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ABSTRACT

On line parameter estimation reflects the procést®,sbut physical parameters are not usually yeasiimated in the case of complex
systems. This paper presents a sensor or actuaitirdetection method based on a classical trarfgfestion parameter estimation
algorithm in discrete time domain. Redundant digctihe transfer functions are used to improve &stdual generation. The increase of
information by redundant equations allows the gatiem of a signature table. The fault detection eadation (FDI) is achieved by the

exploitation of this table, with a distance compiota

Keywords: Fault detection, diagnosis and isolation; par@mestimation; actuator and sensor faults; fuzzysiten making.

1. INTRODUCTION

During the last two decades many fault diagnosithous
based on dynamic models have appeared in responte t
increasing complexity of process supervision [4]ucls
methods are generally based on:

« state estimation [9],

« parity space and parity relations [2],
 parameter estimation [5],

« causal graphs [8].

On line parameter estimation reflects the proceste sand
therefore might allow FDI. For not too complex peeses,
continuous time parameter estimation makes it ptessio
come back to physical parameters [5]. A direct Kedge of
the different system elements simplifies the fadilignosis
task. Nevertheless, it is very difficult to obtaime physical
model of a complex process, because physical pacasnare
not usually precisely known. The aim of this woskto test
classical parameter estimation methods as a diagrosl.
Classical estimation methods are well known, andbeafound
in the control engineer’s toolboxes. In this casgng discrete
transfer function representation, the parametensnata be
linked directly to physical properties, and the graeter
estimation is followed by a classification techréga order to
achieve the FDI.

This paper is organised as follows: section twos@nés
briefly the winding system that has been used alicgpion; in
the section three the symptom generation technigue
proposed. Extended Least Square estimation of eremde
model and a tracking model allows the residual oaon.
Afterwards, residual fuzzification is detailed asresidual
evaluation task, and fuzzy aggregation leads tostmeptom
generation. Section four presents the redundantsfea
function generation which allows the elaboration thie
signature table and fault isolation technique usifigtance
computation. Finally, the application results om twinding
system simulation are presented and commented dtiose
five, before concluding remarks.

2. THE WINDING SYSTEM MODEL

The approach presented in this paper has beenedppli
the pilot plant represented in figure 1. This wirglisystem is
composed by three DC-motors {MM,, Mj). Their angular
velocities are represented hQ;, Q, and Qs which are
respectively controlled by;uu, and 4. The angular velocity
Q,, and the strip tensions; Tand & between the reels are
measured respectively by tachometers and tensiversnd he
angular velocitie®2;, Q5 are not measured.

The model can be written as a linear discrete state
representation wher®;, i=1, 2, 3, and I, Tz are the state
variables [3] as follows:

Ta(K)=ary. To(K-1)+br1y2. Qa(K-1)+bryy1. Q1 (k-1) )
Qy(K)=a,2.Qo(K-1)+ho71. Ta(K-1)+ho73 To(k-1)+ 2

byouz Up(K-1)
Ta(K)=ars. Ta(K-1)+brayz. Qa(K-1)+brays Qs(k-1) (3
Q3(K)=a3.Qa(k-1)+hygrs Ta(K-1)+hy3u3 Us(k-1) 4)
Q;(K)=ay1.Qa(K-1)+hy172. Ta(K-1)+hy1 41 Uy (K-1) (%)

Q1 Q, Q3

T1 Ts
M1 M2 M3
Uz uz u3

Figure 1: Winding system.

The parameters;and  are not known a priori. In a transfer
function representation, putting (5) into (1) arty {nto (3)
allows to eliminate the state variabl@s andQ5; which are not
measurable. A parameter estimation allows to catecthat the
gains of the transfer functions relatifilp to T, and to § are



negligible. Three simplified input-output modelse athus
defined as follows:

ALY Ta(K)=B1(q™).Q(k-012)+B1a(G™). Us(K-0 1) (6)
AAT).Q2(K)= Boudd™). Up(k-0ay) (7)
A7) Ta(K)=B3Aq™).Q(k-032)+Baus 4 ™). Us(K-03ud) 8)

3. SYMPTOM GENERATION
Parameter estimation

Using AutoRegressive Moving Average with eXternal
input (ARMAX) structure, parameters of equations (8) and
(8) can be estimated by Extended Least Square (ELS)
algorithm [7].

