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Abstract

We propose a general approach to the formal Poisson cohomology of r-matrix

induced quadratic structures, we apply this device to compute the cohomology of

structure 2 of the Dufour-Haraki classification, and provide complete results also for

the cohomology of structure 7.
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1 Introduction

The Poisson cohomology was defined by Lichnerowicz in [Lic77]. It plays an important
role in Poisson Geometry, gives several information on the geometry of the manifold,
is closely related to the classification of singularities of Poisson structures, naturally
appears in infinitesimal deformations of Poisson tensors [second cohomology group (non-
trivial infinitesimal deformations), third cohomology group (obstructions to extending a
first order deformation to a formal deformation)], and is exploited in the study and the
classification of star-products.

The case of regular Poisson manifolds is discussed in [Xu92] and [Vai94], some upshots
regarding the Poisson cohomology of Poisson-Lie groups can be found in [GW92]. Many
results have been proven only in two dimensions. Nakanishi [Nak97] has computed, using
an earlier idea of Vaisman, the cohomology for plane quadratic structures. But also more
recent papers by Monnier [Mon01] and Roger and Vanhaecke [RV02] are confined to
dimension 2. Ginzburg [Gin99] has studied a spectral sequence, Poisson analog of the
Leray spectral sequence of a fibration, which converges to the Poisson cohomology of
the manifold. Related cohomologies, the Nambu-Poisson cohomology (which generalizes
in a certain sense the Poisson cohomology in dimension 2) [Mon02,1] or the tangential
Poisson cohomology (which governs tangential star products and is involved in the Poisson
cohomology) [Gam02] have (partially) been computed. Roytenberg has computed the
cohomology on the 2-sphere for special covariant structures [Roy02] and Pichereau has
taken an interest in Poisson (co)homology and isolated singularities [Pic05].

In Deformation Quantization we are interested in the formal Poisson cohomology, where ”formal”
means that cochains are multi-vector fields with coefficients in formal series. Let us emphasize that
the formal Poisson cohomology associated to a Poisson manifold (M, P ), where the Poisson tensor
P gives Kontsevich’s star-product ∗K , is linked with the Hochschild cohomology of the associative
algebra (C∞(M)[[~]], ∗K) of formal series in ~ with coefficients in C∞(M).
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Poisson cohomology 2

In [Mon02,2], Monnier has computed the formal cohomology of diagonal Poisson structures.
The aim of this work is to provide a general approach to the formal Poisson cohomology of a broad

set of isomorphism classes of quadratic structures and to illustrate this modus operandi through
its application to two of the most demanding classes of the Dufour-Haraki classification
(DHC).

Our procedure applies—roughly speaking—to quadratic Poisson tensors Λ that read
as linear combinations of wedge products of mutually commuting linear vector fields. In
the three-dimensional Euclidean setting this means that

Λ = aY2 ∧ Y3 + bY3 ∧ Y1 + cY1 ∧ Y2 a, b, c ∈ R,

where Y1, Y2, Y3 have linear coefficients and meet the condition [Yi, Yj ] = 0. Let us stress
that most of the structures of the DHC have this admissible form. The advantage of the
just defined family of admissible tensors is readily understood. If we substitute the Yi

for the standard basic vector fields ∂i = ∂/∂xi
, cochains assume—roughly speaking—the

shape
∑

fY, where f is a “function” and Y is a wedge product of basic fields Yi. Then
the Lichnerowicz-Poisson coboundary operator [Λ, ·] is just

[Λ, fY] = [Λ, f ] ∧ Y.

More precisely,

[Λ, f ] =
∑

i

Xi(f)Yi,

where X1 = aY2 − cY3, X2 = bY3 − aY1, X3 = cY1 − bY2. So the coboundary of a 0-cochain is
a kind of gradient, and, as readily checked, the coboundaries of a 1- and a 2-cochain,
decomposed in the “Yi-basis” are a sort of curl and of divergence respectively. As in the
above “gradient” the operators Xi act in these “curl” and “divergence” as substitutes for
the usual partial derivatives. The preceding simplification of the Lichnerowicz-Poisson
coboundary operator is of course not restricted to the three-dimensional setting.

