rule base. The rule base is thus represented

by the matrix mnI ×∈Φ
~

, where n and m are the cardinality of
fuzzy partitions associated to )(XA  and )(YB . In symbolic

fuzzy systems, the input description 0

~
X  is computed from the

input value Xx ∈0  as in (2). Output description 0

~
Y  is

computed from input description 0

~
X  and the rule base Φ

~

using the fuzzy relational composition:

Φ= ~~~
00 oXY (4)

In this work, normalised and orthogonal fuzzy sets are
considered in fuzzy partitions such that:

1)(, 00 =∈∃∀ xAXxi i ,

1)(, 0 =∀ ∑i i xAx . (5)

As an example, suppose the variable X with the descriptor set
A(X)={A0, A1, A2}, the variable Y with the descriptor set
B(Y)={B0, B1} and the fuzzy rule base:
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The prototype description of the rule base is given by the

matrix Φ
~

:

Φ
~ B(Y)

B0 B0

A0 0 1

A(X) A1 1 0

A2 0 1

Table 1 : Knowledge base.

Values different from 0 or 1 could be used to weight the
confidence to the rules. Fig. 1 gives the representation of the
fuzzy relation defined by the rule base where the product has
been used as t-norm and the limited sum has been used as
t-conorm.
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Figure 1. Fuzzy relation

Using the sum-product composition operator for symbolic

fuzzy inference (4), the description 0

~
Y  is easily computed for

all )(YB j B∈  as a vector matrix product:

∑
≤≤

Φ=
ni

jiij BAAXBY
1

00 ),()()( (7)

If more than one variable occurs in the antecedent of the rules,
the input description is defined in the cartesian product of the
input descriptor sets [Babuska 96].

The fuzzy relation concept is well adapted to diagnosis task as
that amounts to saying that the decision of a fault is related to
prototype situation of the residuals. Between prototype
situations, the fuzzy relation interpolates the conclusion.

In FDI applications, input descriptions are generally
computed from numerical residuals. Each term in the output



descriptor set is associated to a fault and output descriptions
are partial conclusions on fault occurrence from information
given as input. Final conclusions are computed by aggregation
of partial conclusions as in multi-criteria decision making.

2.3 Multi-criteria decision-making

The general problem of multi-criteria decision making can be
formalised as follows. Let F∈jF  the set of M alternatives for

solution and C∈iC  a set of N criteria carrying some

judgement about the occurrence of each alternative. The
decision problem consists in choosing the “best alternative”

0F  from the information contained in the criteria

[Zimmermann 96].

Fuzzy methods for multi-criteria decision making assume
criteria as flexible constraints on the alternative set,

represented by the description iC
~

. The membership function

value )( ji FC  represents the judgement of alternative jF

given by the criterion iC .

In FDI applications, alternatives for solution are the modelled
faults. In a faulty situation, the most suitable fault 0F  must be

isolated from the criteria carrying symptom information. The
proposed framework for FDI decision is summarised in
Figure 2.

 

Figure 2 : The decision procedure.

The attributes ix  represent numerical symptoms (generally

residuals) whose symbolic descriptions, denoted by iX
~

, are

computed by the corresponding fuzzy partition )(XiA . Each

criterion iC
~

 represents a partial conclusion computed from

each symptom description by symbolic fuzzy inference as:

iii XC Φ= ~~~
o (8)

Otherwise, symbolic symptoms can be expressed directly as

fuzzy descriptions iX
~

. Moreover, expert advice, represented

as additional criteria iC
~

, can also be integrated in this

framework.

The solution to the decision problem is carried out in two
steps:

• the aggregation step, to aggregate the partial conclusions
for each fault

• and the decision step, to decide the most suitable fault.

 The aggregation step results in the fuzzy description D
~

,
defined on the alternative set F, whose membership function
is computed by:

 ( ) F∈∀= jjNjj FFCFCFD ,)(,),()( 1 Kh  (9)

 where [ ] [ ]1,01,0: →Nh  is an aggregation operator, whose
properties depend on the semantics in a given application: a
conjunctive aggregation means that all criteria must be
satisfied while a disjunctive aggregation means that at least
one criteria must be satisfied.

 The final decision 0F  is computed by a decision rule, usually

the maximum rule:

 )]([max)(/ 00 j
F

FDFDF
j F∈∀

=  (10)

 Two approaches for the design of the proposed decision
procedure are presented in next section. In the knowledge
based approach the symbolic rule base weights Φ(Ai, Bj) are
derived either from the model structure if it is available or
from expert knowledge if it exists. In the supervised learning
approach, the rule base weights are learned from experimental
data.