An on-line parameter estimation with a long timeitan
estimator allows to follow the slow variations ofet
parameters. This kind of variations are not considas faults,
but caused by the ageing of the process. For thalimg
system example, the reel inertia is a functioneafl diameter,
thus winding system is a time varying parametetesgswith
slow variations. The long horizon estimates aremaed by an
on-line ELS algorithm with a forgetting factor edoa 1. This
algorithm results in a reference model parametéimate

vector Eg, of the model h (h=1...3) (e(@)).

Eg = [eq OH (9)
wherep” is the number of parameters for each model h.

A second estimator based on a short time horidlowsto
follow fast variations considered as symptoms éduat. This
estimator allows the estimation of the tracking eidd]. The
short horizon estimator is computed by the same ELS
algorithm with, initially, a smaller forgetting faar, and
produces the tracking model parameter estimateowrdes; of

the model h (eq. (10)). The tracking capability eleghs on this
initial forgetting factor choice.

ss<[a . g @)
The algorithm used to achieve the different esiionat is

computed by orthogonal transformation that allowsod
numerical properties [10].

In order to avoid the problems due to non persisten
excitation, the forgetting factors of the trackimpodel
estimators are adapted on line in relation with ¢bedition
numberand theprediction error

¢ A condition numberincrease means that the excitation is
poor. In this case the forgetting factor is incezh one.

« A prediction errorincrease means a discrepancy between
the system and the model. This situation is clafigithe
symptom of a fault. In this case, the forgettingtda is
changed to the initial forgetting factor.

Residual generation

The residuals are computed by the difference betwee
the long horizon estimate®} and the short horizon

estimatess

M=0-g (11)

The residual mean is:

LB =Py — (12)

If no fault occurs the residual mean should beelos
to zero, because ELS algorithm allows non biased
parameter estimation. But the residual variancesdép
on correlation hypotheses. If estimates are naetaied
(the faulty case) the variance is defined by:

o’ =0,"+0g,’, (13)

and in the case of a correlation betwepand g, (the

fault free case) residual variance is computed by:

quzaq2+agz—2EE{e;m} (14)
2

g’z (aq - a@)

where @'i and 6{ represent the centered estimates.

Thus the residual variance is bounded by (13) dmy. (
When the residual is close to zero, the residualanae is
close to (14) and if the residual is positive thba residual
variance is close to (13).

Residual fuzzification

In order to bypass the unknown residual probability
distribution, fuzzy set theory is used [11].

Two fuzzy sets are defined i, the universe of discourse
of absolute values of residuar$‘; Z for ZERO, and P for
POSITIVE. The fuzzy set Z is the complement of Ry(Fe 2).

4.. Unknown probability density

A

I I

1 -\
0.606 |.f ..\

=
ZERO POSITIVE

Membership functior

v

Figure 2: Residual fuzzification.

The membership functions are dynamically adapted to the
residual variance which is chosen by linear interpolation
between the equations (13) and (14), depending on the
POSITIVE membership degree computed at the previous step.

G2(K) = (0 (K) = 73 (K)* = 44 (|5 (k=1
(0% (K) - 03 (W) = (05 (K + ()}

Thus the membership functions to the two sets are defined
by:

(15)



(16)

(hmm—mmlmao|umkamxm
AT = T o8, (0 - a8, (19
11, () =1- g (Jr, (0]

where a and b are chosen to tune sensitivity (for trapdzoida
approximation of a gaussian function, a=0.35 and b=2).

Aggregation

For actuator or sensor fault detection and isolation, the
relevant information is global perturbationof all parameter
estimates Es;. Note that estimate vectorsE§) have not

necessarily the same dimension.

Thus a global perturbation degree is computed for each
vector Es;, using residual membership degrees to the fuzzy
sets. The symptom vectgf representing the state of the model
h, is defined on the univerSEfh which is the cartesian product
of the residual universes of discourse, whefe is the
dimension of Es; .

r'.]  wheres, [ o 17)

Two fuzzy sets are defined on t@fh universe: Globally

Perturbed (GP) and Not Perturbed (NP). The membership
degrees ofs, to the sets GP and NP are computed by
aggregation techniques of the residual fuzzy descriptions.

Several kinds of aggregation functions can be proposed
[11]. A T-norm aggregation is not enough sensitive becduse
one of the elements is near to zero then the aggregatidhises
near to zero. A T-conorm aggregation is very sensitivauss
if just one elements is near to one, then the result will be near
to one. Thus T-norm and T-conorm are not suitable opsrato
A mean aggregation operator seems to be a good compromis
between a T-norm and a T-conorm.