Let us emphasize that, if cochains are decomposed in the new Yi-induced bases, their
coefficients are rational with fixed denominator. Hence a natural injection of the real
cochain space R in a larger potential cochain space P. Such a potential cochain is imple-
mented by a real cochain if and only if specific divisibility conditions are satisfied. This
observation directly leads to a supplementary cochain space S of R in P. It is possible to
heave space S in the category of differential spaces. Eventually, we end up with a short
exact sequence of differential spaces and an exact triangle in cohomology. It turns out
that S-cohomology and P-cohomology are less intricate than R-cohomology, but are im-
portant stages on the way to R-cohomology, i.e. to the cohomology of the considered
admissible quadratic Poisson structure.

In this work we provide explicit results—obtained by the just depicted method—for
the cohomologies of class 2 and class 7 of the DHC. Observe that the representative

Λ7 = b(x2
1 + x2

2)∂1 ∧ ∂2 + ((2b + c)x1 − ax2)x3∂2 ∧ ∂3 + (ax1 + (2b + c)x2)x3∂3 ∧ ∂1

of class 7 reduces to the representative of class 2 for parameter value c = 0. Actu-
ally computations are quite similar in both cases, hence we refrained from publishing
those pertaining to case 7. The cohomology of Λ7 is completely described in Section 9,
upshots relating to the other admissible quadratic tensors are being published separately.

We now detail the Lichnerowicz-Poisson cohomology of structure class 2. Remark first
that

Λ2 = 2bY2 ∧ Y3 + aY3 ∧ Y1 + bY1 ∧ Y2,

where Y1 = x1∂1 + x2∂2, Y2 = x1∂2 − x2∂1, and Y3 = x3∂3. As case b = 0 has been studied
in [Mon02,2], we assume that b 6= 0. We denote the determinant (x2

1 + x2
2)x3 of the basic
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fields Yi by D. The results of this article will entail that the abundance of cocycles that
do not bound is tightly related with closeness of the considered Poisson tensor to Koszul-
exactness. If a = 0, structure Λ2 is exact and induced by bD. The algebra of Casimir
functions is generated by 1 if a 6= 0 and by D if a = 0. When rewording this statement
and writing Λ instead of Λ2, we get

H0(Λ) = Cas(Λ) =

{

R, if a 6= 0,
⊕∞

m=0 RDm, if a = 0.

Remind now that our Poisson tensor is built with linear infinitesimal Poisson automor-
phisms Yi. It follows that the wedge products of the Yi constitute “a priori” privileged
cocycles. Of course, 2-cocycle Λ2 itself, is a linear combination of such privileged cocy-
cles. Moreover, the curl or modular vector field reads here K(Λ) = a(2Y3 − Y1) and is thus
also a combination of privileged cocycles. As the Lichnerowicz-Poisson cohomology is an
associative graded commutative algebra, the first cohomology groups of Λ2 are easy to
conjecture:

H1(Λ) =
⊕

i

Cas(Λ)Yi.

It is well-known that the singularities of the investigated Poisson structure appear in the
second and third cohomology spaces. Observe that the singular points of structure Λ are
the annihilators D′ = x2

1 + x2
2. Note that any homogeneous polynomial P ∈ R[x1, x2, x3] of

order m reads

P =

m
∑

ℓ=0

xℓ
3Pℓ(x1, x2) =

m
∑

ℓ=0

xℓ
3

(

D′ · Qℓ + Aℓx
m−ℓ
1 + Bℓx

m−ℓ−1
1 x2

)

,

with self-explaining notations. Hence, the algebra of “polynomials” of the affine algebraic
variety of singularities is

∞
⊕

m=0

m
⊕

ℓ=0

xℓ
3

(

Rxm−ℓ
1 + Rxm−ℓ−1

1 x2

)

.

