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1 Application on the benchmark winding process for IAR diagnosis group 

Abstract 

On line parameter estimation reflects the process state, 
but physical parameters are not usually easily estimated in 
the case of complex systems. This paper presents a sensor 
or actuator fault detection method based on a classical 
transfer function parameter estimation algorithm in 
discrete time domain. Redundant discrete time transfer 
functions are used to improve the residual generation. The 
increase of information by redundant equations allows the 
generation of a signature table. The exploitation of this 
table, achieved by a distance computation, allows the fault 
detection and isolation (FDI). 

1. Introduction 

During the last two decades many fault diagnosis 
methods based on dynamic models appeared in response to 
the increasing complexity of process supervision [5]. Such 
methods are based on:  

•state estimation [1] [9], 
•parity space [3], 
•parameter estimation [6]. 

On line parameter estimation reflects the process state 
and therefore might allow fault detection, isolation and 
identification. In this way the continuous-time estimation 
technique arouse an increasing research for diagnosis. For 
processes which are not too complex, the continuous time 
parameter estimation, makes it possible to come back to 
physical parameters. We can have a direct knowledge of 
the different system elements so that the fault 
identification becomes simplified. Nevertheless, in most 
cases, it is very difficult to obtain the physical model of the 
process, because physical parameters are usually not 
precisely known, particularly for complex systems. Thus, 
the aim of this work is to test the classical parameter 
estimation methods (usually found in the control 
engineer’s toolboxes) as a diagnosis tool. In this case, 

parameter estimation is followed by a classification 
technique (based on additional knowledge on the process) 
in order to achieve the fault identification. 

This approach has been applied to the pilot plant 
represented in figure 1. This process is proposed as an 
experimental benchmark, so that the results and the 
methodology can be compared with the other approaches 
proposed by different members of the IAR diagnosis 
group. 

The system is composed by three DC-motors (M1, M2, 
M3). Their angular velocities are represented by Ω1, Ω2 
and Ω3, which are respectively controlled by u1, u2 and u3. 
The angular velocity Ω2, and the strip tensions T1 and T3 
between the reels are respectively measured by 
tachometers and tension-meters. The DC-motors M1 et M3 
allow the winding or unwinding of the strip but angular 
velocities Ω1, Ω3 are not measured [4]. 
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Figure 1: Winding system 

This paper is organised as follows: the first section 
presents the parameter estimation technique that will be 
used; in the second section, the winding system model is 
exposed. Afterwards, the redundant transfer function 
generation which allows the elaboration of the signature 
table is detailed. The fifth section presents the residual 
analysis, and an indicator for the fault status of the sensors 
or actuators is shown. Finally, simulation results are 
presented before the concluding remarks. 
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2. Parameter estimation method 

In this section the Extended Least Squares (ELS) 
method in the case of the MISO ARMAX modelling with I 
inputs (see equation (1)), is described [8]. 
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Noting na, nbi and nc the degrees of the polynomials A, Bi 
et C the eq. (1) can be written as: 
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Supposing N+na observations and I=1 in order to 

simplify the notation, the above relation can be written in a 
matrix notation as: 
Y X= ⋅θ  (3) 
such that: 

Y=[y(k) ... y(k+n) ... y(k+N) ]T, is the output vector 
θ=[a1 ... ana  b1... bnb  c1... cnc]

T, is the parameter vector 
and: 
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is the observation matrix where $( )e k  are the noise 
estimates. 

 
The prediction error ε(k) is written as: 
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(4) 

 
The aim of the least squares method is the 

minimisation of the euclidean norm of the prediction error, 
J. The solution $θ , is thus given by the solution of the 
following minimisation problem: 
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An orthogonal factorisation is used in order to avoid 

the numerical instability problems [2]. 
Given R as follows: 
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there is a matrix Q such as QT = Q-1 and M Q R= ⋅  is an 
upper triangular matrix in the form: 
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The solution of the minimisation of the quadratic 

criterion J (5) is given by:  
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The variance of the parameters is thus computed as: 
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and the variance of the prediction error is estimated by: 
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where p represents the number of the estimated 
parameters. 