Membership functions to GP and NP sets are thus defined
by:

(8= 5 3 ] 18)
Hhe(S0) = 1= Ugp(S)
Har(Sh)

He(Ir")
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Figure 3: GP membership function (2D example).

As an example Figure 3 represents GP membership
function, using just two residualslr1h| and |r2"|. This

membership function is defined da? universe, and computed
by (18).

4. FAULT ISOLATION USING REDUNDANT
TRANSFER FUNCTION

Signature table generation

When a sensor or actuator fault like a bias occurs, all the
estimates of a model sensitive to the fault, are perturbetbdue
the ARMAX structure. Thus, only the transfer functions
uncoupled to the faulty measurements or inputs can be
estimated without perturbation of their parameters.

In a signature table called;(d,h) (or diagnostic matrix [6])
the vectors of estimatesEs perturbed by a fault are
represented by ‘1’, and those not affected are repeddiy
‘0’. H columns are linked to models h (H=3 in)DThe rows
represent the fault signatures respectively for a fault,f7,

Ts, Uy, W, and Y. Each fault signature is a binary vector noted
Sg, (Table 1).

D, Es Es Es
Sor1 1 0 0
Sthy 1 1 1
Sors 0 0 1
Sdu 1 0 0
Sde 0 1 0
Sd;3 0 0 1

Table 1

As shown in table 1, the signature of a faultn(Sac,)
includes all other signatures. This occurs a problem for the
isolation of simultaneous faults. But for actuator faults, table 1
shows good isolation property (2959, and Sga).

The use of additional transfer function estimation allows to
extend the signature table 1, by adding new symptomanit c
be done using eq. (6), (7) and (8) as parity relationsf&ting
eg. (7) into (6) a model that links, To w, and y is obtained;
with this model, T and Q, are no more coupled. The
parameters estimated in this way will not be sensitive to the
faults onQ,. The same procedure can be applied for (8) and (7)

and so, the vector of estimateBs and Es can thus be
obtained from:

All(q-l) Ta(k)= Bllu2(q-l) Ap(K-Chg )+ Bllul(q-l) Ag(k-di)  (19)
Az(0). Ta(K)=Baaud ™). Un(K-O33u)+ Baaud ™). Us(k-dad  (20)

After off line identification, the gain betweeny @nd y (in
eq. (20)) is proved to be very small thus equation (2@stthe
following form:

As(0). Ta(K)=Baaud0 ™). Ua(K-O33:)+ Baaud ™). Us(k-dad  (21)



The signature table dn,h), is represented in table 2 using
the vector of estimate€s;, Ess and Es’. Table 2 shows a
well structured sub-matrix to isolate sensor faults.

Thus for actuator fault isolation, table 1 is well
appropriated; for sensor fault isolation table 2 is well
appropriated. If actuatoand sensor faults are taken into
account, it is interesting to use all transfer functions as it is
shown in table 3. Faults on TT3) and y (us) are unfortunately
still not isolated.

D, Es; ES ES

Sor
Sth?
Sors
Sdu
Sde
Sais

O|lkFRr|([FLP]|]O|O|F

0
1
0
0
1
0

Rr|lO|lO|F,|O|O

Table 2

D Es ES ES ES

m
M,

Sgr1
Sthy
S0rs
Sdn
Sde
Sdis

RP|O|O|(FR,|HF]|O
O|kR,|FP|O|O|R
R|O|O|RL,|O|O

0
1
0
0
1
0

O|O|rRr|O|FR|K

Table 3

Isolation function

The vector S of GP membership degrees is defined as:
S = lgp(Sy) v HgplSy)] (22)

If this vector is close to zero, there is no fault detected.
Otherwise a decision procedure will try to isolate the fault.

The isolation function notedr (S, Sg) is achieved
comparing S to the signatures ,Sdt has to measure the
similarity between the fault signatures and S. This similarity
can be determined by a distance computation.

Figure 4 gives an example for two models, and three faults.
(S vector and fault signatures are represented in a two
dimensional space.)

The distance between two vectord=[a;...aq] and
B=[b;...by] in the H dimensional spac@ takes the general
form [11]:

(la, -’ (23)
where g>0.

if g=1, (23) defines the Hamming distance betw&emdB.

Using the complement of the Hamming distance allows the
generation of the isolation functi¢h(S, Sg):

Fi(S56) =147 It (5)~ DI ) (24)
such that(S, Sg) 0J[0,1].