The third cohomology group contains a part of this formal series. More precisely,

H3(Λ) = Cas(Λ) Y123 ⊕

{

R ∂123, if a 6= 0,
⊕∞

m=0 R xm
3 ∂123 ⊕

⊕∞

m=0 xm
1 (Rx1 + Rx2) ∂123, if a = 0,

where Y123 (resp. ∂123) means Y1 ∧Y2 ∧Y3 (resp. ∂1 ∧∂2 ∧∂3). The reader might object that
the “mother-structure” Λ is symmetric in x1, x2 and that there should therefore exist
a symmetric “twin-cocycle”

⊕∞

m=0 xm
2 (Rx1 + Rx2)∂123. This cocycle actually exists, but

is—as easily checked—cohomologous to the visible representative. Finally, the second
cohomology space reads

H2(Λ) = Cas(Λ)Y23 ⊕ Cas(Λ)Y31 ⊕ Cas(Λ)Y12

⊕

{

/ , if a 6= 0,
⊕∞

m=0 R xm
3 ∂12 ⊕

⊕∞

m=0 xm−1
1 (Rx1∂23 + R(x1∂31 + mx2∂23)) , if a = 0.

For m ≥ 1, the last cocycle has the form

(

Rxm
1 + Rxm−1

1 x2

)

∂23 +

(∫

∂x2

(

Rxm
1 + Rxm−1

1 x2

)

dx1

)

∂31

and is thus also induced by singularities.

This paper is organized as follows. Sections 2-8 deal with the explicit computation
of the cohomology of tensor Λ2. In section 9 we completely describe the cohomology
of structure Λ7. Finally the last section is devoted to explanations regarding links with
r-matrix induced Poisson structures.
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2 Simplified differential

In this and the following sections, we compute the formal cohomology of the second quadratic
Poisson structure of the Dufour-Haraki classification. This structure reads

Λ = b(x2
1 + x2

2)∂1 ∧ ∂2 + x3(2bx1 − ax2)∂2 ∧ ∂3 + x3(ax1 + 2bx2)∂3 ∧ ∂1,

where b 6= 0 (if b = 0, we recover the case studied in [Mon02,2]).
As mentioned above, we get

Λ = bY1 ∧ Y2 + 2bY2 ∧ Y3 + aY3 ∧ Y1, (1)

if we set
Y1 = x1∂1 + x2∂2, Y2 = x1∂2 − x2∂1, Y3 = x3∂3. (2)

We also know that it is interesting—in order to simplify the coboundary operator—to write the cochains
in terms of these fields. Let us recall that in the formal setting, the cochains are the multi-vector fields
with coefficients in R[[x]], the space of formal series in x = (x1, x2, x3) with coefficients in R.

Note first that if D = (x2
1 + x2

2)x3 and if xij = xixj ,

∂1 =
1

D
(x13Y1 − x23Y2), ∂2 =

1

D
(x23Y1 + x13Y2), ∂3 =

1

D
(x2

1 + x2
2)Y3.

An arbitrary 0-cochain C0 =
∑

I∈N3 cIx
I (I = (i1, i2, i3), cI ∈ R, xI = xi1,i2,i3 = xi1

1 xi2
2 xi3

3 ) can be
written

C0 =
∑

J∈N3

xJ

D
αJ =:

σ

D
=: ς,

with self-explaining notations. Similarly, 1-, 2-, and 3-cochains C1 = σ1∂1 +σ2∂2 +σ3∂3, C2 = σ1∂23 +
σ2∂31 + σ3∂12, C3 = σ∂123, where σi, σ ∈ R[[x]] (i ∈ {1, 2, 3}) and where for instance ∂23 = ∂2 ∧ ∂3,
read in terms of the Yi (i ∈ {1, 2, 3}), C1 = ς1Y1 + ς2Y2 + ς3Y3, C2 = ς1Y23 + ς2Y31 + ς3Y12, and
C3 = ςY123, again with obvious notations. If [·, ·] denotes the Schouten-bracket, the coboundary of C0

is given by

[Λ, C0] = X1(ς)Y1 + X2(ς)Y2 + X3(ς)Y3,

where
X1 = bY2 − aY3, X2 = −bY1 + 2bY3, X3 = aY1 − 2bY2.

