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Abstract

We study the coupling of massive fermions to the quantum mechanical dynamics of space-

time emerging from the spinfoam approach in three dimensions. We first recall the classical

theory before constructing a spinfoam model of quantum gravity coupled to spinors. The

technique used is based on a finite expansion in inverse fermion masses leading to the com-

putation of the vacuum to vacuum transition amplitude of the theory. The path integral

is derived as a sum over closed fermionic loops wrapping around the spinfoam. The effects

of quantum torsion are realised as a modification of the intertwining operators assigned to

the edges of the two-complex, in accordance with loop quantum gravity. The creation of

non-trivial curvature is modelled by a modification of the pure gravity vertex amplitudes.

The appendix contains a review of the geometrical and algebraic structures underlying the

classical coupling of fermions to three dimensional gravity.

CPT-P71-2006

1 Introduction

The subtle interplay between matter and the classical geometry of spacetime is probably the
deepest physical concept emerging from Einstein’s equations. The becoming of this relationship
in the Planckian regime, where the quantum mechanical aspects of spacetime become predominant,
is a core issue in any attempt to the quantisation of gravity. In this paper, we address the problem
of fermionic couplings to three dimensional quantum gravity in the spinfoam approach.

Spinfoam models [1] are discretized path integrals concretely implementing the Misner-Hawking
three-geometry to three-geometry transition amplitude [2]. They can be realised from different
approaches. First, a spinfoam can be seen as a spacetime history interpolating between two canon-
ical states, i.e as a representation of the physical scalar product [3] of loop quantum gravity [4].
More generally, spinfoam models can also appear as a background independent, non-perturbative
covariant quantisation of BF-like field theories by prescribing a regularization of the path integral
of the theories combining (random) lattice field theory and group representation theory techniques
in various dimensions. If the dimensionality of spacetime is different from three, where gravity
is a BF theory, the local degrees of freedom of general relativity can by inserted directly into
the discretized path integral by constraining BF theory down to gravity following Plebanski’s
prescription [5] directly at the quantum level [6], [7]. The path integral for gravity, called the
Barrett-Crane model, is therefore obtained as a sum over a restricted subset of configurations. To
obtain fully background independent models and to restore the infinite number of degrees of free-
dom of the theories, one works with a dual field theory formulation [8] generalising matrix models
to higher dimensions. The idea is to write a field theory over a group manifold (GFT) whose
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Feynman amplitudes yield the spinfoam partition function defined on the cellular decompositions
dual to the Feynman diagrams of the field theory. This approach has recently been rethought as
a third quantised version of gravity, including a sum over topologies [9].

In this paper, we explicitly construct a spinfoam model describing the coupling of massive
fermionic fields to three dimensional Riemannian quantum gravity. We derive the spinfoam model
from a classical action principle by giving a precise meaning to the vacuum to vacuum transition
amplitude of the theory

Z =

∫

DeDωDψDψeiS[e,ω,ψ,ψ], (1)

by regularising, in particular, the functional measures. We proceed by expanding the fermionic
determinant, obtained by integrating out the fermionic degrees of freedom, into closed fermionic
loops.

The study of matter couplings to gravitation in the spinfoam approach has recently raised
a large number of proposals (for models from the canonical perspective see [10]). Two classes
of models seem to emerge from the overall picture: ideas converging towards unification, where
matter is somehow already hidden in the models, and constructions where matter is added by
coupling to the gravitational field. In [11], a unified picture has been suggested where matter
emerges as the low energy limit of the models derived from the configurations left out of the path
integral for gravity when constraining BF theory down to gravity. The same author [12] proposes
an alternative picture where matter appears as the conical singularities of the triangulated pseudo-
manifolds arising in the GFT Feynman expansion. In [13], the matter degrees of freedom are
encoded in a subset of the finite dimensional irreducible representations of the symmetry group
of gravity. A supersymmetric three dimensional model based on the representation theory of
OSp(1 | 2) has been derived in [14]. In this approach, fermionic matter is “hidden” in the gauge
field hence offering another unified picture. From the coupling perspective, different models for
matter and different techniques have been implemented. Yang-Mills fields have been coupled to
four dimensional quantum gravity in [15] and [16] using lattice field theory techniques where the
lattice geometry is determined by the Barrett-Crane model. A spinfoam model for pure Yang-Mills
has been derived in [17]. Background independent point particle couplings have been introduced
in three dimensional quantum gravity [18] (see [19] for the canonical aspect) by using gauge
fixing techniques or, equivalently, the de-Sousa Gerbert [20] algebraic description of the degrees
of freedom of a point particle. GFT models have then followed [21] defining matter couplings to
a third quantised version of gravity. Recently, a subtle relationship between quantum field theory
Feynman diagrams and three dimensional spinfoam models has been derived. Feynman diagrams
have been shown [22], [23] to yield natural observables of spinfoam models. Also, in the no-
gravity limit of spinfoam models coupled to point particles [24], one recovers the Feynman diagram
amplitudes of quantum field theory. A generalisation of the above results to four dimensions has
recently been proposed [25] from the canonical perspective. It is shown how the natural higher
dimensional extension of three dimensional quantum gravity coupled to point particles leads to
quantum BF theory coupled to strings and branes. The derivation of the dynamics of this proposal
is currently under study [26]. Finally, it has recently been realised [27] that the coupling of Wilson
lines to the de-Sitter gauge theory formulation of gravity leads to the description of the dynamics
of particles coupled to the gravitational field.

Here, we concentrate on the interplay between spinor fields and three dimensional quantum
geometry. The paper is organised as follows. Section two is a review of the classical coupling
of fermions to the gravitational field. We recall, in particular, the effects of fermionic sources
on spacetime torsion and curvature. The third section describes the construction of the model.
We define the manifold and field discretizations, provide a simplicial action, define the fermionic
loop expansion, and finally perform the integrations in the discretized path integral leading to a
precise definition of the model. The appendix describes the geometrical and algebraic framework
underlying the coupling of spinors to classical three-dimensional gravity.
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2 Classical theory

In this first section, we derive the dynamical effects of fermions on the geometry of spacetime.
All necessary definitions and conventions are given in the appendix. We first introduce the action
governing the dynamics of the gravitational field before adding the fermionic term. We then derive
the equations of motion of the coupled system.

2.1 Gravitational and fermionic action principles

Consider a connected, oriented, compact, three dimensional differential manifold M endowed with
an Euclidean metric g with diagonal form η as our spacetime. We will denote P the bundle of
g-orthonormal frames, that is, the principal bundle with base manifold M and structure group
G = SO(η) = SO(3). Noting V = R3, we call (π, V ) the vectorial (fundamental) representation
of G. Let Ĝ = Spin(η) = Spin(3) denote the spin group associated to the Euclidean metric η.
We will choose as a basis of the real Lie algebra ĝ = spin(3) (resp. g = so(3)) the set of generators
{Xa}a (resp. {Ta}a), a = 1, 2, 3. We will assume that the manifold M is endowed with a given
spin structure, i.e. a Ĝ-principal bundle P̂ mapped with a two-to-one bundle homomorphism χ̂
onto the bundle of orthonormal frames P . Note that the principal bundle P̂ is necessarily trivial.
Let ω denote a metric (but not necessarily Riemannian) connection on P image under the Lie
algebra isomorphism χ∗ ≡ π∗ : spin(3) → so(3); Xa → Ta, of a spin connection ω̂ on P̂. The data
of the manifold M together with the non-Riemannian metric connection ω defines the Riemann-
Cartan structure underlying the framework necessary to model the interaction of fermions with
the dynamical spacetime M .

We will use the fact that in the adjoint representation of the Lie algebra spin(3) the matrix
elements of the images of the generators are given by π∗(Xa)

I
J = T I

a J = −ǫ Ia J , where the symbols
ǫ Ia J denote the structure constants of the Lie algebra normalised such that ε123 = −ǫ132 = 1. We
will furthermore use the isomorphism of vector spaces between spin(3) and V = R3, regarded as
the adjoint representation space of spin(3), to make no distinction between the Lie algebra indices
a, b = 1, 2, 3 and the vector space indexes I, J = 1, 2, 3.

The basic dynamical fields of Einstein-Cartan gravity are the soldering one-form e = eI ⊗ eI
and the pull-back to M by local trivialising sections of a principal metric connection on P . In
a local chart (U ⊂ M,xµ : U → R3), the co-frame decomposes into a coordinate basis of the
co-tangent space eI = eIµdx

µ, and the metric connection on M is given by ωIJ = ωIJµ dxµ =

ωaµ ⊗ T IJa dxµ ≡ −ǫIJKωKµ dxµ.
Since we are focusing on the inclusion of fermionic matter, it will be convenient to work in

the spinor representation of 2 + 1 gravity (see e.g. [28]). To this aim, we define the linear map
σ : V → End (C2), mapping the Clifford algebra C(3, 0) ≡ C(3) (in which the (dual of the)
vector space V is embedded) onto the Pauli algebra, i.e. the endomorphism algebra of the two-
dimensional complex vector space V ≡ C2 (see appendix). We consider as the dynamical fields
of the theory the image e of the soldering form e under the map σ and (the pull-back to M
by a global trivialising section of) a principal connection on the spin bundle P̂, that is, a spin
connection ω̂:

e := σ(e) = eIσI and ω̂ = −1

4
ωIJσIσJ =

i

2
ωIσI , (2)

where the symbols σI = σ(eI) denote the Pauli matrices.
Hence, we can think of the soldering form e : TpM → M2(C), forall p in M , as a local

isomorphism mapping any tangent vector into a two by two complex matrix, image in spin space
of the associated vector in inertial space V : ∀v ∈ TpM, e(v) = v = vIσI . More precisely, the
associated matrix v is traceless and Hermitian. Accordingly, we can think of the co-frame as
taking value in ispin(3) ≃ isu(2).
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The torsion T̂ = σ(T IeI) and curvature R̂ = − 1
4R

IJσIσJ of the spin connection are then
extracted from to torsion and curvature of the metric connection ω:

T I = deI + ǫIJKω
J ∧ eK (3)

RI = dωI +
1

2
ǫIJKω

J ∧ ωK ,

where ωI = − 1
2ǫ
I
JKω

JK .

Gravitational action. The classical dynamics of the three dimensional spacetime M can be
expressed in terms of the Palatini action evaluated in the spinor representation of spin(3)

SGR[e, ω̂] =
i

κ

∫

M

Tr
(

e ∧ R̂[ω̂]
)

, (4)

where Tr is the trace on M2(C), and κ is related to the Newton constant G by κ = 8πG.
Equivalently, we can write the Palatini action in the vector representation of the spin group

SGR[e, ω] =
1

2κ

∫

M

ǫIJKe
I ∧RJK [ω] = − 1

κ

∫

M

eI ∧RI [ω], (5)

where we have used Tr(σIσJσK) = 2iǫIJK .

Fermionic action. The coupling of Dirac fermions ψ ∈ C∞(M,C) ⊗ V to 3d gravity is given
by the following real action

SD[e, ω̂, ψ, ψ] =
1

2

∫

M

[

1

2

(

ψ̄ e ∧ e ∧∇ψ −∇ψ̄ ∧ e ∧ e ψ
)

+
i

6
m Tr(e ∧ e ∧ e) ψ̄ψ

]

, (6)

where m ∈ R+ is the mass of the fermion field, the Dirac conjugate ψ̄ is given by the Hermitian
conjugate ψ† (see the appendix) and the symbol ∇ := ∇(ω̂) denotes the covariant derivative with
respect to the spin connection. Equivalently, using the fact that the Clifford algebra C(3) is also
a Lie algebra, namely σIσJ = iǫ K

IJ σK + ηIJ , the Dirac action can be reexpressed as

SD[e, ω, ψ, ψ] =
1

2

∫

M

ǫIJKe
I ∧ eJ ∧

(

i

2
(ψσ(eK)∇ψ −∇ψσ(eK)ψ) − 1

3
meKψψ

)

. (7)

The presence of the second term in the sum is to ensure the reality of the action keeping the same
equations of motion for ψ and ψ. The introduction of such a term comes from the fact that in
the presence of torsion, the usual Dirac vector current is not a total derivative [29].

2.2 Equations of motion

We now consider the equations of motion coming from the variation of the total action S =
SGR + SD with respect to the spin connection and to the (embedded) triad.

The variation of the connection yields the effects of the fermionic field on the spacetime torsion

T̂ = −κ
4
ǫIJK σI e

J ∧ eK ψψ, (8)
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while the variation with respect to the triad encodes the effects of matter on the curvature of
spacetime :

R̂ =
κ

4
eI ∧

(

i(ψσJ∇ψ −∇ψσJ ψ) −meJ ψψ
)

σIσJ . (9)

From now on, we will set κ = 1 and rescale the co-frame e → ie such that it will be regarded
as taking value in spin(3) ≃ su(2) = R{XI}I , with the convention XI = iσI . Having established
the classical setting of the theory of Dirac fermions interacting with the geometry of an Einstein-
Cartan spacetime, we now turn to the quantisation of the fermion/gravity coupled system.

3 Spinfoam quantisation

Feynman, following the intuition of Dirac, realised that quantum mechanical systems could be
approached by two different kind of formulations: the canonical or Hamiltonian approach and the
covariant or sum over paths formalism. In the case of quantum gravity, the canonical approach
is called loop quantum gravity and precisely predicts a discrete picture of quantum space. The
fundamental excitations of the quantum gravitational field are one dimensional and supported
by coloured, diffeomorphism invariant graphs. Such states are called spin networks. The world
surface swept by a spin network forms a collection of two dimensional surfaces meeting on edges
and vertices. The resulting object is a coloured two-complex called a spinfoam. A spinfoam can
therefore be though of as a history of quantum space (a quantum spacetime) and a sum over
spinfoams interpolating between two spin networks can be viewed as an implementation of the
Misner-Hawking three-geometry to three-geometry transition amplitude for quantum gravity.

