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ABSTRACT  

On line parameter estimation reflects the process state, but physical parameters are not usually easily estimated in the case of complex 
systems. This paper presents a sensor or actuator fault detection method based on a classical transfer function parameter estimation 
algorithm in discrete time domain. Redundant discrete time transfer functions are used to improve the residual generation. The increase of 
information by redundant equations allows the generation of a signature table. The fault detection and isolation (FDI) is achieved by the 
exploitation of this table, with a distance computation. 

Keywords: Fault detection, diagnosis and isolation; parameter estimation; actuator and sensor faults; fuzzy decision making. 

 

1.  INTRODUCTION 

During the last two decades many fault diagnosis methods 
based on dynamic models have appeared in response to the 
increasing complexity of process supervision [4]. Such 
methods are generally based on:  

• state estimation [9], 

• parity space and parity relations [2], 

• parameter estimation [5], 

• causal graphs [8]. 

On line parameter estimation reflects the process state and 
therefore might allow FDI. For not too complex processes, 
continuous time parameter estimation makes it possible to 
come back to physical parameters [5]. A direct knowledge of 
the different system elements simplifies the fault diagnosis 
task. Nevertheless, it is very difficult to obtain the physical 
model of a complex process, because physical parameters are 
not usually precisely known. The aim of this work is to test 
classical parameter estimation methods as a diagnosis tool. 
Classical estimation methods are well known, and can be found 
in the control engineer’s toolboxes. In this case, using discrete 
transfer function representation, the parameters cannot be 
linked directly to physical properties, and the parameter 
estimation is followed by a classification technique in order to 
achieve the FDI. 

This paper is organised as follows: section two presents 
briefly the winding system that has been used as application; in 
the section three the symptom generation technique is 
proposed. Extended Least Square estimation of a reference 
model and a tracking model allows the residual generation. 
Afterwards, residual fuzzification is detailed as a residual 
evaluation task, and fuzzy aggregation leads to the symptom 
generation. Section four presents the redundant transfer 
function generation which allows the elaboration of the 
signature table and fault isolation technique using distance 
computation. Finally, the application results on the winding 
system simulation are presented and commented in section 
five, before concluding remarks. 

 

2.  THE WINDING SYSTEM MODEL 

The approach presented in this paper has been applied to 
the pilot plant represented in figure 1. This winding system is 
composed by three DC-motors (M1, M2, M3). Their angular 
velocities are represented by Ω1, Ω2 and Ω3, which are 
respectively controlled by u1, u2 and u3. The angular velocity 
Ω2, and the strip tensions T1 and T3 between the reels are 
measured respectively by tachometers and tension-meters. The 
angular velocities Ω1, Ω3 are not measured. 

The model can be written as a linear discrete state 
representation where Ωi, i=1, 2, 3, and T1, T3 are the state 
variables [3] as follows: 

T1(k)=aT1.T1(k-1)+bT1v2.Ω2(k-1)+bT1v1.Ω1(k-1) (1) 

Ω2(k)=av2.Ω2(k-1)+bv2T1.T1(k-1)+bv2T3.T3(k-1)+   
bv2u2.u2(k-1) 

(2) 

T3(k)=aT3.T3(k-1)+bT3v2. Ω2(k-1)+bT3v3. Ω3(k-1) (3) 

Ω3(k)=av3.Ω3(k-1)+bv3T3.T3(k-1)+bv3u3.u3(k-1) (4) 

Ω1(k)=av1.Ω1(k-1)+bv1T1.T1(k-1)+bv1u1.u1(k-1) (5) 

M1 M3M2

u1 u3u2

Ω1
Ω2

Ω3

T1 T3

 

Figure 1: Winding system. 