Set ∇ =
∑

i Xi(.)Yi. A short computation then shows that

[Λ, C0] = ∇C0, [Λ, C1] = ∇∧ C1, [Λ, C2] = ∇.C2, and [Λ, C3] = 0,

where the r.h.s. have to be viewed as notations that give the coefficients of the coboundaries in the
Yi-basis. For instance, [Λ, C2] = (

∑

i Xi(ςi))Y123. We easily verifie that

X1

(

xJ

D

)

= [b

(

j2
x1

x2
− j1

x2

x1

)

− a(j3 − 1)]
xJ

D
,

X2(
xJ

D
) = b[2j3 − (j1 + j2)]

xJ

D
,

and

X3(
xJ

D
) = [a(j1 + j2 − 2) − 2b

(

j2
x1

x2
− j1

x2

x1

)

]
xJ

D
.

When writing the quotients ς in the cochains in the form

ς =
∑

r∈N

r
∑

k=0

k
∑

ℓ=0

αr,k,ℓ

xℓ,k−ℓ,r−k

D
,

we see that cochains are graded not only with respect to the cochain-degree d ∈ {0, 1, 2, 3}, but also
with respect to the total degree r in x and the partial degree k. The preceding results regarding

Xi(
xJ

D
) allow to see that the coboundary operator is compatible with both degrees, k and r, so that

the cohomology can be computed part by part.
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3 Fundamental operators

Denote by Pkr the space of homogeneous polynomials of partial degree k and total degree r, and
by Qkr the space 1

D
Pkr. We now study the fundamental operators Xi as endomorphisms of Qkr.

It is easy to verify that

X1

(

∑k
ℓ=0 αℓ

xℓ,k−ℓ,r−k

D

)

=
∑k

ℓ=0[b(k − ℓ + 1)αℓ−1 − a(r − k − 1)αℓ − b(ℓ + 1)αℓ+1]
xℓ,k−ℓ,r−k

D
,

(3)

X2 = (2r − 3k) b idQkr
, (4)

and

X3

(

∑k
ℓ=0 αℓ

xℓ,k−ℓ,r−k

D

)

=
∑k

ℓ=0[−2b(k − ℓ + 1)αℓ−1 + a(k − 2)αℓ + 2b(ℓ + 1)αℓ+1]
xℓ,k−ℓ,r−k

D
.

(5)

Note also that if D′ = x2
1 + x2

2, we have X1(D
′) = 0, X1(x3) = −ax3, X1(D) = −aD,

X2(D
′) = −2bD′, X2(x3) = 2bx3, X2(D) = 0, X3(D

′) = 2aD′, X3(x3) = 0, X3(D) = 2aD. Hence

X1(D
ℓ) = −aℓDℓ, X3(D

ℓ) = 2aℓDℓ, for all ℓ ∈ Z. In particular, D
k
2
−1 ∈ Qk, 3

2
k is an eigenvector of

X1 and X3 associated to the eigenvalue 1
2a(2 − k) and a(k − 2) respectively, for all k ∈ 2N.

Remark If Y is α, αY1 + βY2 + γY3, αY23 + βY31 + γY12, or αY123 (α, β, γ ∈ R), the cochains
DℓY are cocycles for all ℓ if a = 0 and for ℓ = 0 otherwise. Indeed, the coboundary of these cochains
vanishes if [Λ, Dℓ] = ∇Dℓ does.

In order to compute the spectrum of the endomorphisms X1 and X3 of Qkr, note that their matrix
in the canonical basis of Qkr is

M0 =



















A B 0 . . . 0 0 0
−kB A 2B . . . 0 0 0

0 −(k − 1)B A . . . 0 0 0
...