 
The on-line implementation of this method is trivial; 

we can change M by multiplying (7) by a forgetting factor 
λ<1. Knowing the parameters ai, bi and ci, at time k, the 
noise ê(k) is estimated by (2). The new observations are 
added to the last line of M and N is increased by 1, for 
each iteration. 

 
If R is replaced in (6) by M, the above method can be 

used to compute the new parameters at time (k+1). 



3. The winding system model 

The model can be written as a linear discrete state 
representation as follows: 

 
T1(k)=aT1.T1(k-1)+bT1v2.Ω2(k-1)+bT1v1.Ω1(k-1) (11) 
Ω2(k)=av2.Ω2(k-1)+bv2T1.T1(k-1)+bv2T3.T3(k-1)+    

bv2u2.u2(k-1) 
(12) 

T3(k)=aT3.T3(k-1)+bT3v2. Ω2(k-1)+bT3v3. Ω3(k-1) (13) 
Ω3(k)=av3.Ω3(k-1)+bv3T3.T3(k-1)+bv3u3.u3(k-1) (14) 
Ω1(k)=av1.Ω1(k-1)+bv1T1.T1(k-1)+bv1u1.u1(k-1) (15) 

 
The parameters aij and bij are not known a priori. The 

measurements Ω1 and Ω3 are not available and thus, in a 
transfer function representation, putting (15) into (11) and 
(14) into (13), we can obtain another multivariable model 
described as follows: 

 
A1(q

-1).T1(k)=B12(q
-1).Ω2(k-d12)+B1u1(q

-1).u1(k-d1u1) (16) 
A2(q

-1).Ω2(k)=B21(q
-1).T1(k-d21)+B23(q

-1).T3(k-d23)+ 
B2u2(q

-1).u2(k-d2u2) 
(17) 

A3(q
-1).T3(k)=B32(q

-1).Ω2(k-d32)+B3u3(q
-1).u3(k-d3u3) (18) 

 
where : 

A1(q
-1)=1-a11.q

-1- a12.q
-2 

A2(q
-1)=1-a21.q

-1 
A3(q

-1)=1-a31.q
-1- a32.q

-2 
B12(q

-1)=b120-b121.q
-1  et d12  =1 

B1u1(q
-1)=b1u10   et d1u1=2 

B21(q
-1)=b210   et d21  =1 

B23(q
-1)=b230   et d23  =1 

B2u2(q
-1)=b2u20   et d2u2=1 

B32(q
-1)=b320-b321.q

-1  et d32  =1 
B3u3(q

-1)=b3u30   et d3u3=2 
 
A first parameter estimation allows to conclude that the 

gains of the transfer functions relating Ω2 to T1 and to T3 
are negligible. The ELS estimator is applied respectively to 
the following equations, giving the sets of estimates Es1, 
Es2 and Es3: 

 
A1(q

-1).T1(k)=B12(q
-1).Ω2(k-d12)+B1u1(q

-1).u1(k-d1u1) (19) 
A2(q

-1).Ω2(k)= B2u2(q
-1).u2(k-d2u2) (20) 

A3(q
-1).T3(k)=B32(q

-1).Ω2(k-d32)+B3u3(q
-1).u3(k-d3u3) (21) 

4. Redundant transfer function generation 

In the case of a sensor fault, a bias fs is added to the 
measurement of the variable: 

y(k) =
B(q )

A(q )
(k - d) +

-1

-1
⋅ u f s  (22) 

In the case of an actuator fault, a bias fa is added to the 
input u: 
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(23) 

where Gs is the gain of the transfer function. 
 

The estimator that minimises the criterion should reject 
the perturbations fs or Fa. Nevertheless, at the moment of 
the occurrence of a fault, all the estimates are perturbed. 
Thus, only the transfer functions uncoupled to the faulty 
measurements or inputs can be estimated without transient 
perturbation of the parameters. 

In a signature table, called diagnostic matrix D(n,h) 
(Table 1), the set of estimates Esh perturbed by a bias in the 
measurements or in the inputs are represented by ‘1’, and 
the set of estimates not affected are represented by ‘0’. The 
signatures represent respectively the faults in T1, Ω2, T3, 
u1, u2, and u3. Each fault signature is a vector with binary 
components noted Sgn, with n varying from 1 to 6 
(Table 1). 