One of the most remarkable aspects of the spinfoam approach is the fact that a surprising num-
ber of independent research directions converge towards the same formalism. Indeed, spinfoams
arise for instance, independently from loop quantum gravity, as a tool of the covariant formulation
to compute the partition function of a large class of BF-like 1 field theories. In the case of pure
topological BF theory, the idea is to use the lack of local degrees of freedom of the theory to
calculate the path integral with lattice regularization techniques without needing a continuum
limit. In the case where local degrees of freedom are present, such an approach is therefore, in
essence, only a (non exact) discretization of the theory of interest until a sum over triangulations
is precisely understood. A fair amount of work has been devoted to such techniques, as recalled
in the introduction.

Three dimensional gravity is a topological field theory and hence nicely fits into the spinfoam
framework. In fact, the first model of quantum gravity ever written was a spinfoam quantisation of
riemannian three dimensional gravity: the Ponzano-Regge model [30]. In this paper, we generalise
this model to include the interaction of fermions with gravity by giving a concrete meaning to
the sum over all possible paths in configuration space weighted by the complex exponent of the
action, i.e the path integral or vacuum to vacuum transition amplitude.

In the presence of fermions, the theory has local degrees of freedom. Therefore the fixed
triangulation that we will use below induces a physical cut-off of the degrees of freedom of the
theory. In this paper, we do not address the problem of the removal of this regularization. We
discuss some potential possibilities in the conclusion.

This section is devoted to present the model. We first discretize the theory and regularise the
path integral. We then integrate over the fermionic degrees of freedom and expand the resulting
functional determinant in inverse fermion masses. This expansion yields a sum over fermion paths
wrapping around the spinfoam. We finally compute the path integral of the coupled system.
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e1+

e1− e2−

e2+

Figure 1: A wedge.

3.1 Discretization

3.1.1 Manifold discretization

First, we pick a triangulation T of our spacetime manifold M 2. This means that we subdivide M
into a finite union of three-simplices (tetrahedra) ∆3 such that any pair of such simplices are either
disjoint or meet on a common sub-simplex (triangle or segment). Two different three-simplices
can have at most one common triangle. All simplices and sub-simplices are oriented and the
orientations of two triangles in the boundary of two different three-simplices along which they
are glued together are assumed to match; the one-simplices of those two triangles are assumed
to have same coordinate length and must have pairwise opposite orientations. If n denotes the
number of simplices of the triangulation T , M = ∪nk=1∆

3
k. We will make the assumption that

the simplicial manifold defined by T admits a spin structure. We furthermore assume that each
tetrahedron ∆3, together with the four boundary tetrahedra glued along its four triangles, belongs
to a given coordinate patch U ⊂M and that all three-simplices are diffeomorphic to the standard
tetrahedron in R3.

We will work with the dual complex T ∗ of the triangulation or more precisely with its dual
two-skeleton. This means that we place a vertex v in the center of each tetrahedron ∆3 ∈ T ,
link the vertices with edges e going through the triangles ∆2 ∈ T and define a face f as a closed
sequence of edges intersecting the segments ∆1 ∈ T . We fix an orientation and a distinguished
vertex for each face f and call its edges e1f

, e2f
, ..., eNf

taken in cyclic order starting from the
distinguished vertex. The complex formed by the cells (v, e, f) is the dual two-skeleton of T .

For consistency purposes that will become clear shortly, we furthermore refine the above cellular
decomposition by introducing a subdivision of each dual face f into so-called wedges w (see [31]
and references therein). A wedge (see figure 1) is defined by first identifying the center of a dual
face f as the point where the latter intersects the associated segment ∆1 of the triangulation. By
drawing lines connecting the center of f to the centers of the neighboring dual faces, one obtains
a subdivision of f into wedges w consisting in the portions of the face lying between two such
lines. In other words, a wedge belonging to a given face f and to a given three-simplex ∆3 is
the intersection between f and ∆3, w = f ∩ ∆3, as pictured in figure 1. Each wedge acquires
an orientation induced by the orientation of the face to which it belongs and is unambiguously
associated to the simplex to which it belongs. The complex formed by these finer 2-cells, their
boundary edges and the vertices lying at the endpoints of the boundary edges is called the derived
complex T +. There are two types of 1-cells in T +. We distinguish between the edges of the
derived complex T + whose intersection with the edges of the dual complex T ∗ is non empty and
the others. We will note e+ the edges of T + belonging to ∂w∩∂f and e− the edges exclusively in
∂w. Note that the e+ type edges are exactly half edges of T ∗. There are three types of vertices
around each wedge. The center of the face to which the wedge belongs, noted c, one vertex v
belonging to T ∗ and two vertices forming the intersection of the edges emerging from v with the
two triangles meeting on the segment defining the center of the associated face. These two new
types of vertices will be noted v+.

We denote by V , E ,F the set of vertices, edges and faces of T ∗ while the set of vertices

1By BF-like, we mean any theory expressable as a free topological BF part plus a polynomial function of the B
field [36].

2Note that all compact three dimensional manifolds are triangulable.
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V ∪ {v+} ∪ {c}, edges {e−} ∪ {e+} = E− ∪ E+ and wedges {w} of T + will respectively be noted
V+, E± and W . We will call Wv the set of wedges restricted to the wedges belonging to the
tetrahedron dual to the vertex v. We will call n(V) ≡ n the cardinality of the set V .

We then assume that the global trivialising section of P̂ is piecewise constant in each tetra-
hedron. Hence, the spinor and vector bundles associated to P̂ are also globally trivialised by
a piecewise constant section. We therefore have a basis (eI(v))I of V (or equivalently a basis
(XI(v))I of spin(3)) and a basis (fα(v))α of V for each tetrahedron inside which the vector and
spinor fields are globally defined.

3.1.2 Simplicial field configurations

We now turn towards the discretization of the field content of the theory. The main hypothesis is
that the cellular decomposition is sufficiently refined so that the fields of the theory can be though
of as piecewise constant inside each three-simplex ∆3. Let the latin indices from the middle of
the alphabet i, j, ... and from the end of the alphabet ..., t, u, v respectively denote the vertices of
the triangulation T and those of T +. We denote by ab the segment linking the vertices a and b.
For each vertex v ∈ V ,

A simplicial soldering form configuration e is a map 3

e : Wv → spin(3) (10)

w → ew.

Here, ew := eij denotes the line integral of e along the segment ij ∈ T dual to the face containing
the wedge w; eij = e(vij) = vij =

∫

ij e =
∫

J s
∗
ije, where sij : J ⊂ R →M is the segment linking i

and j and vij ≡ ṡij denotes the tangent vector. The components of ew are measured with respect
to the frame (XI(v))I associated to the simplex containing the wedge w: ew := eIw XI(v). This
is one of the reasons why the complex T ∗ needed to be refined to T +: a face f being shared
by different simplices and the trivialisation of P̂ being chosen to be piecewise constant in each
three-simplex, the assignment of a simplicial triad configuration to the face f would have been
meaningless: with respect to which frame would we express it ?

The wedges of the face f are in one to one correspondence with the three-simplices neighboring
the tetrahedron dual to the vertex v and all share the same segment ij as it defines the center
of the face. Hence, the vectors in spin(3) ≃ R3 assigned to each of these wedges will in fact be
the same vector measured with respect to the frames associated to the simplices containing each
wedge. As we will see, the quantum treatment of the theory will naturally impose on this vector
to have same norm in different frames.

By using the coordinates xµ associated to the patch U ⊃ v , we see that, at first order in the
segments lengths, we have eIij ≃ eIµ(xv)∆

µ
ij where xv is the coordinate of the dual vertex v (it

could be any point inside v∗) and ∆µ
ij ≡ vµij = xµ(j)− xµ(i) is the coordinate length vector of the

segment ij.

The spin connection ω̂ assigns a spin rotation to the edges belonging to E+, i.e. to the dual
half edges (forming the intersection between the boundaries of the faces and the boundaries of the
wedges)

ω : E+ → Spin(3) (11)

e → Ue+ .

The spin rotation is defined to be the parallel transport matrix Ue+ := Uuv(g) =
1/2
π uv(g) =

3More precisely, a simplicial triad is a functor from the manifold groupoid π(M) (the category whose objects
are the vertices of the triangulation and the invertible morphisms are the edges linking the points) to the category
spin(3), where there is one object and the morphisms are the additive group operations.
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P exp
∫

uv
ω̂, g ∈ Ĝ, of the spin connection. We have used the notation

j
π : Ĝ → Aut (

j

V) for the
spin j representation (see the appendix), and P means path ordering. If we reverse the orientation
of an edge, the spin matrix gets mapped to its hermitian conjugate : Uvu = U †

uv.
To complete the picture, we also assign group elements Ue− to the edges E− of T + whose

intersection with the boundaries of the faces are empty, i.e the edges converging toward the centers
c of the faces. These holonomies will be called auxiliary variables as they carry only information
about the topology of the faces to which the fermions will turn out to be insensitive.

By using the coordinates associated to the patch U ⊂ M containing the simplex dual to
the vertex v, we see that, at first order in the edges lengths, the holonomy approximates the
connection: Uuv ≃ 11 + ∆µ

uvω̂µ(xv).
The discretized curvature is assigned to the wedges and defined to be the holonomy Uw of the

spin connection along the boundaries of the wedges w :

Uw =
∏

e∈∂w
Ue. (12)

This is valid since the curvature is the obstruction to the closing of the horizontal lift of an
infinitesimal loop. More precisely, Uw is of the form Uw = Ue1+Ue1−Ue2−Ue2+ (see figure 1). The
base point of the holonomy is fixed by discretized gauge invariance arguments to be the dual
vertex v ∈ T ∗ [36].

We now turn towards the simplicial field content of the fermionic action. Fermions, as sections
of the spinor bundle, must live on 0-cells of the discretized manifold. The structure of the classical
Dirac action (6) furthermore shows us what type of 0-cells should the simplicial fields be assigned
to. The volume, or mass, term tells us that the fermions live on 0-cells of T ∗ or T + topologically
dual to three dimensional regions and the area, or kinetic, term implies that the fermions travel on
1-cells dual to objects supporting areas. By inspection, fermions can only be assigned to vertices
of T ∗. Hence,

The fermionic fields assign a spinor ψv ∈ V (resp. a co-spinor ψv ∈ V
∗
) to each vertex v of

V ,

ψ, (ψ) : V → V (V
∗
) (13)

v → ψv (ψv).

Our simplicial fermions live in the discrete analogue of the vector space 4 of sections Γ(SM) ≃
C∞(M,C) ⊗ V of the spinor bundle SM . This space is the vector space of V-valued sequences
{ψ | ψ : V → V} ≃ S(V) ⊗ V mapping the space of vertices V →֒ N into the Clifford module V.
Here, we have noted S(V) the vector space of complex valued sequences. We choose as a basis
for S(V) the set {ev}v of n vectors in S(V) such that ev(u) = δvu. Picking a basis {fα}α in V, a
simplicial spinor field ψ ∈ S(V) ⊗ V reads ψ = ψαv e

v ⊗ fα, with ψ(v) = ψαv fα ∈ V, ψαv ∈ C. We
will note S the vector space S(V) ⊗ V of simplicial spinor fields.

We furthermore need to require that our simplicial fermions obey the the Fermi-Dirac spin-
statistics. For instance, the fermionic components, i.e the coefficients ψαv appearing in the ex-
pression of a simplicial spinor ψ in our chosen basis must anticommute; ψαv ψ

β
v + ψβvψ

α
v = 0. To

mathematically capture this physical fact, it is necessary to change the field of numbers on which
the vector space S is built on from the field of complex numbers C to a supercommutative ring.
This ring is given by a Grassmann algebra that we will note GT and which is constructed as follows
[32].

Let Vv (resp V
∗
v) denote the copy of the Clifford module V (resp of the dual complex conjugate

Clifford module V
∗
) associated to the vertex v of the dual complex T ∗.

4In fact, the space of smooth sections of the spinor bundle Γ(SM) is a module over the commutative ring of
smooth complex valued functions C∞(M, C).
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Consider the complex vector spaces E and E
∗

obtained as the direct sums

E =
⊕

v∈V
Vv, E

∗
=
⊕

v∈V
V

∗
v. (14)

The Grassmann algebra GT is obtained as the exterior algebra over the complexified realification
of E (identifying E with its dual vector space E∗):

GT =
∧

(

E ⊕ E
∗)
. (15)

As a complex vector space, GT is of dimension 24n. We finally make a chart choice on GT such
that the algebra is defined by the generating system {ψαv , ψvα}v,α of the (odd) elements of GT
consisting in the components of the simplicial spinors and co-spinors.

Fermions will therefore not live in S regarded as a vector space but rather in S considered as a
supervector space [33], i.e a module (in fact, a bimodule) on the ring given by GT . An element ψ
in S will be written as ψ = ψαv e

v ⊗ fα with ψαv ∈ Λ1(E ⊕{0}) ⊂ GT , where the former is included
in the later as a vector subspace. Note that we now need to consider S(V) entering the definition
of S as the module of Grassmannian valued sequences.