The parameters aij and bij are not known a priori. In a transfer 
function representation, putting (5) into (1) and (4) into (3) 
allows to eliminate the state variables Ω1 and Ω3 which are not 
measurable. A parameter estimation allows to conclude that the 
gains of the transfer functions relating Ω2 to T1 and to T3 are 
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negligible. Three simplified input-output models are thus 
defined as follows: 

A1(q
-1).T1(k)=B12(q

-1).Ω2(k-d12)+B1u1(q
-1).u1(k-d1u1) (6) 

A2(q
-1).Ω2(k)= B2u2(q

-1).u2(k-d2u2) (7) 

A3(q
-1).T3(k)=B32(q

-1).Ω2(k-d32)+B3u3(q
-1).u3(k-d3u3) (8) 

3.  SYMPTOM GENERATION 

Parameter estimation 

Using AutoRegressive Moving Average with eXternal 
input (ARMAX) structure, parameters of equations (6), (7) and 
(8) can be estimated by Extended Least Square (ELS) 
algorithm [7]. 

An on-line parameter estimation with a long time horizon 
estimator allows to follow the slow variations of the 
parameters. This kind of variations are not considered as faults, 
but caused by the ageing of the process. For the winding 
system example, the reel inertia is a function of reel diameter, 
thus winding system is a time varying parameter system with 
slow variations. The long horizon estimates are computed by an 
on-line ELS algorithm with a forgetting factor equal to 1. This 
algorithm results in a reference model parameter estimate 
vector Esh

l  of the model h (h=1...3) (eq. (9)). 

Esh
l h

ph
h= 





Θ Θ1 ...  

where ph is the number of parameters for each model h. 

(9) 

A second estimator based on a short time horizon, allows to 
follow fast variations considered as symptoms of a fault. This 
estimator allows the estimation of the tracking model [1]. The 
short horizon estimator is computed by the same ELS 
algorithm with, initially, a smaller forgetting factor, and 
produces the tracking model parameter estimate vector Esh

s  of 

the model h (eq. (10)). The tracking capability depends on this 
initial forgetting factor choice. 

Esh
s h

ph
h= 





θ θ1 ...  (10) 

The algorithm used to achieve the different estimations is 
computed by orthogonal transformation that allows good 
numerical properties [10]. 

In order to avoid the problems due to non persistent 
excitation, the forgetting factors of the tracking model 
estimators are adapted on line in relation with the condition 
number and the prediction error. 

• A condition number increase means that the excitation is 
poor. In this case the forgetting factor is increased to one. 

• A prediction error increase means a discrepancy between 
the system and the model. This situation is classically the 
symptom of a fault. In this case, the forgetting factor is 
changed to the initial forgetting factor.  

Residual generation 

The residuals are computed by the difference between 
the long horizon estimates Θ j

h  and the short horizon 

estimates θ j
h : 

r j
h

j
h

j
h= −Θ θ  (11) 

The residual mean is: 
ρ ρ ρθrj j j= −Θ  (12) 

If no fault occurs the residual mean should be close 
to zero, because ELS algorithm allows non biased 
parameter estimation. But the residual variance depends 
on correlation hypotheses. If estimates are not correlated 
(the faulty case) the variance is defined by: 
σ σ σθrj j j

2 2 2= +Θ , (13) 

and in the case of a correlation between Θ j and θ j , (the 

fault free case) residual variance is computed by: 

{ }
( )

σ σ σ θ

σ σ σ

θ

θ

rj j j j j

rj j j

2 2 2

2
2

2= + − ⋅ ⋅

≥ −

Θ

Θ

Ε Θ* *

 

where Θ j
* and θ j

*  represent the centered estimates. 

(14) 

Thus the residual variance is bounded by (13) and (14). 
When the residual is close to zero, the residual variance is 
close to (14) and if the residual is positive then the residual 
variance is close to (13). 

Residual fuzzification 

In order to bypass the unknown residual probability 
distribution, fuzzy set theory is used [11]. 

Two fuzzy sets are defined in ℜ+ the universe of discourse 

of absolute values of residuals r j
h ; Z for ZERO, and P for 

POSITIVE. The fuzzy set Z is the complement of P (Figure 2). 

µZ µP

Membership functions

Unknown probability density

1

r j
h

a rj⋅ $σ

0.606

POSITIVEZERO

r j
h

b rj⋅ $σ

$σrj

 

Figure 2: Residual fuzzification. 