...
0 0 0 . . . −2B A kB
0 0 0 . . . 0 −B A



















,

where (A, B) = (a(k− r+1),−b) and (A,B) = (a(k−2), 2b) respectively. A straightforward induction
shows that for odd k the determinant of M0 − λI is

((A − λ)2 + B2)((A − λ)2 + (3B)2) . . . ((A − λ)2 + (kB)2),

whereas for even k its value is

(A − λ)((A − λ)2 + (2B)2)((A − λ)2 + (4B)2) . . . ((A − λ)2 + (kB)2).

We thus have the

Proposition 1. (i) For any k ∈ 2N + 1, the operator X1 (resp. X3) has no eigenvalue.
(ii) For any k ∈ 2N, the unique eigenvalue of X1 (resp. X3) is

λ = a(k − r + 1) (resp. a(k − 2)).

The vector
1

D
(x2

1 + x2
2)

k
2 xr−k

3 ∈ Qkr

is a basis of eigenvectors.

Note that this result is an extension of the above remark regarding eigenvectors of X1 and X3 in
the space Qk, 3

2
k, i.e. for 2r − 3k = 0.
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Corollary 1. (i) If k ∈ 2N + 1 and if k ∈ 2N, a 6= 0, k 6= r − 1 (resp. k ∈ 2N, a 6= 0, k 6= 2), the
operator X1 (resp. X3) is invertible.
(ii) If k ∈ 2N and a = 0 or k = r − 1 (resp. k ∈ 2N and a = 0 or k = 2), the operator X1 (resp. X3)
is degenerated and the eigenvector

1

D
(x2

1 + x2
2)

k
2 xr−k

3 ∈ Qkr

is a basis of the kernel kerX1 (resp. kerX3). Moreover,

kerX1 ⊕ imX1 = Qkr (resp. kerX3 ⊕ imX3 = Qkr).

Proof. Only the last result requires an explanation. It suffices to show that kerXi ∩ imXi = 0
(i ∈ {1, 3}). Let Xi(q) ∈ kerXi (q ∈ Qkr), i.e. q ∈ kerX2

i . Since kerXi ⊂ kerX2
i , dim kerX2

i ≥ 1. We
prove by induction that the eigenvalues of X2

i are −((i + 1)ℓb)2 (ℓ ∈ {0, . . . , k
2}), all of them having

multiplicity 2, except 0 that has multiplicity 1. So dim kerX2
i = 1 and kerXi = kerX2

i ∋ q.

The following proposition is obvious.

Proposition 2. (i) If 2r − 3k 6= 0, operator X2 is invertible.
(ii) If 2r − 3k = 0, we have X2 = 0 and X3 = −2X1.

The next proposition is an immediate consequence of the commutativity of the Yi (i ∈ {1, 2, 3}).

Proposition 3. (i) All commutators of Xi-operators vanish:

[X1, X2] = [X1, X3] = [X2, X3] = 0.

(ii) If Xi is invertible,
[X−1

i , Xj ] = 0,∀i, j ∈ {1, 2, 3}.

4 Injection and short exact sequence

Any 1-cochain C1
kr of degrees k and r can be written in the form 1

D
(p1Y1 +p2Y2 + p3Y3), with

pi ∈ Pkr. Conversely, any element of this type reads 1
D

[(p1x1 − p2x2)∂1 + (p1x2 + p2x1)∂2 + p3x3∂3],
and is induced by a cochain if and only if p1x1−p2x2 is divisible by D and p3 by D′ = x2

1 +x2
2. Indeed,

the first condition implies that p1x2 + p2x1 is also a multiple of D. This cochain is then an element of
Pk−1,r−2∂1 + Pk−1,r−2∂2 + Pk−2,r−2∂3, of course provided that k ≥ 2, r ≥ 2, k ≤ r − 1. If p3 = 0, this
condition reduces to k ≥ 1, r ≥ 2, k ≤ r − 1, and if p1 = p2 = 0, it is replaced by k ≥ 2, r ≥ 2, k ≤ r.
Of course, the space