3.1.3 Simplicial action

We can now construct the discretized version of the fermion/gravity action. As a simplicial action,
we take the real valued functional ST = SGR,T + SD,T , where SGR,T and SD,T are defined by

SGR,T [ew, ge] =
∑

w

Tr (ewUw) , (16)

and

SD,T [ew, ge, ψv, ψv] =
1

2

(

−1

4

∑

uv

(

ψuAuvUuv ψv − ψv U
†
uvAuv ψu

)

− 1

3

∑

v

mVvψvψv

)

, (17)

where e ∈ E± (resp. e ∈ E) for the gravitational part (resp. the fermionic part) and the sums in the
simplicial gravitational and Dirac actions are respectively over all wedges and all edges uv linking
the adjacent vertices u,v. In equation (16), the trace is taken in fundamental representation of
the spin group. In (17),

Auv ≡ Auv(ew) =
1

3

∑

w,w′⊃uv
ewew′sgn(w,w′) (18)

= −AI uviσI ,

with

AI uv =
1

3

∑

w,w′⊃uv
ǫIJKe

J
we

K
w′sgn(w,w′), (19)

is the discretized version of the two-form e ∧ e appearing in the kinetic term of the fermionic
action. This term is the spin space analogue of the two-form (∗e ∧ e) where the star ∗ denotes
the hodge operator acting on the exterior algebra Λ(V ) over V = R3. At the simplicial level,
we are looking at the integrated version of this two-form on the triangles of T or, equivalently,
we are considering the evaluation of this two form on all possible couples of vectors (vij , vik)
generating each infinitesimal triangle ijk of the triangulation. On a particular triangle (vij , vik),
(e ∧ e)(vij , vik) = −2iσI(∗e ∧ e)I(vij , vik), with

(∗e ∧ e)I(vij , vik) =
1

2
ǫIJKe

J ∧ eK(vij , vik) =
1

2
ǫIJK(vij ∧ vik)JK = (vij × vik)I , (20)
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where (u∧v)IJ := 2u[IvJ] and × denotes the usual cross product on R
3. This evaluation therefore

yields (the image in spin(3) of) the internal normal area one-form to the triangle ijk measured in
the inertial frame (eI(xv))I associated to the simplex dual to v which is one of the two tetrahedra
containing the triangle. In expression (18), the sum is taken over the three possible pairs (without
counting the permutations) of wedges meeting on the edge e = uv. This explains the 1/3 factor.
Finally, sgn(w,w′) equals ±1 depending on the sign of the (coordinate) area bivector. This factor
ensures the antisymmetry of forms at the simplicial level.

The Vv symbol assigned to each dual vertex denotes another polynomial function of the dis-
cretized gravitational field which is given by

Vv ≡ Vv(ew) =
1

2(16 × 3!)

∑

w,w′,w′′⊃v
Tr (ewew′ew′′)sgn(w,w′, w′′) (21)

=
1

16 × 3!

∑

w,w′,w′′⊃v
ǫIJKe

I
we

J
w′eKw′′sgn(w,w′, w′′).

This is the discretization of the integrated volume three-form
∫

v Tr(e ∧ e ∧ e) appearing in the
mass term of the Dirac action. Once again, sgn(w,w′, w′′) = ±1 here depending on the sign of the
volume generated by the three vectors ew, ew′ , ew′′ ∈ R3: it carries the sign of the orientation of
the vectorial basis formed by the three vectors. The numerical factor comes from the fact that the
volume of the tetrahedron dual to the vertex v appears more than once in the above expression
[36]. Indeed, there are C3

6 = 20 different triples of vectors constructable from the six faces dual
to the six edges of a given tetrahedron 5. Out of these twenty triples, only sixteen, without
counting the permutations, do not share a dual edge, i.e span the volume of the tetrahedron dual
to the vertex v. We call these triples admissible. For each such triple, there are 3! = 6 possible
permutations and hence 16 × 3! times the volume of the three-simplex dual to the vertex v in
expression (21).

The presence of this volume term in the simplicial theory has dictated the discretization
procedure that we have followed: we have suppressed the centers c ∈ V+ of the faces and the
vertices of type v+ ∈ V+ as a possible habitat for the fermions. The reason is that the centers
are not topologically dual to a three-dimensional region and the vertices of type v+ ∈ V+ belong
to a given triple of wedges which is not admissible, i.e it does not generate a three-volume.
We accordingly see how the rigidity of the structure of the Dirac action forces us to consider a
particular type of discretization procedure. The fermions can only be assigned to the vertices V
of the dual complex T ∗ and by association the spin connection can only map the edges E of T ∗

to the spin group Ĝ.
The fermionic part (17) of the simplicial action is a polynomial function (in the sense of exterior

multiplication) from the simplicial field configurations into the second exterior power Λ2(E⊕E
∗
)

of the Grassmann algebra GT . We can exhibit the quadratic structure of the fermionic action via
a compact expression by introducing a generalised Hermitian form, i.e a GT -valued, GT -module
morphism (, ) : S × S → GT for which the chosen basis of S is orthonormal:

SD,T [ew, ge, ψv, ψv] = (ψ,W (ew, ge)ψ) =
∑

uv

ψuWuv(ew, ge)ψv ∈
∧

2(E ⊕ E
∗
), (22)

where

W α
uv β =

3i

8

1

m
(AI uv(σ

IUuv)
α
β −AI vu(U

†
vuσ

I)αβ) −
1

2
Vu δuv δ

α
β ∈ C ⊂ GT . (23)

are the complex coefficients in the decomposition of the element SD,T in the basis {ψuα∧ψβv }uv,αβ
5C

p
n =

(

n

p

)

is the binomial coefficient.
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of Λ2(E ⊕ E) given by the matrix elements of the GT -module homomorphism W : S → S on the
space of simplicial spinors. Note that we have rescaled the fermionic fields ψ →

√

m/3ψ such that
[ψ] = m3/2.

To prove that the simplicial action converges towards the correct continuum limit we procede
in two steps. First, by injecting the first order expansions of the discretized fields in the discrete
gravitational action (16) and by using the fact that the simplicial curvature associated to a given
wedge w approximates the curvature at first order in the area of w, it is straight forward to see
that SGR,T → −SGR pointwise when n → ∞ and the size of each tetrahedron shrinks to zero
uniformly in the formal symbol k labelling the three-simplices.

Secondly, we analyse the fermionic sector SD,T . Once again, we expand the simplicial fields in
small vertice to vertice inter-distances corresponding to a high degree of refinement (n >> 1) of
the triangulation T . The Taylor expansion of the fermionic fields around the vertex u ∈ V yields,
in the coordinates associated to the patch U ⊂ M containing the vertex u together with its four
boundary tetrahedra,

ψv = ψu + ∆µ
uv∂µψu + O(∆x2). (24)

By using Stokes theorem, it is furthermore possible to show that for a fixed vertex u ∈ V , the sum
of the four coordinate area bivectors corresponding to the four triangles dual to the four edges
emerging from u sum to zero [37]. This is due to the fact that the integral of the unit normal
pointing outwards to a two-sphere piecewise linearly embedded in R3 must vanish. Explicitly,

∀u ∈ V ,
∑

v

(vij ∧ vik)µνijk=uv∗ = 0, (25)

where ijk is the positively oriented triangle dual to the half-edge uv ∈ E−.
Finally, we use the fact that the normal coordinate area one-form to a given triangle ∆2 of T

and the dual length vector going through ∆2 generate a coordinate three-volume [34] :

∑

uv

Aµ uv∆x
ν
uv = 2Ω(M) δνµ, (26)

where Ω(M) is the coordinate volume of the spacetime manifold M and the normal one form
Aµ uv is related to the area bivector (vij ∧ vik)µν of the triangle ijk dual to the edge uv through
a (coordinate) hodge operation: (vij ∧ vik)µν = ǫµνρAρ uv.

By inserting the Taylor expanded fields in the discretized action (17), using expression (25)
to kill the undesired terms and by finally recovering the coordinate volume trough (26), we can
conclude that, if the sequence of simplicial manifolds considered here converges to a smooth
manifold with spin structure, the simplicial action (17) converges pointwise towards (minus) the
Einstein/Dirac continuous action when the characteristic length of the simplices gos to zero and
the number of simplices tends to infinity, at least formally.

We finally verify that the action (17) is real as it is the case in the continuum.

3.2 Fermionic integration

We are now in position to give sense to the formula (1) by using the discretization prescription
discussed above. The main obstacle to analytically work with path integrals resides in the defini-
tion of the functional integration measure. The lattice regularization used here provides us with
an effective tool towards such a definition.
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3.2.1 Berezin integral and fermionic determinant

The formal expression (1) becomes:

Z(T ) =

(

∏

W

∫

ĝ

dew

)





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+





(∫

GT

dµ(ψv, ψv)

)

eiST [ew,ge,ψv ,ψv], (27)

where dew is the Lebesgue measure on ĝ = spin(3) ≃ R3, dge (due) is the normalised left Haar
measure on Ĝ = Spin(3) (which coincides with the right Haar measure because Ĝ is compact: in
this sense, Ĝ is said to be unimodular) and the symbol dµ(ψv, ψv) denotes the Berezin integral
[38] on GT . The Berezin integral is the element of the algebraic dual G∗

T of the Grassmann algebra
GT defined by

∀a ∈ GT ,

∫

GT

a dµ(ψv, ψv) :=

(

1
∏

v=n

1
∏

α=2

∂

∂ψvα

)(

1
∏

v=n

1
∏

α=2

∂

∂ψαv

)

a ∈ C. (28)

As a direct consequence of the above formula, the Berezin integral of the exponential of a quadratic
expression in the Grassmann variables yields the (totally antisymmetric) coefficient in front of the
basis element

∏

v,α ψ
α
v

∏

v,α ψvα in the (finite) development of the exponential. This means that
the Berezin integral in (27) produces a sum over all possible alternating 2n-th powers of the
coefficient W , i.e the determinant of W regarded as an endomorphism of the GT -module S. This
exact manipulation is due to the fact that we have cut down the number of degrees of freedom of
the theory from infinite to finite by introducing a lattice discretization. The computation of the
Berezin integral appearing in the partition function follows

∫

GT

dµ(ψv, ψv)e
i(ψ,Wψ) = det W, (29)

and we can accordingly integrate out the fermionic degrees of freedom of the theory hence obtaining
the usual path integral for gravity with insertion of an observable corresponding to the functional
determinant det W :

Z(T ) = < det W >T (30)

=

(

∏

W

∫

ĝ

dew

)





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+



 [det W (ew, ge)] e
i
∑

w Tr(ewUw).

We now develop a tool to calculate the functional determinant det W leading to the computation
of the path integral of the model.

3.2.2 Fermionic loop expansion

In statistical physics, the high-temperature expansion is a valuable tool for investigating critical
phenomena. In lattice-like theories incorporating massive fermions, an analogous procedure called
the hopping parameter expansion [39] exists. The technique consists in expanding in inverse
fermionic masses in the heavy mass regime of the theory. Of course, the sole consideration of the
lowest orders in the expansion is reliable only if the fermions are heavier than the energy scale
of the other fields of the theory under study. In the case of quantum gravity, the typical energy
scale is given by the Planck mass which implies that the expansion parameter turns out to be
large. However, if the expansion is finite and considered as a computational tool and not as a
perturbation theory, we believe that the hopping parameter expansion in quantum gravity remains
a valuable tool. This idea has in fact successfully been implemented in [40] where the coupling
of massive fermions to two dimensional Lorentzian dynamical triangulations is considered. The
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large value of the expansion parameter simply implies that only a complete consideration of all
orders will yield a meaningfull result. In other words, the hopping parameter expansion can
only be used in quantum gravity as a computational technique, not as an effective description
of the theory: we will not construct a perturbation theory but use the finite hopping parameter
expansion to compute explicitly the partition function of the theory. The crystal clear geometrical
interpretation of the hopping parameter expansion in terms of fermionic loops where the fermionic
couplings to gravity appear as extremely natural and the explicit solvability of the model comfort
us in the idea that this technique is an appealing tool to couple matter to gravity in the quantum
regime, at least on a fixed triangulation. Indeed, it is important to stress that the finiteness
of the expansion that we are about to derive is due to the regularization defined by the fixed
triangulation. The behaviour of the expansion under refinement of the triangulation is a question
that we will leave open. Leaving this issue aside, we now show how to compute the partition
function of the theory order by order in the expansion parameter obtaining a reliable evaluation
of the fermionic determinant.

The functional determinant that we wish to calculate is defined by equation (29). The first
step is to realise a crucial symmetry of the W endomorphism under charge conjugation. The
charge conjugate spinors

ψc = C−1ψ∗ and ψc = ψ
∗
C, (31)

where C is the quaternionic structure defined in the appendix and ∗ denotes complex conjugation,
are solutions to the Dirac equation with charge sign inversion e → −e (when coupled to an
electromagnetic field).

The Clifford representation ρ : C(3) → End(C2) is equivalent to the Hermitian conjugate
representation ρ† acting on C̄2∗ via the bijective intertwining operator 6

A = ǫ ◦ C : C
2 → C̄

2∗, (32)

where ǫ : C2 → C2∗ is the two dimensional symplectic form (ǭ : C̄2 → C̄2∗ is the complex conjugate
map) whose matrix representation is given by the totally antisymmetric tensor

ǫ =

(

0 1
−1 0

)

. (33)

This vector space isomorphism mapping C2 onto its contragredient representation space realizes
the equivalence between the two representations. Since A is the identity map, ρ(γ)† = σ† = σ, we
find that the charge conjugation matrix C is given by the inverse of the dual pairing map ǫ.

Putting indices, the conjugate spinors and co-spinors are defined by

ψαc = ǫαβ ψβ and ψcα = −ψβǫβα, (34)

where ǫ12 = ǫ12 = 1 and ǫαβǫ
βγ = −δγα. One can verify that three dimensional Euclidean charge

conjugation is indeed an anti-involution, preventing us from defining true Majorana spinors.
These results trivially generalise to the case at hand namely the simplicial, spacetime depen-

dent, Grassmann valued case. However, C now becomes a GT -module morphism C : S → S, where
the conjugate module S is defined with an appropriate real structure on the complex vector space
GT .