 
D Es1 Es2 Es3 

Sg1 1 0 0 

Sg2 1 1 1 

Sg3 0 0 1 

Sg4 1 0 0 

Sg5 0 1 0 

Sg6 0 0 1 

Table 1 

As table 1 shows, the signatures Sg1 and Sg4 are 
identical, as so as Sg3 and Sg6. It is thus impossible to 
isolate a fault on T1 from one on u1, as so as for T3, and u3. 
This problem is caused by the strong correlation between 
the measurement and the actuator. 

Another fact revealed by the signature table is that the 
signature of a fault on Ω2 includes all other signatures. 
This constitutes a problem for the isolation of 
simultaneous faults. 

The use of additional transfer functions allows to 
extend the signature table. This extension is aimed at 
discrimination between very similar signatures, by adding 
new symptoms [7]. It can be done by putting eq. (20) into 
(19) to obtain a model that relies T1 to u1 and u2 : thus we 
can exhibit a uncoupling between T1 et Ω2. 



The parameters estimated in this way will not be 
sensitive to the perturbation on Ω2. The same procedure 
can be applied for (21) and (20) and so, the sets of 
estimates Es4 and Es5 can be obtained from: 

 
A11(q

-1).T1(k)= 
B11u2(q

-1).u2(k-d11u2)+ B11u1(q
-1).u1(k-d1u1) 

(24) 

A33(q
-1).T3(k)= 

B33u2(q
-1).u2(k-d33u2)+ B33u3(q

-1).u3(k-d3u3) 
(25) 

 
where: 

A11(q
-1)=1-a111.q

-1- a112.q
-2- a113.q

-3 
A33(q

-1)=1-a331.q
-1- a332.q

-2- a333.q
-3 

B11u2(q
-1)=b11u20-b11u21.q

-1 et d11u2 =2 
B11u1(q

-1)=b11u10-b11u11.q
-1 et d1u1   =2 

B33u2(q
-1)=b33u20-b33u21.q

-1 et d33u2 =2 
B33u3(q

-1)=b33u30-b33u31.q
-1 et d3u3   =2 

 
The signature table D(n,h), is represented in table 2. 
 

D Es1 Es2 Es3 Es4 Es5 

Sg1 1 0 0 1 0 

Sg2 1 1 1 0 0 

Sg3 0 0 1 0 1 

Sg4 1 0 0 1 0 

Sg5 0 1 0 1 1 

Sg6 0 0 1 0 1 

Table 2 

The problem of signatures Sg1 and Sg4 which are the 
same (as for Sg3 Sg6) is not solved, but the signature Sg2 
doesn’t include the others, and allows a better 
discrimination. 

5. Residual analysis and fault indicator 

The on-line parameter estimation with a long horizon 
estimator allows to follow the slow variations of the 
parameters. This kind of variations are not considered as 
faults, but caused by the ageing of the process. A second 
estimator based on a short horizon, allows to follow fast 
variations considered as a symptom of the fault. The long 
horizon parameters are estimated by on-line ELS algorithm 
with a forgetting factor equal to 1; and the short horizon 
estimator is computed with a smaller forgetting factor 
(0.99 in the following). 

The residual generation for diagnosis is computed for 
each parameter by the difference between the long horizon 
estimates Θj and the short horizon estimates θj (26). 

rj

h

j

h

j

h= −Θ θ  

where h is the index corresponding to the set of 
estimates Esh. 

(26) 

The comparison of rj

h  with an adapted threshold which 

depends on the estimate variance allows to detect a 
significant variation of the estimation. 

The result of this evaluation composes the vector Sh. 
The components sj

h  of the vector Sh are binary: 1 if the 

threshold is bypassed, and 0 otherwise. 
A degree uh of estimation variations can be computed 

for the set of estimates Esh (27): 

u
p

sh h j

h

j

ph

=
=
∑

1

1

 (27) 

where ph represents the number of estimated parameters of 
the set of estimates Esh. The set of symptoms uh constitutes 
the vector U. 
The decision method is achieved comparing U with the 
different signatures Sgn in table 2. 