Model 2
4 Sw(1,1)
[ ]

1% sa(01) -

S(0.7,0.2) 4 ; So(1,0)

. s

A4

C 1

Y
»

Model 1

Signature table is defined by the matrix :
01

D(n,h)={1 O
11

for 2 models (columns) and 3 faults (lines)

Figure 4: Signature representation in the model spze.

Considering a fault n, only symptorsscorresponding to a
"1" in the fault signature vector ggmay be detected as
Globally Perturbed and other symptoms must be detected as
Not Perturbed. But for simultaneous faults, the vector S is
composed by the superposition of the different fault efféats
fact, S must be compared to the logical OR between the
different signatures of simultaneous faults. Thus (24) &l us
only for single fault.

In the multiple fault case, the idea is to calculate the
distance between S and Stp a sub-spacdl excluding
insensitive symptoms [10], by excluding dimensions linked to
the columns of the fault signature,Sghich are equal to zero.
Thus the isolation function defined by (24) is changed to:

l H
F|(S! Sg):l_WZ{I:uGP(Sn)_ [th |unh} (25)
h=1
whereW, is the number of elements D(n#D.
5. APPLICATION

The analysis of the above described method was done with
a system simulator and using the redundant signature table
(Table 3).

The inputs w U, and y are step signals at sample 50, 100
and 150 and the sampling period is equal to 0.1s. Thel $@na
noise ratio was fixed to 31 dB.

Sensor fault

The fault was simulated as a 10 % bias on the séhsat
time 300 (Figure 5).
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Figure 5: Inputs and measurements around the operéaig
point.
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Figure 6: Es estimates and associated residual evolution.
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Figure 7: Es, estimates and associated residual evolution.

Figure 6 presents the evolution of one of the parameter
estimates of the model 2, eq.(7). This estimate is affected by
the bias onQ,, thus the residual is POSITIVE. Figure 7
presents an estimate of model 4, eq. (19). The shortomoriz
parameter is not affected by the bias on se@sothus the
residual is ZERO.

The vector S is computed with the membership degrees to
Globally Perturbed of the different models (Figure 8). A
comparison between S and the different signaturgsaigws
the detection and isolation of the fault. Figure 9 presents the
isolation functions related to table 3(%,Sgy,) (25) is greater
than 0.5, 50 sampling periods after the fault occurrencs, th
the fault is isolated.

No fauli Fault onQ,
Her(S) o5 :
0
1 J ! T T T T
Mor(®) | Lo ﬂ ------ T I
o i il i i i i
1 T T T T T T
e s e
N 0 i ; ;
0
! 5 1 L T
Her(Ss) osl....... OO SO ROt SRR ISP SOOI o “
. N R R S R 1
1 T T T T T T
Her(Ss) oo L N S -
. L ommd )
0 100 200 300 400 500 600 700 800
k'™ sampling period

Figure 8: Membership degree oF, to the sets GP.
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Figure 9: Evolution of the isolation functions for £nsor
fault.

Actuator fault

The fault was simulated as a 50 % bias on the actugtor u
at time 300 (Figure 10).

Figure 11 presents the evolution of one of the parameter
estimates of model 1, eq. (6). The short horizon paranseter
not affected by the bias on actuator Thus the residual is
ZERO. Despite the estimate variance increase after sampling
time 400 (caused by non persistent excitation), the residual
fuzzification is correct because dynamic membership fumstio
adapted to the estimate variance are used (as explained in
section 4). Figure 12 presents a parameter estimate of Fhode
eg. (19), this estimate is affected by the bias gnthus the
residual is POSITIVE.

Figure 13 presents the isolation functions. Isolation
function R(S,Sgy) is 0.5, 20 sampling periods after the fault
occurrence, thus the fault is quickly isolated. But thereadog
of false detections due to the non persistent excitation.
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Figure 11: Eg estimates and associated residual evolution.
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Figure 12: Es, estimates and associated residual evolution.

6. CONCLUSION

This paper proposes a method for the fault detection and
isolation of a bias on sensors or actuators based on g@i@ram
estimation. A classical identification method is used to estimate
discrete time transfer function parameters. Several models ar
used for the same system, linking outputs directly to inputs or
to inputs and other outputs. The use of estimates redundancy
has allowed the generation of a decision procedure fdr fau
isolation. This decision uses fuzzy sets to support the
aggregation of symptoms on each estimated parameter and a
Hamming distance for classification of symptoms in the
signature space.
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