The membership functions are dynamically adapted to the 
residual variance which is chosen by linear interpolation 
between the equations (13) and (14), depending on the 
POSITIVE membership degree computed at the previous step.  

{ }
)σ σ σ µ

σ σ σ σ

θ

θ θ

rj j j P j

j j j j

k k k r k

k k k k

2 2

2 2 2

1( ) ( ( ) ( )) ( ( ) )

( ( ) ( )) ( ( ) ( ))

= − − −

⋅ − − +

Θ

Θ Θ

 
 (15) 

Thus the membership functions to the two sets are defined 
by: 



µ
σ

σ σ

µ µ

P j

j r j

r j r j

Z j P j

r k
r k a k

b k a k

r k r k

( ( ) ) min ,max ,
( ) $ ( )

$ ( ) $ ( )

( ( ) ) ( ( ) )

=
− ⋅

⋅ − ⋅





























= −

1 0

1  

 
(16) 

where a and b are chosen to tune sensitivity (for trapezoidal 
approximation of a gaussian function, a=0.35 and b=2).  

Aggregation 

For actuator or sensor fault detection and isolation, the 
relevant information is a global perturbation of all parameter 
estimates Esh

s . Note that estimate vectors (Esh
s ) have not 

necessarily the same dimension. 

Thus a global perturbation degree is computed for each 
vector Esh

s , using residual membership degrees to the fuzzy 

sets. The symptom vector sh representing the state of the model 

h, is defined on the universe ℜ+
ph

which is the cartesian product 

of the residual universes of discourse, where ph is the 
dimension of Esh

s . 

s r r sh
h

ph
h

h
ph

= ∈ℜ+[ ]    where 1 ...  (17) 

Two fuzzy sets are defined on the ℜ+
ph

universe: Globally 

Perturbed (GP) and Not Perturbed (NP). The membership 
degrees of sh to the sets GP and NP are computed by 
aggregation techniques of the residual fuzzy descriptions. 

Several kinds of aggregation functions can be proposed 
[11]. A T-norm aggregation is not enough sensitive because if 
one of the elements is near to zero then the aggregation result is 
near to zero. A T-conorm aggregation is very sensitive because 
if just one elements is near to one, then the result will be near 
to one. Thus T-norm and T-conorm are not suitable operators. 
A mean aggregation operator seems to be a good compromise 
between a T-norm and a T-conorm. 

Membership functions to GP and NP sets are thus defined 
by: 

µ µ

µ µ

GP h h P j

h

j

ph

NP h GP h

s
p

r

s s

( ) ( )

( ) ( )

=

= −
=
∑

1

1
1  

(18) 
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Figure 3: GP membership function (2D example). 

As an example Figure 3 represents GP membership 

function, using just two residuals r h
1  and r h

2 . This 

membership function is defined on ℜ+
2  universe, and computed 

by (18). 

4.  FAULT ISOLATION USING REDUNDANT 
TRANSFER FUNCTION 

Signature table generation 

When a sensor or actuator fault like a bias occurs, all the 
estimates of a model sensitive to the fault, are perturbed due to 
the ARMAX structure. Thus, only the transfer functions 
uncoupled to the faulty measurements or inputs can be 
estimated without perturbation of their parameters. 

In a signature table called D1(n,h) (or diagnostic matrix [6]) 
the vectors of estimates Esh

s  perturbed by a fault are 

represented by ‘1’, and those not affected are represented by 
‘0’. H columns are linked to models h (H=3 in D1). The rows 
represent the fault signatures respectively for a fault in T1, Ω2, 
T3, u1, u2, and u3. Each fault signature is a binary vector noted 
Sgn, (Table 1). 

 

D1 Ess
1  Ess

2  Ess
3  

SgT1 1 0 0 

SgΩ2 1 1 1 

SgT3 0 0 1 

Sgu1 1 0 0 

Sgu2 0 1 0 

Sgu3 0 0 1 

Table 1 

As shown in table 1, the signature of a fault on Ω2 (SgΩ2) 
includes all other signatures. This occurs a problem for the 
isolation of simultaneous faults. But for actuator faults, table 1 
shows good isolation property (Sgu1, Sgu2 and Sgu3). 