Remarkably, the fermionic endomorphism W transforms as

CW t
uvC

−1 = Wvu ⇔ ǫWuvǫ = −W t
vu, (35)

6An intertwining operator φ between two representations πV and πW of G acting respectively on the vector
spaces V and W is a linear map between V and W satisfying φ ◦ πV = πW ◦ φ. The space of intertwiners is a
vector space noted HomG(V, W ).
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under charge conjugation.
In order to exploit this symmetry, we perform an affine transformation on C2 and introduce a

family φi, i = 1, 2, of symplectic Majorana spinors (resp co-spinors) :

φic = ǫijφj , (36)

defined by

φ1 = 1
2 (ψc + iψ), φ1 = 1

2 (ψc − iψ)

φ2 = − i
2 (ψc − iψ), φ2 = i

2 (ψc + iψ).
(37)

The components of these new fields are not independent. The symplectic Majorana condition (36)
implies the following set of constraints on the field components

φα1 = −ǫαβ φ2β

φα2 = ǫαβ φ1β

(38)

Hence, we have not modified the number of degrees of freedom involved in the theory. As we are
about to see, the introduction of the symplectic Majorana fields however simplifies the situation
rather drastically.

Indeed, reexpressing the Dirac action in terms of the new fields, using the conjugation sym-
metry (35), the above constraints and the Grassmann nature of the field components, we see that
the two families decouple

SD,T [ψv, ψv] =
∑

u,v

ψuWuvψv = −i(ST [φ1v] + ST [φ2v]), (39)

where
ST [φv] := ST [ef , ge, φv] =

∑

uv

φαuWuvαβ(ew, ge)φ
β
v , (40)

and Wuvαβ = ǫαγW
γ

uv β. This action is very similar to the original simplicial Dirac action except
that the degrees of freedom are reduced by a factor two via the symplectic Majorana constraints.
The sum of the two actions however restores the original degrees of freedom, they have simply
decoupled. This procedure gives us the opportunity of calculating the fermionic determinant
exactly. With the original framework in terms of Dirac spinors, the presence of “too many”
degrees of freedom per spacetime point prevents us from computing the terms at all order in the
expansion that we now define.

By writing the integral definition of the fermionic determinant (29) in terms of the new fields,
we obtain

det W = Pf(ǫW )2, (41)

where

Pf(ǫW ) =
1

2n

∫

Λ(E)

dµ(φv)e
ST [ew ,ge,φv], (42)

is the Pfaffian 7 of the antisymmetric endomorphism ǫW , Wuvαβ = −Wvuβα, whose square yields
the determinant of ǫW equating det W because the determinant is a morphism of endomorphism
algebras. Note that the Grassmann algebra integrated over is now “half” the original Grassmann

7The Pfaffian of an antisymmetric matrix Mab of rank 2n is defined as follows. Let M =
∑

a<b Mab ea ∧ eb,

where {ea}a=1,...,2n denotes a basis of R2n, be the associated bivector. The Pfaffian Pf(M) is then defined by the
equation : 1

n!
M∧n = Pf(M) e1 ∧ e2 ∧ · · · ∧ e2n.
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algebra GT , namely the exterior algebra over E. Furthermore, we have chosen as a basis for E
the components of the symplectic Majorana field φ.

We now first concentrate on the calculation of the Pfaffian of the endomorphism ǫW before
computing the square. The idea is to construct a finite perturbative definition of the integral
in terms of inverse fermionic masses. We rewrite the Pfaffian by splitting the exponent into the
volume contribution and the kinetic term of the W endomorphism (see (23)). The last is then
expanded in inverse fermionic masses. We obtain the finite expansion

Pf(ǫW ) =
1

2n

n
∑

k=0

αkΓk, (43)

where the coefficients Γk := Γk(ew, ge) are given by

Γk =
1

k!

∑

u1v1,...,ukvk

∫

Λ(E)

dµ(φv)
∏

v

e−
1
2
Vvφvǫφv [φu1

ǫDu1v1φv1 ...φuk
ǫDukvk

φvk
] , (44)

with the kinetic term D :

Duv =
3i

8

(

AIuvσ
IUuv −AIvuU

†
vuσ

I
)

. (45)

Putting back physical units (c is left fixed to unity), the parameter α is given by α = ~

mlp
=

mp

m

with lp = G~ and mp = 1
G respectively denoting the Planck length and mass. To explicitly realise

the appearance of the Planck length, we have rescalled the triad such that e→ 1
G~
e. Finally, the

passage from the exponential of a sum to the product of exponentials is due to the sole presence
of even elements of Λ (E) in the exponent.

We are now ready to perform the integrals order by order in α. Most terms in the expansion
vanish after integration. The Berezin integral yields a non-vanishing result if and only if each vertex
v ∈ V is exactly saturated by two (non identical) symplectic Majorana fermionic components. As
a result, each vertex either carries a volume contribution or must be a source and a target point
for a fermionic worldline. For instance, we obtain the following identity

∫

Λ(E)

dµ(φv)
∏

v

e−
1
2
Vvφvǫφvφαt φ

β
u = (−1)n−1

∏

v 6=u
Vvδtuǫ

αβ . (46)

The generalisation of the above formula to an arbitrary number 2k of field insertions implies that,
leaving aside the sum over vertices, the resulting term in the Berezin integral of the coefficient
of order k (44) is a contribution consisting in a closed sequence of products of kinetic terms D
going through k vertices of the dual complex T ∗ together with volume weights living everywhere
in the complementary of the sequence. These loops can close on a vertex u and reopen on the
neighbooring vertex v yielding disconnected sequences such that the number of vertices traversed
by the connected components sum up to k. A sum over the k vertices supporting the closed
product is then implemented by the sum over vertices in equation (44).

Forall k ∈]0, n[ and for any fixed set Vk = {v1, v2, ..., vk} ⊂ V of k two by two adjacent, distinct

vertices, such a contribution, noted Γ
(v1,...,vk)
k , will be defined in the connected case by

Γ
(v1,...,vk)
k = (−1)k−1(−1)n−k

∏

v/∈Vk

Vv TrD (Dv1v2Dv2v3 ...Dvkv1) , (47)

where TrD : End(S(V)⊗V) → End(S(V)) is the partial trace acting on the Dirac part of End(S).

If the sequence Γ
(v1,...,vk)
k is not connected, there will be one Dirac trace appearing in the above

formula for each connected component.
The coefficient Γk is accordingly a sum over connected and/or disconnected contributions :

Γk =
1

k!

∑

Vk

∑

Γ

Γ
(v1,...,vk)
k , (48)
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  (a)

1/2

(b)

1/2

1/2

Figure 2: (a) A fermionic loop of order six. (b) An order twelve product of two loops.

where the first sum is over possible vertices supporting the loop and the second formal sum symbol
8 implies a sum over all possible connected and/or disconnected contributions saturating the k
vertices Vk.

We now compute the extremal configurations. The order zero is the no loop case and is given
by

Γ0 = (−1)n
∏

V
Vv. (49)

Note that the first order yields the trace of the D endomorphism by virtue of equation (46) which
is null.

If the order of the loop k equates the number of vertices n, there is no place for the volume
contributions and the order k coefficient Γk in the expansion (43) yields

Γn = 2n(−1)n−1TrD (Dv1v2Dv2v3 ...Dvnv1) . (50)

Once again, the loop can be disconnected and built out of lower order connected components in
which case there is one Dirac trace per connected piece. What do these loops have to do with
vacuum fermionic loops ? Each Dirac trace over a closed sequence of D endomorphisms generates
a sum over 2k =

∑k
p=0 C

p
k different contributions by virtue of equation (45). For a fixed set

v1, v2, ..., vk of k vertices,

TrD (Dv1v2Dv2v3 ...Dvkv1) = (
3i

8
)k

2k

∑

i=1

γ
i (v1v2...vk)
k . (51)

Each element γ in the above sum is a closed fermionic path going trough the k vertices v1, ..., vk.
Such a loop is attached to a decoration, i.e a pattern of sigma matrices insertions together with a
polynomial function of the discretized triad ew.

Let us introduce some terminology. As suggested by the notation above, we note γk a loop
wrapping around k vertices of T ∗. Such a loop will be called of order k. All fermionic loops
are connected, do not go trough the same vertex more than once and when a product of loops

is generated at given order in the expansion by a contribution Γ
(v1,...,vk)
k , the different loops do

not touch each other (see fig.1). For each fixed set of k vertices v1, ..., vk ∈ V , the contributions

8More precisely, by denoting γ̃Vk
the Dirac trace TrD(Dv1v2

Dv2v3
...Dvkv1

), we could define the coefficient Γk

by introducing a partition Πp of Vk with p subsets: Vk = ∪p
i=1Vki

,
∑p

i=1 ki = k, in which case

Γk = 1
k!

∑

Vk

∏

v/∈Vk

∑k
p=1

∑

Πp

⋃p
i=1 γ̃Vki

,

where the first sum is over all vertices, the second over all numbers of subsets p constituting the partition and
the last sum is over all possible partitions with p subsets.
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appearing in the above sum (51) differ between themselves by their decorations, i.e by the posi-
tioning of the sigma matrices inside the trace and their pattern of contraction with the (internal)
area co-vectors AI . We call such a contribution γi in the above sum a decorated loop and note
Lk the set of decorated k-loops. We define an equivalence relation ∼ on the set Lk of loop config-
urations of order k by calling two contributions equivalent if they can be mapped onto each other
by relabelling of the vertices. This is the case when the two decorated loops traversing the same
set of vertices are built out of the same sequence of patterns alternating the sigma matrices and
the group elements inside the Dirac trace up to cyclicity.

A typical generic decorated loop of order k looks like this: ∀vi 6= vj ,

γ
(v1v2...vk)
k = AI1 v1v2AI2 v2v3 ...AIk vkv1 TrD

(

σI1Uv1v2σ
I2Uv2v3 ...σ

IkUvkv1

)

. (52)

This term is the first in the sum over decorations (51) and will be the generic loop with which we
will work to build the model. All of the other decorated loops of a given order k can be obtained
and usefully classified trough the following prescription.

The traces 9 are built out of a succession of two types of patterns of the form σU and U †σ
(see (45)). We call the first pattern (resp second pattern) a pattern of type a (resp of type b). A
contribution of order k will contain a succession of k −m (resp m) type a (resp type b) patterns.
There are Cmk possible combinations of such type which can be classified as follows. First, represent
each pattern by a labelled point on a circle (type a or type b) and each combination of such patterns
(up to cyclic permutation) by a set of labelled points on a circle. Changing the starting point on
the circle corresponds to a relabelling of the vertices. Hence, each circle corresponds to an element
in Lk/ ∼. Our classification is established by identifying the finite number N of possible combined
patterns of the form “type b times type a”, i.e U †σσU , constructable out of the fixed number k−m
(resp m) of type a (resp type b) patterns. For each fixed N , there are N sequences of the form
σUσU...σUU †σU †σ...U †σ constituting each circle. The different possible sequences for fixed N
correspond to the different ∼-inequivalent contributions containing N patterns of two adjacent
Pauli matrices inside the Dirac trace. We will call the sub-sequences of the form σUσU...σU (resp
U †σU †σ...U †σ) type a (resp type b) sub-sequences.

The contributions to the Pfaffian (43) have now been defined and classified. To summarise,
the calculation of the Pfaffian yields a sum over products of connected decorated loops wrapping
around more and more vertices of the dual triangulation T ∗ with the increasing of the order of
the expansion. This sum stops with an extremal decorated loop saturating all the vertices of T ∗.
At given order k, the coefficients in the expansion are symbolically written

Γk =
∑

γ̄k

cγ̄k

∏

v/∈γ̄k

Vv γ̄k, cγ̄k
∈ C, (53)

where the sum is over all possible collections γ̄k := ∪iγi of decorated loops γ contributing to the
order k. Our conventions are such that γ̄0 = γ0 = 1. We call the ensemble γ̄k a loop configuration.
The complex number cγ̄k

contains all the numerical factors including the multiplicity of the loop.
We can now compute the square of the Pfaffian to obtain the functional determinant det W

and restore all the degrees of freedom of the (discretized) theory. The determinant expansion will
accordingly involve a sum over quadratic terms in the loop configurations. At a given order k,
leaving aside the sum over vertices, we obtain terms of the form Γp+q = Γp.Γq with p + q = k.
We distinguish between three different types of contributions.

First, there are the terms where both p and q are smaller that the number n of vertices in
which case the product of loop configurations generates configurations where all vertices in the
complementary of the union of the two fermionic loop configurations are associated to square
volumes while the vertices traversed by the fermionic loops carry a single volume contribution.
We can now find vertices where more than one fermionic line converges and edges supporting two
fermionic lines. These particular vertices will be called degenerate and do not carry a volume
weight. If p is smaller that n and q equates n, the intersection between the two fermionic loop

9We are leaving the area co-vectors out of the discussion for the sake of simplicity.
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configurations is necessarily non empty and the resulting loop configuration is degenerate. All
non degenerate vertices contribute a volume term while the degenerate ones will carry a trivial
weight. Finally, if both p and q are equal to n, we obtain a contribution consisting in no volume
term and a double fermionic loop going around all of the two complex.

The structure of the expansion being established, we can rewrite the partition function of the
simplicial theory as the following finite sum

Z(T ) =
1

22n

2n
∑

k=0

αkZ(Γk, T ), (54)

Here, Γk =
∑

p,q ΓpΓq, such that p+ q = k, and ∀k ∈ [0, 2n],

Z(Γk, T ) =
∑

γ̄k

cγ̄k
Z(γ̄k, T ) (55)

=
∑

γ̄k

cγ̄k





(

∏

W

∫

ĝ

dew

)





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+



×

[

∏

V
fv,γ̄k

(ew) γ̄k(ew, ge)

]

ei
∑

w Tr(ewUw)

]

.

where γ̄k = γ̄p ∪ γ̄q with p + q = k and fv,γ̄k
is a polynomial function of the triad whose exact

nature (identity, volume, squared volume) depends on the vertex v and on the type of decorated
loop product γ̄k according to the discussion above.