P1
kr = ∆krQkrY1 + ∆krQkrY2 + ∆k1QkrY3

of potential 1-cochains of degrees k, r (where ∆ij = 1 − δij , defined by means of Kronecker’s symbol,
is used in order to group the mentioned cases) has to be taken into account only if the injected space
of real 1-cochains of degrees k, r,

R1
kr = ∆krPk−1,r−2∂1 + ∆krPk−1,r−2∂2 + ∆k1Pk−2,r−2∂3,

is not vanishing, i.e. if k ≥ 1, r ≥ 2, k ≤ r. In the following, we often write x, y, z instead of x1, x2, x3.
It is easily checked that the space

S1
kr = {xk−1zr−k

D
[∆krexY1

+∆krfxY2 + ∆k1(gx + hy)Y3] : c, d, e, f ∈ R}

is supplementary to R1
kr in P1

kr. Similar spaces Pd
kr,R

d
kr,S

d
kr can be defined for d = 0, k ≥ 2, r ≥ 3, k ≤

r− 1; d = 2, k ≥ 0, r ≥ 1, k ≤ r and d = 3, k ≥ 0, r ≥ 0, k ≤ r. These spaces are described at the end of
this section. Hence the whole space of potential cochains P = ⊕d,k,rP

d
kr is the direct sum of the whole

space of real cochains R = ⊕d,k,rR
d
kr and the supplementary space S = ⊕d,k,rS

d
kr (we can view k and
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r as subscripts running through N (k ≤ r), provided that the spaces associated to forbidden values
are considered as vanishing).

The spaces (P, ∂P) and (R, ∂R), where ∂P = ∂R = [Λ, ·], are differential spaces. Denote by pR and
pS the projections of P onto R and S respectively and set for any s ∈ S,

φs = pR∂Ps, ∂Ss = pS∂Ps.

Proposition 4. (i) The endomorphism ∂S ∈ EndS is a differential on S.
(ii) The linear map φ ∈ L(S,R) is an anti-homomorphism of differential spaces from (S, ∂S) into
(R, ∂R).

Proof. Direct consequence of ∂2
P = 0.

Proposition 5. If i denotes the injection of R into P, the sequence

0 → R
i
→ P

pS

→ S → 0

is a short exact sequence of homomorphisms of differential spaces. Hence the triangle

❆
❆

❆
❆

❆
❆❑

H(R) ✲
i♯

H(P)

✁
✁

✁
✁

✁
✁☛

H(S)

φ♯ (pS)♯

is exact.

Proof. We only need check that the linear map φ♯ induced by φ coincides with the connecting
homomorphism ∆. It suffices to remember the definition of ∆.

Remark now that the exact triangle induces for any (k, r) ∈ N2, k ≤ r, a ”long” exact sequence of
linear maps:

0 → H0
kr(R)

i♯
→ . . .

φ♯
→ Hd

kr(R)
i♯
→ Hd

kr(P)
(pS)♯
→ Hd

kr(S)
φ♯
→ Hd+1

kr (R)
i♯
→ . . .

(pS)♯
→ H3

kr(S) → 0.

We denote the kernel and the image of the restricted map φ♯ ∈ L(Hd
kr(S), Hd+1

kr (R)) by kerd
krφ♯ ⊂

Hd
kr(S) and imd+1

kr φ♯ ⊂ Hd+1
kr (R). Similar notations are used if i♯ or (pS)♯ are viewed as restricted

maps.

Corollary 2. For any d ∈ {0, 1, 2, 3}, k ∈ N, r ∈ N, k ≤ r, we have

Hd
kr(R) ≃ kerd

kri♯ ⊕ imd
kri♯

= imd
krφ♯ ⊕ kerd

kr(pS)♯

≃ Hd−1
kr (S)/kerd−1

kr φ♯ ⊕ Hd
kr(P)/kerd

krφ♯.