The use of additional transfer function estimation allows to 
extend the signature table 1, by adding new symptoms. It can 
be done using eq. (6), (7) and (8) as parity relations [3]. Putting 
eq. (7) into (6) a model that links T1 to u1 and u2 is obtained; 
with this model, T1 and Ω2 are no more coupled. The 
parameters estimated in this way will not be sensitive to the 
faults on Ω2. The same procedure can be applied for (8) and (7) 
and so, the vector of estimates Ess

4 and Ess
5 can thus be 

obtained from: 

A11(q
-1).T1(k)=B11u2(q

-1).u2(k-d11u2)+B11u1(q
-1).u1(k-d1u1) (19) 

A33(q
-1).T3(k)=B33u2(q

-1).u2(k-d33u2)+ B33u3(q
-1).u3(k-d3u3) (20) 

After off line identification, the gain between T3 and u2 (in 
eq. (20)) is proved to be very small thus equation (20) takes the 
following form: 

A33(q
-1).T3(k)=B33u2(q

-1).u2(k-d33u2)+ B33u3(q
-1).u3(k-d3u3) (21) 



The signature table D2(n,h), is represented in table 2 using 
the vector of estimates Ess

4 , Ess
2  and Ess

5 . Table 2 shows a 

well structured sub-matrix to isolate sensor faults. 

Thus for actuator fault isolation, table 1 is well 
appropriated; for sensor fault isolation table 2 is well 
appropriated. If actuator and sensor faults are taken into 
account, it is interesting to use all transfer functions as it is 
shown in table 3. Faults on T1 (T3) and u1 (u3) are unfortunately 
still not isolated. 

D2 Ess
4  Ess

2  Ess
5  

SgT1 1 0 0 

SgΩ2 0 1 0 

SgT3 0 0 1 

Sgu1 1 0 0 

Sgu2 1 1 0 

Sgu3 0 0 1 

Table 2 

D Ess
1  Ess

2  Ess
3  Ess

4  Ess
5  

SgT1 1 0 0 1 0 

SgΩ2 1 1 1 0 0 

SgT3 0 0 1 0 1 

Sgu1 1 0 0 1 0 

Sgu2 0 1 0 1 0 

Sgu3 0 0 1 0 1 

Table 3 

Isolation function 

The vector S of GP membership degrees is defined as: 

S = [µGP(s1) ,...,  µGP(sH)] (22) 

If this vector is close to zero, there is no fault detected. 
Otherwise a decision procedure will try to isolate the fault.  

The isolation function noted FI(S, Sgn) is achieved 
comparing S to the signatures Sgn. It has to measure the 
similarity between the fault signatures and S. This similarity 
can be determined by a distance computation. 

Figure 4 gives an example for two models, and three faults. 
(S vector and fault signatures are represented in a two 
dimensional space.) 

The distance between two vectors A=[a1...aH] and 
B=[b1...bH] in the H dimensional space ℑ takes the general 
form [11]: 

( | | )a bh
h

H

h
q q

=
∑ −

1

1

 

where q>0. 

(23) 

if q=1, (23) defines the Hamming distance between A and B. 

Using the complement of the Hamming distance allows the 
generation of the isolation function FI(S, Sgn): 

F S Sg
H

s D n hI n GP h
h

H

( , ) | ( ) ( , )|= − −
=
∑1

1

1

µ  (24) 

such that FI(S, Sgn) ∈ [0,1]. 

Signature table is defined by the matrix :

D n h( , ) =
















0 1

1 0

1 1

for 2 models (columns) and 3 faults (lines)

1

1

S(0.7,0.2)

Sg1(0,1)

Sg2(1,0)

Sg3(1,1)
Model 2

Model 10

 

Figure 4: Signature representation in the model space. 

Considering a fault n, only symptoms sh corresponding to a 
"1" in the fault signature vector Sgn, may be detected as 
Globally Perturbed and other symptoms must be detected as 
Not Perturbed. But for simultaneous faults, the vector S is 
composed by the superposition of the different fault effects. In 
fact, S must be compared to the logical OR between the 
different signatures of simultaneous faults. Thus (24) is used 
only for single fault. 