3.3 Fermions and quantum gravity

We are now ready to perform the integrations in the path integral and solve the model at the
quantum mechanical level. It is rather straight forward to compute the integration over the
discretized connection, i.e over the group elements attached to the edges. The difficulty resides in
the calculation of the integral over the simplicial triad field. The idea that we will follow, due to
Freidel and Krasnov [36], is to use the fact that any polynomial function of the discretized triad
appearing in the partition function can be obtained by source derivation on a given generating
functional.

3.3.1 Generating functional

We firstly study a modelling case where the loop configuration γ̄k is of the form γk ∪ γ0 where

γk := γ
(v1,...,vk)
k , ∀k < n, is the single, connected decorated k-loop defined by (52). This prototype

situation retains all the important features of the model and will lead us to derive the full model
containing all the other types of loop configurations at the end of this paper. Troughout this
section, we will assume that k > 2.

Regarding the framework developed above, the associated weight in the partition function is
given by

Z(γ̄k, T ) =

(

∏

W

∫

ĝ

dew

)





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+



× (56)





∏

v/∈γk

V 2
v (ew)

∏

v∈γk

Vv(ew)
∏

e∈γk

AIe,e(ew) TrD (
∏

e∈γk

σIeUe)



 ei
∑

w Tr(ewUw).

The technology of generating functionals gives us the possibility to compute such an expression
needed for the construction of the model.
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The idea is to rewrite the above quantity of interest as

Z(γ̄k, T ) =





∏

v/∈γk

V̂ 2
v

∏

v∈γk

V̂v
∏

e∈γk

ÂIe,e

(

Z(I)(J, γk, T )
)





J=0

. (57)

Here, a degree n element O of the algebra of monomial functions over spin(3)×n is transformed
into a source differential operator of order n Ô := Ô( δ

δJ ) as follows

O(ew) → Ô(
δ

δJw
) (58)

eIw → i

2

δ

δJI w
.

The generating functional Z(I)(J, γk, T ) is a map from the space of spin(3)-valued two forms into
V ×k defined by

Z(I)(J, γk, T ) =

(

∏

W

∫

ĝ

dew

)





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+



× (59)

[

TrD (
∏

e∈γk

σIeUe)

]

eiST ,J [ew,ge,e
Jw ],

with (I) := (Ie1 , Ie2 , ..., Iek
) denoting a cumulative index and

ST ,J [ew, ge, e
Jw ] =

∑

w

Tr
(

ewUwe
Jw
)

, (60)

where Jw :=
∫

w J , with J = JIXI , being a ĝ-valued current two-form. Using the traceless property
of the elements of spin(3), we see that ST ,J is a discretized version of the continuum source action

SJ [e, ω̂, J ] =

∫

M

Tr (e ∧ R̂[ω̂]) + Tr (e ∧ J), (61)

and that the operation

δ

δJIw
ST ,J [ew, ge, e

Jw ] |J=0 = Tr(ewUwX
I) ≃ −2eIw, (62)

approximates the continuum operation of source derivation at first order in the segments ∆1 ∈ T
lengths (Uw ∼ 11). This motivates our definition of the expectation value of any degree nmonomial
in the simplicial triad :

< O(ew) >T := (
i

2
)n
[(

δ

δJIw

)n

Z(I)(J, γk, T )

]

J=0

. (63)

We now calculate the above generating functional (59) to be able to make sense of equation (56)
following the next lines [36].
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Simplicial triad integration. First, the Lebesgue integrations over R3 ≃ ĝ can be performed
yielding one delta function on the spin group 10 for each wedge w. Then, using the fact that the

characters χj : Ĝ → C; g → Tr
j
π (g), provide a vectorial basis for the space of central functions

on Ĝ and that the delta function is central as a distribution, we obtain

Z(I)(J, γk, T ) =





∏

E−

∫

Ĝ

due−









∏

E+

∫

Ĝ

dge+



× (64)

[

TrD (
∏

e∈γk

σIeUe)

]

∏

W

∑

jw∈N/2

dim(jw)χjw (gwe
Jw),

where dim(jw) = 2jw + 1 is the dimension of the representation jw assigned to the wedge w.

Integration over the discretized connections. The next step consits in performing the Haar
integrals. All 1-cells belong to more than one 2-cell. The e− type edges are shared by two wedges,
the e+ type belong to three or, as we shall see, four wedges or faces. The group elements assigned
to the edges will therefore always appear in more than one trace in (64). We accordingly need to
develop the necessary technique for integrating over Ĝ the tensor product of two, three or four
representations of a given g ∈ Ĝ.

Forall triple of unitary, irreducible representations
i
π,

j
π,

k
π of Ĝ, let Ψk

ij :
i

V ⊗
j

V→
k

V and

Φijk :
k

V→
i

V ⊗
j

V denote the Clebsh-Gordan intertwining operators . These maps are uniquely

defined up to normalisation since the vector space of three-valent Ĝ-intertwiners is of dimension
one. The phase and the sign of the Clebsch-Gordan maps is fixed by requiring their reality, asking
(Ψk

ij)
† = Φ ij

k and by following Wigner’s convention [42]. We can define a Hermitian form <,>
on the vector space of intertwiners with respect to which the Clebsh-Gordans are normalised to
unity < Ψ,Ψ >= Tr(ΨΨ†) = Tr(ΨΦ) = 1.

We introduce the non canonical bijective intertwining operator

ǫj :
j

V →
j

V
∗ (65)

j
ea → ǫj(

j
ea) =

j
e bǫjba,

with ǫjab = (−1)j−bδb,−a and ǫ1/2 := ǫ. This vector space isomorphism defines a scalar product

on
j

V via (v, w) = (ǫ(v))(w), ∀v, w ∈
j

V, and proves that any representation j is equivalent to its

contragredient:
j
π ∗ =

j
π̄ = ǫj

j
π ǫ−1

j . Using this isomorphism, it is possible to raise and lower

intertwiner indices i.e to construct, for instance, elements of HomĜ(
i

V ⊗
j

V,
k

V∗) :

Ψkij = ǫk ◦ Ψk
ij . (66)

10More precisely, these integrals produce delta functions on G = SO(3) [18]. In fact, we are here considering
integrals of the form

∫

ĝ

de eiTr(eg)(1 + ǫ(g)) = δ(g),

where ǫ(g) is the sign of cos θ in the parametrization g(θ, n) = cos θ 11 + i sin θ n.σ of the spin group, as a mean to

construct delta functions on Ĝ = Spin(3).
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We will extensively use a symmetrized version of the Clebsch-Gordan intertwiner called the
Wigner three-j map

ιijk :
i

V ⊗
j

V ⊗
k

V→ C. (67)

Its relationship to the Clebsch-Gordan maps is given by the following evaluation called a three-j

symbol. Using the basis { l
ea}a of

l

V, with l = i, j, k,

ιijk(
i
ea ⊗ j

eb ⊗
k
ec) =

(

i j k
a b c

)

= eiπ(i−j−k) (
k
ec ,Ψ

k
ij(

i
ea ⊗ j

eb)) ∈ R. (68)

This intertwiner satisfies, among other properties, the symmetry conditions ιkij = ιijk = ιjki =
eiπ(i+j+k)ιikj and is normalised: < ι, ι >= 1.

We are now ready to integrate out the group elements. The first step consists in taking care
of the auxiliary variables u. This is achieved by remarking that this operation will require the
integration over the tensor product of two representation matrices since the internal edges to
which the auxiliary variables are attached are shared by precisely two wedges.

Using the complete reducibility
i
π ⊗ j

π = Φijk
k
π Ψk

ij of the tensor product of two irreducible
representations, it is immediate to show that

∫

Ĝ

dg
i
π (g) ⊗ j

π (g) = Φij0Ψ
0
ij , (69)

where Ψ0
ij(

i
e ⊗ j

e) = 1√
dim(j)

(ǫi(
i
e))(

j
e) = 1√

dim(j)
(
i
e,
j
e) if i and j∗ are equivalent and yields zero

otherwise. The fact that the orientation of the wedges is induced by the orientation of the faces
to which they belong implies that the two wedges meeting on a given edge e− will always have
opposite orientations. Accordingly, the integration over the auxiliary variables will impose each
wedge belonging to a given face f to be coloured by the same representation jf . Recalling that the
representation associated to a wedge is interpreted as the quantum length number of the segment
defining the center of the face containing the wedge as measured from the frame associated to the
wedge, we obtain that the vector associated to the segment has the same quantum length in all
frames [36].

The generating functional (59) consequently yields

Z(I)(J, γk, T ) =
∏

E

∫

Ĝ

dge

[

TrD (
∏

e∈γk

σIeUe)

]

× (70)

∏

F

∑

jf∈N

dim(jf )
χ(f)χjf (eJ

1
f ge1

f
...eJ

m
f gem

f
),

where the group element insertions are along all the vertices v ∈ V of a given face f (m denotes
the number on vertices, i.e the number of wedges contained in f) and χ(f) denotes the topological
invariant Euler characteristic of the face.

The second step consists in Haar integrating over the group variables assigned to each edge
e of T ∗. The dimensionality of our spacetime implies that each edge e is shared by exactly
three geometrical faces (each triangle is built out of three segments). However, if a fermion is
travelling along the edge e, there will be an extra face, that we will call virtual, in the fundamental
j = j0 = 1/2 representation corresponding to (a piece of) the fermionic loop. We now distinguish
between the two cases : the purely gravitational situation, away from the fermionic loop γk, and
the edges supporting a fermion path.

If no fermions are present, each group element will appear three times in the product over the
faces in (70). If i, j and k denote the three geometrical colourings of the three positively oriented
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faces meeting on e, i.e the three lengths quantum numbers of the three segments building up the
triangle dual to the edge e, the integral of the tensor product creates a three-j symbols together
with its adjoint intertwiner

∫

Ĝ

dg
i
π (g)⊗ j

π (g)⊗ k
π (g) = ι† ι, (71)

where ι := ιijk. If one or two out of the three faces are not positively oriented, one uses the
isomorphism (65) on both sides of the above equation in order to obtain the integral of interest.
The raising and lowering of indices on the right hand side yields the correct intertwiner via (66).

Let us now turn to the case where a fermion is travelling through the triangle dual to the edge
e, i.e e ∈ γk. There are now four representations associated to three geometric colourings of the
three faces meeting on e plus a matter colouring of the virtual face defined by the fermionic loop.

We are here contemplating the creation of quantum torsion by the fermionic field dislocating
the quantum mechanical spacetime in which it is evolving. Indeed, if we consider the triangle
∆2 ∈ T traversed by the fermion line as a physical system determined by the (physical) lengths
of its boundary segments, we can apply to it a Kirillov-Kostant geometric quantisation procedure
obtaining the so-called quantum triangle [43]. The lengths of the boundary segments of the quan-
tum triangle are quantised and are encoded in the associated representations. When no spacetime
torsion is present, the quantum version of the Gauss law tells us that the three quantum length
vectors must close. In presence of fermions, the Gauss law acquires a source term. Heuristically,
we see that the presence of the fourth virtual face is a gap in the closing of the quantum triangle
whose magnitude is given by the associated representation, i.e j0 = 1/2 in Planck units. The
inspection of the classical equations of motion shows that this gap is the quantum analogue of the
failure to the coplanarity of the image under the gravitational field e in inertial space of the three
(coordinate) length vectors of the triangle traversed by the fermion.

In addition, equation (59) teaches us that, for the generic case that we are considering here,
each fermion path along an edge comes accompanied by a sigma matrix. Recall that, classically,
the sigma matrices are matrix representations of the embedding of the co-inertial space V ∗ in the
Clifford algebra C(3) and hence solder between the spin space V, i.e the j = 1/2 representation
space of Ĝ, and the inertial space V , i.e the j = 1 representation, created by the gravitational
field at each point of spacetime (see the appendix). In the quantum framework developed here,
we see that these representations of C(3) are attached to the edges of the fermionic loops. How
do they relate the spin space to spacetime in the quantum regime ? The answer to this question
resides in the rethinking of the sigma matrices as elements of HomĜ(V ∗,V ⊗ V∗) by virtue of

the defining equation (109) of the spin group Ĝ. Because V ∗, V and
1

V are isomorphic as vector
spaces, we can conclude that the sigma matrices are intertwining operators between the adjoint
representation and the tensor product of a fundamental and its dual representation.

More precisely, by using the isomorphism HomĜ(V ∗ ⊗ V∗,V∗) ≃ HomĜ(V ∗, End(V∗)) given
by Φ(eI ⊗ eα) = 1√

6
(σ(eI))t(eα), we obtain the following relation between sigma matrices and

three-j symbols

ι†(eI ⊗ eα ⊗ eβ) =

(

I α β
1 1/2 1/2

)

= (eβ ,Φ(eI ⊗ eα)) =
1√
6
σIαγǫ

γβ, (72)

where we have omitted the representation labels of the intertwiners as there is no ambiguity and
the scalar product used is the one induced on V∗ par the previously defined scalar product on V.
This reformulation will represent the quantum analogue of equation (109).