 3. The decision procedure design

 3.1 The knowledge based approach

 A fuzzy partition is defined for each residual from expert
advice. The symbolic terms of each fuzzy partition are defined
in order to represent qualitative values for the description of
the corresponding symptom. The symbolic symptom values
generalise the numerical values whose fuzzy descriptions are
computed from the corresponding fuzzy partition.



 For each residual the knowledge is translated into tables as
Table 2. In such a table, the rows are associated to the
symbolic terms in the symptom’s fuzzy partition and the
columns are associated to the faults F∈jF . The values in the

table represent the influence of each symbolic value in the
occurrence of each fault.

 iΦ~  1F  K  MF

 1iA  ),( 11 FAiiΦ  K  ),( 1 Mii FAΦ

 M  M  O  M

 
iinA  ),( 1FA

iiniΦ  K  ),( Mini FA
i

Φ

 Table 2 : Knowledge base.

 The weights are defined using the model structure and the
residual sensitivity to the fault. As an example, let us suppose
that the residual is described by three symbolic terms
{ }NZMZ ,, ; where Z means zero, NZ means that the residual

is clearly positive or negative, and M means that the residual
is slightly affected. When a residual is less sensitive to fault
F1 than to fault F2, the weights related to symbolic terms
{ }NZMZ ,,  are chosen as follows:

• NZ : the two faults may have occurred thus the two
weights are chosen equal to 1. In this case, the knowledge
derives directly from the model structure.

• Z : neither fault has occurred so the two weights are
chosen equal to 0. In this case, the knowledge derives
directly from the model structure too.

• M : the weights are chosen according to the residual
sensitivity to the faults. A high sensitivity of the residual to
F2 leads to a low confidence in the occurrence of the fault
because a small fault can lead to a residual value M, thus
the weight of the rule relative to F2 is chosen close to 0. In
contrary if the residual is less sensitive to the alternative
(F1), the confidence to the fault occurrence is high. The
weight is then chosen close to 1. Table 3 shows an
example. In this case the knowledge is derived from the
sensitivity analysis.

iΦ~ 1F 2F

Z 0 0

M 0.8 0.2

NZ 1 1

Table 3 : Knowledge base example.

The table associated to each symptom is used as rule weights
of the symbolic rule base used to compute partial conclusions
by fuzzy inference (8).

Expert knowledge linked to the residual sensitivity to the fault
may be difficult to acquire if the system analytical model is
unknown or very imprecise. Then the weights of the
knowledge base can be computed in a supervised learning
approach.

3.2 Supervised learning approach

Consider a data set S where each sample Ss ∈  is composed
by a pair { }ssx ϕ, , where sx  is the attribute vector of each

residual and sϕ  represents its membership to each fault

F∈jF . In model based FDI of dynamical systems, each

sample Ss ∈  represents a time instant and the attribute vector
is the residual vector. In the following, symbolic symptoms
are not considered.

Fuzzy partitions are defined as in the knowledge based
approach for each residual in order to compute residual
descriptions. In the supervised learning approach, rule base
weights can be estimated by solving a least square
optimisation problem.

Consider the matrix iU , where each line contains the vector

isX ]
~

[  representing the description of residual i corresponding

to a time sample Ss ∈ . The corresponding rule weight matrix

iΦ
~

 can be estimated by solving the following linear system of

equations:

VU =Φii

~ (11)

where the matrix V  contains, in each line, the vector sϕ
representing the membership of the corresponding sample

Ss ∈  to each fault F∈jF .

The rule base weights obtained by (11) are approximations
and can lie outside the interval [0,1]. Rule weights must thus
be normalised by a linear transformation.

The linear system (11) can be numerically ill-conditioned. By
analogy to some neural networks [Evsukoff 98], residual
descriptions in the data set can be concatenated to form the

matrix [ ]NUUZ L1= . The augmented matrix weights Θ
~

can thus be estimated by solving the following linear system:

VZ =Θ
~ (12)

The rule base weights for each attribute can be computed
from the result of (12). By multiplying both sides of (12) by

*V , the pseudo inverse of V :

[ ] 1UVUV =Θ∗∗ ~
1 NL (13)

where 1 is the corresponding identity matrix.