The decision function noted FE (Sgn) represents the 
confidence on the sensors or the actuators and takes the 
following values: 
F SE gn( ) = 0 no fault, 

F SE gn( ) ] , [∈0 1  suspicion of fault, 

F SE gn( ) = 1 fault. 

 
The Hamming’s distance formula (28) is used to 

generate the fault indicator FE (Sgn) [10]. 

∆( , ) | (U S
H

u D n,h)|gn h
h

H

= −
=
∑

1

1

 (28) 

with H the number of the sets of estimates Esh 
The fault indicator FE (Sgn) is given by the similarity 

between the signatures and the symptom vector U: 
 FE gn gnS U S( ) ( , )= −1 ∆  (29) 

 
In the case of simultaneous failures on different sensors 

or actuators, the Hamming distance (28) is modified as 
follows: 

∆ M gn

n

h
h

H

U S
W

u D n h D n h( , ) {| ( , ) | ( , ) }= − ⋅
=
∑

1

1

   (30) 

where Wn is the number of elements of D(n,h) ≠ 0. 
 
The fault indicator FE (Sgn) (29) is computed as: 

F S
W

u D(n h D(n hE gn

n

h
h

H

( ) {| , ) | , ) }= − − ⋅
=
∑1

1

1

   (31) 

6. Application 

The analysis of the method above described was done 
with a simulator of the system. The inputs u1 u2 and u3 are 



step signals at times 50, 100 and 150 (the sampling period 
is 0.1s). The signal to noise ratio was fixed to 31 dB. The 
fault was simulated as a bias of 10 % of the steady state 
value on the sensor Ω2, and appears at time 300 (Figure 2). 
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Figure 2 : Variation of the inputs and of the measurements 
around the operating point 

Figures 3 and 4 present the evolution of the short 
horizon parameter estimations. The estimates of ci are not 
represented due to their high sensitivity to the noise and 
their slower convergence. The decision is done only from 
ai and bi estimates. Moreover, the estimates a113 and b33u21 
are very close to zero and thus, they are not taken into 
account by the set of estimates Es4 and Es5. 
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Figure 3 : Evolution of the set of estimates Es
1
  

Figure 3 shows the evolution of the set of estimates 
Es1. A variation of b1u10 can be seen (with a small delay 

k=305) while b120 and b121 are perturbed since the fault 
apparition (301). The variations of the estimate a11 are 
shown in figure 4. The variance of the estimate is 0.5.10-4 
at time k=300. 
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Figure 4 : Evolution of Es
1
 estimate a

11
 

Figure 5 shows the Es4 short horizon estimates. They 
are not perturbed by the fault on Ω2  as expected by table 2. 
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Figure 5 : Evolution of the set of estimates Es
4
  

Figures 6 and 7 show the evolution of the fault 
indicator FE(Sgn). 

Figure 6 represents the decision taken from Es1, Es2 
and Es3 (Table 1). In this case, it is impossible to isolate 
the fault because after k=300 the indicators report faults in 
T1, Ω2, u1 and u2. 



Figure 7 represents the decision relying on all the sets 
of estimates, taking into account the transfer function 
redundancy which has allowed to generate table 2. The 
isolation is correct, the indicator FE(Sg2) corresponding to a 
fault on Ω2 is greater than zero from time 303 (delay of 3 
sampling periods), and is always greater than the other 
indicators. 
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Figure 6 : Evolution of the fault indicators (Table 1) 
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Figure 7 : Evolution of the fault indicators (Table 2) 

7. Conclusion 

This paper proposes a method for detection and 
isolation of a bias on sensors or actuators. The use of the 
estimation redundancy has allowed the generation of a 
decision procedure for fault isolation. Nevertheless some 
limitations of the redundancy of transfer functions, due to 
the system structure, are underlined. 

The future work will be focused on: 
• The use of fuzzy logic for the residual evaluation in 

order to process more information, in particular the 
quality of the residual evaluation, qualified by the 
frankness or persistence of parameter deviations. 

• The use of fuzzy logic in the decision making 
method. 

• The management of the estimation deviations due 
to noise in the case of non-persistent excitation. 

• The introduction of the direct estimation of a mean 
value change in the error. 

• The test of this method on the real process. 
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