Hence, when a fermion line j0 = 1/2 comes attached to a sigma matrix, we will have to
repeatidly use the following relation

∫

Ĝ

dg σI ◦ j0
π (g)⊗ i

π (g)⊗ j
π (g)⊗ k

π (g) =
∑

s

(

σI ◦ ι†s
)

ιs, (73)

where σI := σ(eI) ⊗ 1 ⊗ 1 ⊗ 1 and the sum on the right hand side is over the representations
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Figure 3: Graphical picture of the emergence of the fermionic seven-j symbol.

appearing in a chosen decomposition of the space of quadrilinear invariants. For instance, if we

choose HomĜ(
j0
V ⊗

i

V ⊗
j

V ⊗
k

V,C) =
⊕

sHomĜ(
j0
V ⊗

i

V,
s

V) ⊗HomĜ(
j

V ⊗
k

V,
s

V∗), the four-valent
intertwiner appearing in the above equation is given by :

ιs := ιs,j0ijk = Ψs
j0i ⊗ Ψsjk. (74)

The coefficient appearing in the change of basis between the chosen decomposition and the
one given by coupling the representations j0 − j and i− k is given by a six-j symbol.

Integrating out all group elements and putting everything together, we obtain the following
generating functional

Z(I)(J, γk, T ) =
∏

F

∑

jf

dim(jf )
χ(f)





∏

e∈γk

∑

je

∏

v∈γk

{7j(γ)}Iv(J)





∏

v/∈γk

{6j}v(J). (75)

Here, {6j}v(J) is the source six-j symbol defined by calculating the usual {6j} symbol out of
the six representations associated to the six wedges sharing the vertex v with the insertion of the
group elements eJ . For a given vertex v belonging to six wedges coloured by the spins j1, ..., j6,
with associated sources J1, ..., J6 and for a given orientation configuration of the wedges ;

{6j}(J) =

{

j1 j2 j3
j4 j5 j6

}

(J) (76)

=

(

a1 a2 a3

j1 j2 j3

)(

j1 a5 j6
a′1 j5 a′6

)(

j4 j2 a6

a′4 a′2 j6

)(

a4 j5 j3
j4 a′5 a′3

)

×

j1
π (eJ1)

a′1
a1

j2
π (eJ2)

a′2
a2

j3
π (eJ3)

a′3
a3

j4
π (eJ4)

a′4
a4

j5
π (eJ5)

a′5
a5

j6
π (eJ6)

a′6
a6
.

The six-j symbol (with source insertions) can be conveniently rewritten as a graph reproducing
the tensor contraction pattern. This graph is built out of four nodes n and six links l respectively
coloured by intertwiners, issued from the Haar integrations, and irreducible representations of Ĝ
coming from the colouring of the faces meeting on the vertex v. The resulting tetrahedral graph
is dual to the original tetrahedron of the triangulation T ; his nodes (resp links and triangles)
correspond to the triangles (resp segments and vertices) of the original tetrahedron. This means
that the three links emerging from a node of the spin network correspond to the three segments
building up the corresponding triangle of the original tetrahedron. Such a graph defined up to
topology and encoding combinatorial representation theory data is called a spin network and can
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be pictured as follows

{6j}(J) =

J

J
J

J J

J

1

2

3

4

6

5 . (77)

We will fix are conventions such that all spin networks will be built out of normalised intertwiners.
By {7j(γ)}Iv(J), we mean the modified {6j} symbol calculated by taking into account the

fermionic line (and its associated sigma matrix) going trough the vertex of interest. Figure 3
pictures the integration over the group variables yielding the fermionic seven-j. For a given vertex
v traversed by a fermionic line and belonging to six wedges coloured by the spins j1, ..., j6 with
associated sources J1, ..., J6, the fermionic seven-j yields

{7j}I(J) =

(

a1 a2 a3

j1 j2 j3

)(

j1 a5 j6
a′1 j5 a′6

)

× (78)

(

j0 j4 j2 a6

α a′4 a′2 j6

)(

β a4 j5 j3
j0 j4 a′5 a′3

)

σIαβ ×

j1
π (eJ1)

a′1
a1

j2
π (eJ2)

a′2
a2

j3
π (eJ3)

a′3
a3

j4
π (eJ4)

a′4
a4

j5
π (eJ5)

a′5
a5

j6
π (eJ6)

a′6
a6 ,

where ιj0ijk(
j0
eα ⊗ i

ea ⊗
j
eb ⊗

k
ec) :=

(

j0 i j k
α a b c

)

.

Equivalently, the seven-j is defined graphically by :

{7j(γ)}I(J) =
√

6

J

J
J

J
J1

2
3

J5

6

4

I

. (79)

If k = 2, the one half line in the fermionic seven-j picture closes by going from one node to itself.
It is interesting to stress that evaluating the obtained partition function at J = 0 yields the

expectation value of a fermionic Wilson line (with sigma matrices insertions) coupled to three
dimensional quantum gravity.

3.3.2 Grasping operators

Recall that for a given fermionic loop union γ̄k = γk ∪ γ0 of order k, with γk denoting our generic
decorated loop defined above, the weight in the total partition function (54) is provided by (57),
with a by now precise definition of Z(I)(J, γk, T ). The last step hence consists in understanding
the action of the differential operators acting on the generating functional. The key point is
the following. If J is a ĝ-valued current, J = JIXI , then the action of source derivation on an
exponentiated current in the representation j yields

δ

δJI

j
π (eJ) |J=0 =

j
π∗ (XI), (80)

i.e the image of the I-th generator of a given (dual) basis of ĝ under the representation j of the Lie

algebra. The crucial point relies on the fact that the Lie algebra homomorphism
j
π∗: ĝ →

j

V ⊗
j

V∗

is an intertwining operator between the adjoint representation, a j representation and its dual.
We note Φ the associated normalised intertwiner;

j
π∗= Θ(j) Φjj1 , (81)

24



where Θ(j)2 := Θ(1, j, j)2 =<
j
π∗,

j
π∗>= j(j + 1)(2j + 1).

Therefore the action of source derivation with respect to the I-th component of the current, also
called grasping, modifies a spin network with source insertion by creating a new vertex attached to
an open line coloured by the index I in the adjoint representation. From now on, we will represent
a link in the adjoint representation by a dashed line:

δ

δJI







a

b

j

J






|J=0 = Θ(j)







j

b

I

a





. (82)

The no fermion case. For all fermionic loop ensembles γ̄k of the form γ̄p ∪ γ̄q, where p and q
are smaller than n, there is a squared volume living on each vertex where no fermions are present.
This is a remnant of the presence of the mass term in the Dirac action. The squared volume of
the three-simplex associated to a vertex v ∈ T ∗ is calculated by acting twice with the volume
operator

V̂v = − i

8.16.3!

∑

w,w′,w′′⊃v
ǫIJK

δ

δJwI

δ

δJw′J

δ

δJw′′K
sgn(w,w′, w′′), (83)

on the six-j symbol with source insertions {6j}v(J) (77) living on v and by evaluating the result at
J = 0. The action of V̂v associated to a given triple of wedges will create one intertwiner on each
of the links l, l′, l′′ corresponding to the wedges w,w′, w′′ mapping the dual adjoint representation
space into the second tensor power of the representation space associated to the link. The three
adjoint representations spaces then get mapped into the complex via the totally antisymmetric
three dimensional Levi-Civita tensor regarded as three-j symbol, i.e. an evaluated three valent
intertwiner:

ǫ(eI ⊗ eJ ⊗ eK) :=
1√
6
ǫIJK =

(

1 1 1
I J K

)

. (84)

Graphically, the result is therefore an ordinary six-j symbol tetrahedral spin network with an
additional internal vertex, coloured by the evaluated intertwiner ǫIJK , whose legs, living in the
adjoint representation, are attached to the three links of the spin network grasped by the source
derivations corresponding to the wedges of the derived complex T +, i.e to the segments of T . The
full contribution of the quantum volume of a given vertex v accordingly results in the following
sum

Vv =
∑

grasp

K













w

w’’

w’













, (85)

over all sixteen (plus the permutations) possible graspings on the triple of links of the spin network
which correspond the triple of wedges whose dual segments classically span the volume of the
tetrahedron dual to the vertex v, i.e over all admissible triples.

Here, we have introduced a notational simplification that we will use from now on. The formal
sum and the coefficient K above are entirely defined by the spin network at their right. The
∑

grasp symbol means that we are summing over all admissible three-graspings of the type defined
by the spin network. The first term in the sum is the one pictured. For each such term, the
coefficient K is a function of the spins associated to the grasped faces together with the correct
sign factor and numerical coefficient.
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Explicitly, for the above case, we have

∑

grasp

:≡
∑

w,w′,w′′

, (86)

and

K : = K(jw, jw′ ; jw′′) (87)

= − i

16.8
√

6
sgn(w,w′, w′′)Θ(jw)Θ(jw′)Θ(jw′′).

The computation of the squared volume V 2
v of a given vertex v now involves the repeated action

of Vv on the six-j symbol with source insertions {6j}v(J) (77) associated to v before evaluation
at J = 0. The result, in terms of spin networks, is the usual tetrahedral six-j spin network with
now the insertion of a double trivalent grasping.

This procedure leads us to a quantisation ambiguity; if at least one of the links belonging
to the triple of the first three-grasping coincides with one of the links of the second, which is
automatically satisfied, we have to decide wether the action of the second power of the volume
grasps “above” or “underneath” the grasping of the first volume action. The two configurations
yield a different spin network and hence a different number for the quantum measurement of the
associated tetrahedron’s squared volume. To circumvent this difficulty, we propose a natural pre-
scription consisting in summing over both contributions with equal weight factor, i.e we prescribe
a symmetrized combination of the two possibilities. Concretely, this means that when we calcu-
late the squared volume, we first sum over all possible admissible three-graspings (graspings of
the triple of wedges whose dual segments do not belong to the same triangle). As above, there are
16 × 3! such terms. For each fixed contribution, we then sum over all the admissible 16 (without
counting the permutations) second three-grasping possibilities. Out of these terms, there is one
where the two three-graspings occur on the same triple of links, six where two out of the three
links are grasped twice and nine contributions where only one link is grasped two times. Our
prescription is then such that when a term with n links grasped twice occurs in the summation,
a sum over the 2n possibilities weighted by a factor 1/2n is implemented. Everytime that such
an ambiguity occurs, the formal notational symbol

∑

grasp will contain the implementation of the
symmetrization procedure. As a result,

V 2
v =

∑

grasp

K













1

1

1 2

2

2

f’

f’’

f

f

f’’

f’













, (88)

for each vertex where no fermion is present. Here,

∑

grasp

:≡ Sym





∑

w2,w′

2
,w′′

2





∑

w1,w′

1
,w′′

1

, (89)

and

K : = Kv(jw1
, jw′

1
, jw′′

1
; jw2

, jw′

2
, jw′′

2
) (90)

= − 1

(16.8)26

2
∏

i=1

sgn(wi, w
′
i, w

′′
i )Θ(jwi

)Θ(jw′

i
)Θ(jw′′

i
),

where the symmetrization is implied by the symbol Sym(
∑

) in the second sum.
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Fermion loops. We conclude this section by describing the situation along our generic fermionic
path γk. Along his travel round the loop γk, the fermion sees a volume contribution V̂v living on
each vertex that he goes trough together with an (internal) area one-form ÂIe measuring the area
of each triangle he is travelling through. The component I of the area one-form measured in the
frame associated to the vertex v is calculated by acting with the differential operator

ÂI uv = − 1

12

∑

w,w′⊃uv
ǫIJK

δ

δJJw

δ

δJKw′

sgn(w,w′), (91)

on the fermionic seven-j symbol with source insertions {7j(γ)}Iv(J) (79) living on v. Graphically,
the result on a given pair of links corresponding to a pair of wedges is the creation of two open
lines coloured by indices J and K in the adjoint representation. These two lines, together with
the open line coloured by the index I coming from {7j(γ)}Iv(J), finally contract trough the ǫIJK
intertwining. This is the explicit picture of the soldering of the spin space to the quantum geometry
of spacetime.

To complete the picture we also need a volume contribution on the vertex v. Here again the
procedure implies a double grasping of the fermionic seven-j assigned to the vertices of the fermion
loop. The result for a given vertex u is the following

V̂uÂI uv
√

6













J

J
J

J
J1

2
3

J5

6

4

I













|J=0 =
∑

grasp

K













2

2

2

1

1f’

f’’

f

f

f’













. (92)

Here, the formal notation means

∑

grasp

:≡ Sym





∑

w2,w′

2
,w′′

2





∑

w1,w′

1

, (93)

and

K : = Ku(jw1
, jw′

1
; jw2

, jw′

2
, jw′′

2
) (94)

=
i

162
√

6
sgn(w1, w

′
1)sgn(w2, w

′
2, w

′′
2 )Θ(jw1

)Θ(jw1′
)Θ(jw2

)Θ(jw2′
)Θ(jw2′′

).

The sum is first over the three possible two-graspings of the links corresponding to the wedges
dual to the segments building up the triangle through which the fermion travels. For each such
terms there is then a sum over the admissible three-graspings. The Sym symbol ensures that we
are symmetrizing the appearing ambiguities.

We are now ready to give a precise definition of the model since all quantities appearing in
(57) have been defined.

3.3.3 The model

Let us summarise the results and discuss the properties of the model. The proposal made in this
paper for the description of massive fermionic fields coupled to three dimensional quantum gravity
consists in an order by order calculation of the partition function (27) of the theory through an
inverse mass expansion (54).