By multiplying both sides of (11) by *V :

[ ] 1UV =Φ∗
ii

~
. (14)

From (14), (13) can be rewritten as:

[ ] 1=ΘΦΦ ∗∗ ~~~
1 NL (15)

where ∗Φ i

~
 is the pseudo inverse of iΦ~ . The rule base weights

iΦ~  for each attribute can thus be computed directly from Θ
~

by solving (15).

4. The application

The decision approaches presented above are applied in FDI
of a multi-input multi-output system: a winding machine
sketched in Figure 3.

M1 M3M2

u1(k) u3(k)u2(k)

Ω1(k)

Ω2(k)

Ω3(k)

T1(k) T3(k)

Figure 3 : The winding machine.

The system is composed of three electric motors M1, M2 and
M3, controlled by the input vector

[ ]T
321 )()()()( kukukuk =u . The measured outputs

[ ]T
321 )()()()( kTkkTk Ω=y  represent respectively the

measured strip tensions, and the speed developed by the
motor M2.

A model of this system has been identified by standard
identification techniques [Weber 98]. The output error parity
equation based on such model can be written as:
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where )(kr  is the residual vector and )(ˆ qG  is the identified

model.

Only sensor and actuator faults are considered. The faults are
represented by the set { }61 ,, FF K=F , where { }321 ,, FFF

correspond to sensor faults and { }654 ,, FFF  correspond to

actuator faults. The incidence matrix [Gertler 90] derived
from the model (16) is written as:
















=Ξ

110100

010010

011001

(17)

where lines are associated to residuals and columns are
associated respectively to sensor and actuator faults.

a) Knowledge derived from the model structure:

A normalised and orthogonal fuzzy partition is defined for
each residual in order to compute residual descriptions by the
symbolic terms { }NZZ , , where Z means that the residual is

zero and NZ means that the residual is positive or negative.

In the knowledge-based approach, the rule base for each
residual is derived directly from the incidence matrix (17) by
taking lines as the influence of NZ residuals to faults
occurrence. The influence of Z residuals to faults occurrence
are the complement of the influence of NZ residuals, such that
the rule weight matrices are given by:









=Φ

011001

100110~
1









=Φ

010010

101101~
2









=Φ

110100

001011~
3

(18)

From the incidence matrix (17), it can be seen that a sensor
fault )(1 kT∆  cannot be distinguished from an actuator fault

)(1 ku∆  as so as for )(3 kT∆  and )(3 ku∆ : the first column is

equal to the fourth column as so as for the third and sixth
columns.

b) Knowledge derived from the residual sensitivities:

The residuals computed in (16) allows to use the static gain of

the parallel models )(ˆ qG to define the residual sensitivities:
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05.118.00

01.10

029.078.2

)(ˆ
1q

qG (19)

and the residual sensitivities to sensor faults are equal to 1.

The knowledge base is written using three symbolic terms
{ }NZMZ ,, .
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2.08.002.000

001011
~

3

(20)

c) Knowledge derived from data:

A data set generated by simulation of each one of the
modelled faults is used to compute estimations of the rule
weight matrices. The results obtained by solving the rule base
weights for each input (eq. (11)) are the following:









=Φ

00.033.032.000.000.036.0

08.000.000.008.008.000.0~
1









=Φ

00.062.000.000.047.000.0

07.000.007.007.001.007.0~
2









=Φ

33.007.000.068.000.000.0

03.000.007.000.007.007.0~
3

(21)

By the concatenation of input descriptions as (12) the solution
of the system (15) is given by:
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00.031.032.000.000.032.0

04.006.002.003.007.002.0~
1
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=Φ

00.050.000.000.050.000.0

03.005.003.003.005.003.0~
2








 −
=Φ

30.022.000.030.000.000.0

01.006.004.000.007.004.0~
3

(22)

It can be seen that both rule-based weights computed by
supervised learning approach reduce to the ones obtained by
the knowledge-based approach after normalisation. Also, the
first column weights is very close to the forth column weights
as so as for the third and sixth columns.

5. Conclusion

This work has presented two approaches to derive decision
procedures for FDI application. In the knowledge-based
approach, fuzzy rules are defined directly from model
structure represented as an incidence matrix, and the rules
weights are defined using symptom sensitivities. In the
supervised learning approach, the model structure can be

derived from a data set. The symbolic to numeric integration
provided by the proposed approach allows to integrate easily
symbolic symptoms into the decision procedure. The unified
representation adopted here allows the cohabitation of the
knowledge based approach and the supervised learning
approach within the same decision procedure. The application
to the winding machine shows that the supervised learning
approach achieves the correct model structure. This approach
can be used to derive automatically decision procedures for
FDI when black box models are used.
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