In the multiple fault case, the idea is to calculate the 
distance between S and Sgn in a sub-space ℑ’ excluding 
insensitive symptoms [10], by excluding dimensions linked to 
the columns of the fault signature Sgn which are equal to zero. 
Thus the isolation function defined by (24) is changed to: 

F S Sg
W

s D n h D n hI n
n

GP h
h

H

( , ) {| ( ) ( , ) |. ( , ) }= − −
=
∑1

1

1

µ    (25) 

where Wn is the number of elements D(n,h) ≠ 0. 

5.  APPLICATION 

The analysis of the above described method was done with 
a system simulator and using the redundant signature table  
(Table 3).  

The inputs u1 u2 and u3 are step signals at sample 50, 100 
and 150 and the sampling period is equal to 0.1s. The signal to 
noise ratio was fixed to 31 dB.  

Sensor fault 

The fault was simulated as a 10 % bias on the sensor Ω2, at 
time 300 (Figure 5). 
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Figure 5: Inputs and measurements around the operating 
point. 

kth sampling period

 
r1

2

Es Ess l
2 2 and 

θ1
2 

Θ1
2

Model 2

 a . σr1

 b . σr1

0.85

0.855

0.86

0.865

0.87

0 100 200 300 400 500 600 700 800

0.002

0.004

0.006

0.008

0.01

0 100 200 300 400 500 600 700 800

 

Figure 6: Es1 estimates and associated residual evolution. 
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Figure 7: Es4 estimates and associated residual evolution. 

Figure 6 presents the evolution of one of the parameter 
estimates of the model 2, eq.(7). This estimate is affected by 
the bias on Ω2, thus the residual is POSITIVE. Figure 7 
presents an estimate of model 4, eq. (19). The short horizon 
parameter is not affected by the bias on sensor Ω2 thus the 
residual is ZERO. 

The vector S is computed with the membership degrees to 
Globally Perturbed of the different models (Figure 8). A 
comparison between S and the different signatures Sgn, allows 
the detection and isolation of the fault. Figure 9 presents the 
isolation functions related to table 3. FI(S,SgΩ2) (25) is greater 
than 0.5, 50 sampling periods after the fault occurrence, thus 
the fault is isolated. 
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Figure 8: Membership degree of sh to the sets GP. 
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Figure 9: Evolution of the isolation functions for sensor 
fault. 

Actuator fault 

The fault was simulated as a 50 % bias on the actuator u2, 
at time 300 (Figure 10). 

Figure 11 presents the evolution of one of the parameter 
estimates of model 1, eq. (6). The short horizon parameter is 
not affected by the bias on actuator u2. Thus the residual is 
ZERO. Despite the estimate variance increase after sampling 
time 400 (caused by non persistent excitation), the residual 
fuzzification is correct because dynamic membership functions 
adapted to the estimate variance are used (as explained in 
section 4). Figure 12 presents a parameter estimate of model 4, 
eq. (19), this estimate is affected by the bias on u2, thus the 
residual is POSITIVE. 

Figure 13 presents the isolation functions. Isolation 
function FI(S,Sgu2) is 0.5, 20 sampling periods after the fault 
occurrence, thus the fault is quickly isolated. But there are a lot 
of false detections due to the non persistent excitation. 
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Figure 10: Inputs and measurements around the operating 
point. 
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Figure 11: Es1 estimates and associated residual evolution. 
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Figure 12: Es4 estimates and associated residual evolution. 

6.  CONCLUSION 

This paper proposes a method for the fault detection and 
isolation of a bias on sensors or actuators based on parameter 
estimation. A classical identification method is used to estimate 
discrete time transfer function parameters. Several models are 
used for the same system, linking outputs directly to inputs or 
to inputs and other outputs. The use of estimates redundancy 
has allowed the generation of a decision procedure for fault 
isolation. This decision uses fuzzy sets to support the 
aggregation of symptoms on each estimated parameter and a 
Hamming distance for classification of symptoms in the 
signature space. 
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Figure 13: Evolution of the isolation functions for actuator 
fault. 
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