The weight of the decorated loop union γ̄k = γ̄p ∪ γ̄q, p+ q = k, of order k ∈ [0, 2n] appearing
in the α expansion, is given by the following general expression:

Z(γ̄k, T ) =
∏

F

∑

jf

dim(jf )
χ(f)





∏

e∈γk

∑

je

∏

v∈γk

Av(γ̄)





∏

v/∈γk

Bv(γ̄). (95)
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The no-fermion vertex amplitude Bv is non trivial if and only if the loop ensemble γ̄k is built out
of the union of two loop configurations γ̄p and γ̄q which are such that p and q are smaller than
n (if one of the two loop configurations saturates all vertices, there is obviously no no-fermion
situation). In this case, the amplitude is defined to be the square volume (88) : Bv(γ̄) = V 2

v .
The vertex amplitude Av(γ) sitting on the fermion path depends on the type of loop configu-

ration, decoration considered and also generically varies from one vertex to another.
For the particular loop configuration γ̄k = γk ∪ γ0 that we have used to build the model, the

fermionic vertex amplitude has been defined. How does this amplitude generalise to the other
contributions ? For instance, how to build amplitudes for other types of configurations and other
types of decorations ?

We have seen how all the other terms in the sum over loop decorations (51), i.e all possible
decorated loops, generated for a fixed set of k vertices could be obtained and we have defined a
classification of inequivalent loop decorations. Let us pick one general decorated k-loop γN ∈ Lk
(more precisely, a chosen representative of an equivalence class in Lk/ ∼) whose Dirac trace is
built out of N sequences of the form σUσU...σUU †σU †σ...U †σ out of our previously established
classification. Call k − m (resp m) the total number of type a : σU (resp type b: U †σ) like
patterns appearing in γN . Our generic loop hence corresponds to a decorated loop of the form
γ1 with m = 0. Let VγN

= V ∩ γN denote the k vertices traversed by the fermionic loop and
Va (resp Vb) the subset of vertices associated to the portions of the loop corresponding to the
type a (resp type b) sub-sequences which are not a starting point for a type b (resp type a) sub-
sequence. We call Vab and Vba the subset of vertices of VγN

that respectively correspond to an
end point of a sub-sequence of type a and to an end point of sub-sequence of type b. Hence,
VγN

= Va ∪ Vab ∪ Vb ∪ Vba.
Taking products of such decorated loops γ, we obtain loop configurations γ̄. The fermionic

determinant generates quadratic loop configurations of the form γ̄k = γ̄p ∪ γ̄q. The value of p and
q determines three classes of loop configurations.

We now show how the weights associated to all the possible contributions appearing in the
fermionic loop expansion (43) can be calculated from the forgoing construction by separately
considering the three different types of quadratic loop configurations.

The case p, q < n. If both p and q are strictly smaller than the number of vertices n, we
generically observe non degenerate vertices. However, the two loop configurations γ̄p and γ̄q can
be supported, partially or totally, by a common set of vertices. We first suppose that γ̄p ∩ γ̄q = ⊘
and consider one component γN ⊂ γ̄p of order r ≤ p.

We now follow a fermion along his travel around the loop γN starting from a portion of the
loop associated to a type a sub-sequence belonging to a given previously defined sequence n out
of the N . Along all the sub-sequence of type a, all vertex amplitudes are given by the following
vertex functions. Forall v ∈ Va,

Av(γN ) = (−1)m
∑

grasp

K













2

2

2

1

1f’

f’’

f

f

f’












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for k 6= 2 and

Av(γ1) =
∑

grasp

K













w

w’

w’’2

2

2

w’1

w1













(97)

for the second order case.
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The fermion now observes a junction between a sub-sequence of type a and a sub-sequence of
type b yielding a pattern in the trace of the form UU ′†. Accordingly, if k 6= 2, all vertices v ∈ Vab
carry the following vertex amplitude

Av(γN ) = (−1)m

























, (98)

while the k = 2 case yields

Av(γ1) =
∑

grasp

−2K













w’

w’
1

2

w2

w3

w1w’’3

w’3













, (99)

because the two group elements U and U ′† correspond to the same edge: U ′ = U . The fac-
tor two comes from the trace formula TrD(σIσJ ) = 2ηIJ . Note that the formal sum over
the graspings here contains a symmetrizing prescription for triple graspings of the same link:
∑

grasp = Sym(
∑

w3,w′

3
,w′′

3
Sym(

∑

w2,w′

2
))
∑

w1,w′

1
. In this particular case, the sum over the inter-

twiners in (95) disappears. It is interesting to remark that, omitting the volume contribution, we
obtain the expectation value of the area of the triangle dual to the edge on which the fermion is
travelling.

Following his trip, the fermion is now going through a type b sub-sequence. All amplitudes for
k 6= 2 and for vertices v belonging to Vb will be of the form

Av(γN ) = (−1)m
∑

grasp

K













w

w’’2

2

w1

w’1

w’2













. (100)

Finally, the fermions reaches the boundary of a type b sub-sequence to end the sequence n. If
n 6= N , a new type a sub-sequence belonging to a new n+ 1 sequence starts. Here two, and only
two, Pauli matrices are brought together inside the Dirac trace. We accordingly use the relation
σIσJ = iǫIJKσ

K +ηIJ , creating two types of terms associated to the disappearance of the adjacent
sigma matrices.

Using the tools developed in this paper, it is not hard to realise that ∀v ∈ Vba, the weights are
given by

Av(γN ) =
∑

grasp

(−1)mK













6i













1

1w’

w

w’2

w’3

w’’3

w3

w2













+













1

1w’

w

w’2

w’3

w’’3

w3

w2

























. (101)

Together with the no-fermion vertex amplitude, the above vertex functions define the model
completely for non-degenerate loop configuration with p, q < n.

Now, if γ̄p ∩ γ̄q 6= ⊘, we observe degenerate vertices traversed by two fermionic lines. If v ∈ Va
is a degenerate vertex, we obtain the following amplitude forall k 6= 4, and for a given relative
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orientation of the two fermionic lines

Av(γN ) = (−1)m
∑

grasp

K












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w’2

w1
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










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or

Av(γN ) = (−1)m
∑

grasp

K













w’1

w2
w’2

w1













, (103)

depending on the number of fermionic lines living on the same edge converging towards the
degenerate vertex. If k = 4, the two fermionic lines simply close, as in (97). All these amplitudes
trivially generalise to vertices v ∈ Vab,Vb,Vba by using the results obtained in the non degenerate
case.

The p, q ≤ n case. If p < n and q = n, we necessarily obtain degenerate quadratic loop
configurations. Some vertices, namely the vertices in the complementary on the γ̄p configuration,
however remain non degenerate. If p = q = n, all vertices are degenerate. In all these cases,
the results developed above generalise yielding the fermionic vertex amplitudes Av(γ). Recalling
that the no-fermion Bv(γ) amplitudes are trivial, we have now written down all possible vertex
amplitudes and the model is consequently defined for all type of loops emerging from the hopping
parameter expansion. The sum of all these contributions yields the partition function of the
coupled system. This concludes our presentation of our proposed model of massive fermions
coupled to three-dimensional quantum gravity.

4 Conclusion

In this paper, we have proposed a model describing the coupling of massive fermions to 3d quantum
gravity by defining the vacuum to vacuum transition amplitude of the theory. We have first defined
a consistent discretization procedure yielding a concrete meaning to the functional measures.
Then, we have implemented the Berezin integral over the fermionic fields obtaining the expectation
value of a functional determinant. This determinant has then been calculated by using a hopping
parameter expansion yielding a sum over fermionic loops. This finite expansion has enabled us
to compute the path integral of the theory as we have shown how to calculate the path integral
order by order in the inverse mass expansion parameter. The integration over simplicial co-frames
is realised by source derivation on a generalised generating functional where the integration over
discretized connections is implemented. It is interesting to note that a two-dimensional slicing of
one of the contributions to the above spinfoam model associated to a given loop, non co-planar
with the slicing, yields a spin network with an open end coloured by the spinor representation, in
accordance with loop quantum gravity. The model is rich enough to take into account the effects
of quantum torsion and of non trivial curvature and highlights the subtle relation between spinors
and quantum geometry.

Many issues remain open. First, the emergence of quantisation ambiguities due to the presence
of high order polynomials in the simplicial triad field in the theory is clearly a problem. We have
prescribed a coherent procedure but one would need to show that the result does not depend on
the prescription used to complete the picture.

Second, unlike the point particle case, fields break the topological invariance of three dimen-
sional gravity. The exactitude of the model is hence questionable, even if the spinfoam explicitly
derives from a classical action. This leads to two questions. First, do the asymptotics (j → ∞)
of the vertex amplitudes reproduce (a simple function of) the classical Regge action coupled to
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fermions ? Second, and most importantly : what is the behaviour of the model under refinement
of the triangulation? Since the finiteness of our loop expansion is due to the cut-off on the number
of degrees of freedom induced by the triangulation, this issue is of primary interest, especially be-
cause of the large value of the expansion parameter. An alternative to these issues is to consider
the GFT approach [21] to implement a sum over topologies and triangulations needed when one
works with non-topological theories.

Third, the model obviously diverges in the infrared as for pure (non properly gauged-fixed
[18]) gravity because of the infinite sum over representations. A possible regularization scheme
to explore consists in incorporating a positive cosmological constant Λ in the theory leading to
a modified Turaev-Viro model [44] based on the representation theory of the real compact Hopf
algebra Uq(su(2)) with the deformation parameter q at root of unity related to the cosmological

constant Λ via q = eilp
√

Λ. Since there are only a finite number of representations of Uq(su(2))
(with non-vanishing q-dimension) at root of unity, this procedure would cut of the infinite sum
over representations and yield an infrared finite model.

Finally, one would need to analyse the well known fermion doubling problem appearing in
lattice-like theories incorporating fermions. Does the spinfoam generate doublers ? Could we
modify the action to suppress the extra species ?

It is interesting to underline the crucial differences between the coupling of fields and point
particle to quantum gravity. First, the effects of fields on geometry are non-localised, in the
sense that matter fields create non trivial vertex amplitudes (squared volumes for instance) on all
vertices of the dual complex. These effects are more difficult to control and more complicated than
in the point particle case where curvature and torsion are non trivial only around the particle’s
worldline (note however that this could be due to the mass term). Second, as discussed above,
fields break the topological invariance of three dimensional gravity for the same reasons, whereas
particles do not.

To conclude, we discuss the perspectives. The first natural extention seems to be the gen-
eralisation to four spacetime dimensions. At first, one might expect the coupling of fermions to
the Barrett-Crane model of four dimensional quantum gravity to be problematic. As remarked in
[45], the reason is that the kinetic term of the standard Dirac action in a d-dimensional curved
spacetime couples to the d− 1 exterior power of the d-bein. Hence, in even dimensions, fermions
are coupled to Palatini gravity via an odd power of the gravitational field not convertible into
any power of the d − 2-form B field of BF theory. However, if one uses the Capovilla, Dell,
Jacobson, Mason chiral action [46] of fermions coupled to two-form gravity, the fermions indeed
couple to the B field and one could imagine such an action as an interesting starting point for a
four dimensional construction 11. Next, let us comment on the Lorentzian framework. Because
of the non-compacity of the associated symmetry group, the unitary, irreducible representations,
appearing in the character expansion of the delta function forcing the discretized curvature to be
trivial around the faces of the spinfoam, would be infinite dimensional. Since the fermions live in
finite dimensional representations, we may expect a problem in the integration over the discretized
connections since the space of non-vanishing intertwiners between the finite and the unitary rep-
resentations is empty. Hence, a generalisation of the present work to Lorentzian signatures seems
a priori non-trivial. Finally, inspired by the recent series of papers devoted to the computation
of the graviton propagator [47], it would be interesting to compute the two point function of the
model. The techniques developed in this paper should be easily generalisable to the construction
of the fermion propagator in three-dimensional spinfoam quantum gravity.
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A Appendix : Geometrical and algebraic setting

This appendix is devoted to review the geometrical and algebraic structures underlying the cou-
pling of fermions to a three dimensional dynamical spacetime. We first define the Clifford algebra
of interest in this paper, its associated spin group and spinors before introducing the notion of
spinor bundles and spin connections. Most of the results reviewed here are inspired by references
[48].

A.1 Fermions in flat spacetime

Flat Euclidean spacetime spinors are related to,

A.1.1 The Clifford algebra C(3) and the spin group Spin(3)

The Clifford algebra C(3, 0) ≡ C(3) is the real associative algebra generated by a unit I and the
three symbols γ1, γ2, γ3 satisfying

γIγJ + γJγI = 2ηIJ , where ηIJ =

{

1 if I = J = 1, 2, 3

0 if I 6= J.
(104)

A possible vectorial basis of C(3) is provided by {I, γI , γIγJ , γIγJγK}I<J<K . The Clifford algebra
C(3) is therefore a linear space of dimension eight isomorphic to the exterior algebra Λ(R3) as a
vector space and to the space of two by two complex matrices M2(C) as a real associative algebra.
The later isomorphism provides us with a faithful representation of C(3) on C2:

ρ : C(3) → End(C2) (105)

γI → ρ(γI) = σI ,

in terms of the Pauli matrices σI , I = 1, 2, 3,

σ1 = ρ(γ1) =

(

0 1
1 0

)

, σ2 = ρ(γ2) =

(

0 −i
i 0

)

, σ3 = ρ(γ3) =

(

1 0
0 −1

)

,

known as the Pauli algebra. The unit is mapped onto the unit two dimensional matrix. Let
C0(3) be the even subalgebra of C(3), i.e the subalgebra linearly generated by products of an
even number of generators γ (i.e two generators) and let C1(3) denote the vector subspace of C(3)
linearly generated by the elements {γI}I .

The group Spin(3) can be explicitly realized as a subset of the Clifford algebra C(3). To see
this, let V denote a real vector space of dimension three endowed with a non-degenerated bilinear
form g and denote by {eI}I a g-orthonormal basis of V : g(eI , eJ) = ηIJ . It is possible to embed
the algebraic dual V ∗ = Span{eI}I (endowed with the metric with components ηIJ ) of V in C(3)
through the linear map

γ : V ∗ → C1(3) ⊂ C(3) (106)

v = vIe
I → γ(v) = vIγ

I := /v.

Consider the subset of elements s ∈ C(3) that are invertible and such that

∀v ∈ V ∗, χ(s)(γ(v)) = sγ(v)s−1 ∈ C1(3). (107)
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The set of such elements s forms a group called the Clifford group Γ. Note that the map χ(s) :
C1(3) → C1(3) provides us with a linear transformation of V because V , V ∗ and γ(V ∗) = C1(3)
are isomorphic as vector spaces. The first isomorphism is due to the fact that the bilinear form g
is non-degenerate and the second one is given by (106). More precisely, χ(s) is an isometry of the
bilinear form g, i.e an orthogonal transformation belonging to O(3). The representation of the
Clifford group given by χ : Γ → GL(V ∗) is not faithful because, for instance, s and as, a ∈ R∗, yield
the same rotation through χ. A standart way of distinguishing between s and as is to introduce
a normalisation. Spin(3) is then derived from the Clifford group by using this normalisation
condition. Denote by a “bar” the involution of C(3) defined by γ1γ2...γp = γp...γ2γ1. One can
now define the spin group as the following subgroup of Γ

Spin(3) = {s ∈ Γ ∩ C0(3) such that | s̄s |= s̄s = 1}, (108)

where | . | denotes the absolute value. One can show that χ(Spin(3)) = SO(3) and that the map
χ : Spin(3) → SO(3) is a surjective two to one group morphism which implies that Ĝ = Spin(3) ≃
SU(2) is the universal double cover of G = SO(3) because Spin(3) is simply connected. We can
equivalently obtain Spin(3) in its fundamental or defining representation as a two by two complex
matrix group through the isomorphism ρ. Indeed, in M2(C), the above definition is equivalent
to defining the group Spin(3) as the group of invertible 2 × 2 matrices ρ(s) = A, such that there
exists a SO(3) linear transformation Λ(A) : V ∗ → V ∗, satisfying:

Aσ(eI)A−1 = σ(ΛIJ (A)eJ), and det A = 1, (109)

where σ = ρ ◦ γ : V ∗ →M2(C) and the constraint on the determinant forces the element s ∈ Γ to
belong to the pair subalgebra C0(3) and to satisfy the normalisation condition. We here recognise
the fact that the adjoint action of SU(2) on its Lie algebra su(2) ≃ R3 is a rotation of R3.
Physically, we can read this equation as stating that an orthogonal transformation in spacetime
V must always be accompanied by a change of basis in spin space V = C2 for the spin rotation
σ(v), v ∈ V , to be independent of the frame in which the vector v is expressed. This equation
also contains information about the profound difference between spinors and vectors, namely that
spinors are not invariant under transformations corresponding to non trivial elements of the center
of SU(2). Indeed, note that a 2π radian rotation changes the sign of the spin matrix A of equation
(109) keeping the associated spacetime rotation unchanged. Therefore a spinor on which the spin
matrix acts will feel the difference between a 2π and a 4π rotation whereas a vector will not.

A.1.2 Spinors

We can now define a fermion. Essentially, a fermion ψ is a physical field whose local excitations
yield half integer spin particles and whose dynamics are governed by the Dirac Lagrangian. This
Lagrangian is built out of complex linear combinations of the fields. Hence, the mathematical
definition of a classical spin one-half fermion relies on complexified Clifford algebras.

A Dirac spinor is an element of a complex vector space V on which the complexified even
Clifford subalgebra C0(3)C = C0(3) ⊗R C is irreducibly represented. Because of the isomorphisms
of complex algebras C0(3)C ≃ HC ≃ M2(C), where H denotes the quaternions, we see that this
vector space, also called Clifford module, is given by V = C2. Weyl spinors do not exist here
because C0(3)C is simple: the algebra cannot be broken into a left and a right part by the use
of the chirality operator σ5 = iσ1σ2σ3. Moreover, (true) Majorana spinors do not exist either
because the representation V is not of real type. In fact, the representation V is quaternionic. This
means that V can be endowed with a quaternionic structure, i.e a C-linear 12 function C : V → V,
mapping V onto its complex conjugate vector space V, satisfying C ◦C = −idV, where C : V → V

12We could also define a quaternionic structure as an anti-linear, anti-involutive map C : V → V. The two
definitions are equivalent.
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denotes the complex conjugate map to C [49]. This structure allows us to define a modified version
of Majorana spinors called symplectic Majorana fermions.

Because we have the inclusion (108) Spin(3) ⊂ C0(3), the Dirac spinors ψ ∈ V also yield a
representation of Spin(3). In fact, this representation V is the fundamental j = 1/2 representation
of Spin(3), where j ∈ N/2 denotes the spin labelling the irreducible, unitary representations of the

compact group. Let us introduce some notation used troughout the paper. If
j

V= C2j+1 = C{jea |
a = −j, ..., j}, denotes the left Spin(3)-module associated to the representation j, we have

1/2

V := V.

We will note
j

V ∗ the contragredient representation space and {je a}a the basis dual to {jea}a. We

will call
j
π ∈ Aut(

j

V) the representation matrix acting on
j

V. The representation j of Ĝ on
j

V induces

a representation of ĝ on
j

V. We will note
j
π∗ ∈ End(

j

V) the associated representation matrix. The
representations of G are obtained from those of Ĝ. Namely, they are the representations of Ĝ that

do not see the center, i.e since
j
π (±I) = (±1)2j, we have ∀g ∈ Ĝ,

j
π (Λ(g)) =

j
π (g) if and only if

j ∈ N.
In order to define a Lagrangian density involving fermions, we need to be able to construct

scalar objects with spinors. This implies the definition of a Spin(3)-invariant scalar product on
V. In pseudo-riemannian spacetime signatures, this bilinear form involves the introduction of the
Dirac conjugate (ψ, φ) = ψφ = ψ†γ0φ ∈ C, where † denotes Hermitian conjugation on C and γ0

is the gamma matrix (representing the γ symbol) corresponding to the timelike direction. It is
necessary to introduce the γ0 matrix to compensate the transformation property of the gamma
matrices under hermitian conjugation γµ † = γ0γµγ0 in order to construct a real action. However,
in the case at hand the gamma matrices are all hermitian and it is sufficient to define the Dirac
conjugate by using the Spin(3)-invariant hermitian bilinear form on V: (ψ, φ) = ψφ = ψ†φ ∈ C.
Equivalently, one could consider a bilinear form pairing V with its dual complex conjugate vector
space V

∗
.

A.2 Fermions and spacetime geometry

We now set up the geometrical structure of the spacetime on which the fermions are evolving.

A.2.1 Einstein-Cartan geometry

Let the three-dimensional differential manifold M model our spacetime. Let FM denote the frame
bundle over M , that is, the principal bundle with base M and structure group GL(3,R) whose
typical fiber over each point p ∈ M consists in the set of all possible basis of the tangent space
TpM . Consider a gl(3,R)-valued linear connection on FM . Our spacetime becomes a linearly
connected space as tangent vectors over different points of the manifold can be compared. One
can furthermore endow M with an Euclidean metric g, i.e a non-degenerate bilinear form on the
tangent space TpM over each point p of the manifold with purely positive signature, and obtain
a metric affine space where the metric and the linear connection are independent geometrical
objects. Consider now the reduction of FM to the G = SO(3)-bundle of orthonormal frames P
characterised by the metric g. In the generic case, the linear connection does not know about this
reduction as it is independent of the metric. Locally, for a given section (a frame, i.e an origin
and a set of three linearly independent vectors) e : M → P ; p → {e(p)I}I , I = 1, 2, 3, or for a
given coordinate basis { ∂

∂µ
}µ, µ = 1, 2, 3, of TpM , the metric is given by

g = ηIJe
I ⊗ eJ = gµνdx

µ ⊗ dxν . (110)

If we now suppose that the chosen linear connection is compatible with the bundle reduction (i.e
that it is reducible) meaning that the restriction of the linear connection to the bundle P is a
principal connection on P , the connection becomes related to the spacetime metric g. In that case,
the connection obeys the so-called metricity condition stating that the covariant derivative of the
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metric with respect to the connection vanishes. It is equivalent to simply considering a so(3)-
valued connection ω on P . The pull-back by a local section of a such connection is a one-form
on M taking value in the Lie algebra so(3) of SO(3), i.e it is matrix valued. If {Ta}a, a = 1, 2, 3,
denotes a vectorial basis of so(3), then in a local chart (U ⊂ M,xµ : U → R3) in the domain of
the local section,

ω = (ωIJ) = −(ωJI) = ω Iµ Jdx
µ = ωaµ ⊗ T I

a Jdx
µ. (111)

A such connection is called metric and ensures that the lengths and angles are conserved by parallel
transport on M . The data of a manifold M endowed with a metric and a metric (compatible)
connection is called a Riemann-Cartan structure. We call D the covariant derivative associated
to the metric connection.

The curvature R = Dω of the connection ω is given by the matrix valued two-form

R = (RIJ) = DωIJ = dωIJ + ωIK ∧ ωKJ =
1

2
R I
µν Jdx

µ ∧ dxν . (112)

Next, consider the image in P by a local section of a given point p ∈ M . The result is a basis of
V = R

3, i.e a set of three linearly independent vectors eI , orthonormal for the metric g. Let eI

denote the associated dual co-frame. It decomposes into a coordinate basis of the cotangent space:
eI = eIµdx

µ. The matrix eIµ is an isomorphism of vector space between the tangent space over p

and V regarded as the vector representation space of SO(3); ∀v ∈ TpM, eI(v) = vI ∈ V , i.e it
expresses any tangent vector into a locally inertial frame where geodesic trajectories are mapped
onto straight lines: the triad eI is the gravitational field. We can now define the soldering one
form with respect to a given choice of a frame and a coframe e : TM → TM = P ×SO(3) V as
e = eI ⊗ eI = eIµdx

µ ⊗ eI .
The torsion T = De of the connection ω is given by the vector valued two-form

T I = DeI = deI + ωIK ∧ eK =
1

2
T Iµνdx

µ ∧ dxν . (113)

In the same way that we have reduced the metric affine structure down to a Riemann-Cartan
structure by imposing the metricity condition, we can recover the standard riemannian framework
of Einstein’s general relativity by restricting the set of metric connections to the torsion free or
riemannian connections. In fact, there is a unique metric compatible, torsion free linear connection.
It is called the Levi-Civita connection. The Riemann-Cartan geometry [50] that we are considering
here is therefore a generalisation of ordinary GR. The idea of extending GR as to include non-zero
torsion solutions was proposed by Elie Cartan in the early twenties. He suggested, before the
introduction of the modern concept of spin, to relate spacetime torsion to an intrinsic angular
momentum of matter. This theory can be obtained as a gauge theory of the Poincaré group where
torsion and curvature are respectively regarded as the translational and rotational field strengths.
As we have seen, E. Cartan was right: fermions indeed couple to spacetime torsion.

A.2.2 Spin structure, Spinor field

We now wish to introduce fermions on our Riemann-Cartan spacetime. Accordingly , we equip
the manifold M with an extra structure called a spin structure. A spin structure on (M, g), if it
exists 13, is a principal Ĝ-bundle P̂ with base M and structure group Ĝ = Spin(3), such that there
exists a two-to-one bundle homomorphism χ̂ from P̂ onto the bundle P of orthonormal frames
14. Troughout this paper, we have assumed that a spin structure had been chosen. Note that all

13The existence of a spin structure over a manifold M is related to the vanishing of a given characteristic class
called the Stiefel-Whitney class.

14A bundle homomorphism is a map between bundles preserving the fiber structure, i.e commuting with the
right action of the structure group on the fiber and compatible with the associated group morphism: here, χ̂(p.g) =

χ̂(p)χ(g), p ∈ P̂, g ∈ Ĝ.
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principal bundles with compact three dimensional base manifold and compact, connected, simply
connected structural group are necessarily trivial. Our spin bundle is therefore trivial and we can
consequently choose a global trivialising section once and forall.

The spin bundle over M being given, we can define a spinor field living on our spacetime.
A tangent vector to M can be viewed as an element of the vector bundle associated to the
orthonormal frame bundle P via the fundamental representation of SO(3) on V = R3. In the
same way, a spinor field ψ is defined as a section of the vector bundle SM associated to the
principal bundle P̂ trough the representation of Spin(3) on V: SM = P̂ ×Spin(3) V.

To be able to compare the value of the fermionic fields at different points of spacetime, we
need a covariant derivative acting on spinors.

A.2.3 Spin connection

A spin connection is a principal connection on P̂ such that its image under the homomorphism
χ̂ is a metric connection on P . The explicit form of the spin connection is obtained from the
metric connection through the Lie algebra isomorphism χ∗ between spin(3) and so(3). By using
the defining relation (109) of Spin(3) at the level of the Lie algebras (i.e by differentiation), we
obtain a unique correspondence between the generators of spin(3) and those of so(3). In a chart
with local coordinates xµ, the components of the spin(3)-valued connection one-form ω̂ are given
in terms of the components of the metric connection :

ω̂µ = −1

4
ωIJµ γIγJ , (114)

where indices are raised and lowered with the metric η. In the representation ρ∗ of spin(3)
induced by the representation ρ of the Clifford algebra C(3) in terms of the Pauli algebra, the spin
connection is given by ρ∗(ω̂µ) = − 1

4ω
IJ
µ σIσJ

We can now define the covariant derivative one form ∇ψ = ∇µψdx
µ of a spinor field ψ ∈

Γ(SM) in the spin connection defined above

∇µψ = ∂µψ + ρ∗(ω̂µ)ψ. (115)

We also define a covariant derivative for the Dirac conjugate, or co-spinor, ψ:

∇µψ = ∂µψ − ψρ∗(ω̂µ). (116)
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