Proof. Apply exactness of the long sequence.

We will compute the R-cohomology by computing the simpler S- and P-cohomology (and in some
cases the anti-homomorphism φ).

The preceding result is easily understood. The space ZR of R-cocycles is a subset of ZP . Among the
P-classes there may be classes without representatives in ZR. Take now the classes with a non-empty
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intersection with ZR. Two cocycles in different intersections can not be R-cohomologous. Two cocycles
in the same intersection are or not R-cohomologous. Hence the picture of the P- and R-cohomologies.
Remember now that the isomorphism H(R) ≃ keri♯⊕imi♯ means that H(R) = keri♯⊕χ(imi♯), where
χ is a linear right inverse of i♯. The space imi♯ = {[ρ]P : ρ ∈ ZR}, where [·]P denotes a class in P,
is the space of P-classes with intersection. The space χ(imi♯) ≃ imi♯ is made up of one of the source
classes of each P-class with intersection. We obtain the missing R-classes when adding the kernel.

As for the meaning of φ, since ∂Ss = ∂Ps − φs, this anti-homomorphism is nothing but the
correction that turns the Poisson-coboundary in a coboundary on S. If φ were 0, we would of course
have H(R) = H(P)/H(S). We recover this result as special case of the preceding corollary.

Corollary 3. For any d ∈ {0, 1, 2, 3}, k ∈ N, r ∈ N, k ≤ r,

(i) if
Hd−1

kr (S) = 0 (resp. Hd−1
kr (S) = Hd

kr(S) = 0),

then
i♯ ∈ Isom(Hd

kr(R), imd
kri♯) (resp. i♯ ∈ Isom(Hd

kr(R),Hd
kr(P))),

(ii) if
Hd

kr(P) = 0 (resp. Hd−1
kr (P) = Hd

kr(P) = 0),

then
φ♯ ∈ Isom(Hd−1

kr (S)/kerd−1
kr φ♯,H

d
kr(R)) (resp. φ♯ ∈ Isom(Hd−1

kr (S), Hd
kr(R))).

Proof. Obvious.

The below basic formulas are obtained by straightforward computations. For instance, a potential
0-cochain of degree (k, r), π = p

D
∈ P0

kr = Qkr, is a member of the corresponding real cochain space
R0

kr = Pk−2,r−3 (k ≥ 2, r ≥ 3, k ≤ r − 1), if and only if p ∈ Pkr is divisible by D′ = x2
1 + x2

2 =

x2 + y2. If p =
∑k

ℓ=0 αℓx
ℓ,k−ℓ,r−k, this divisibility condition means that α0 − α2 + α4 − . . . = 0 and

α1 − α3 + α5 − . . . = 0. Hence, a potential cochain can be made a real cochain by changing the
coefficients αk−1 and αk, so that any potential cochain can be written in a unique way as the sum of

a real cochain and an element of S0
kr = {xk−1zr−k

D
(cx + dy) : c, d ∈ R}.

Formulary 1

1. 0-cochains

k ≥ 2, r ≥ 3, k ≤ r − 1:

P0
kr = Qkr

R0
kr = Pk−2,r−3

S0
kr = {xk−1zr−k

D
(cx + dy) : c, d ∈ R}

A potential cochain π = p
D

is a real cochain if and only if p is divisible by D′

2. 1-cochains

k ≥ 1, r ≥ 2, k ≤ r:

P1
kr = ∆krQkrY1 + ∆krQkrY2 + ∆k1QkrY3

R1
kr = ∆krPk−1,r−2∂1 + ∆krPk−1,r−2∂2 + ∆k1Pk−2,r−2∂3

S1
kr = {xk−1zr−k

D
[∆krexY1 + ∆krfxY2 + ∆k1(gx + hy)Y3] :

e, f, g, h ∈ R}
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A potential cochain π = 1
D

[∆krp1Y1+∆krp2Y2+∆k1p3Y3] is a real cochain if and only if ∆kr[p1x1−p2x2]
and ∆k1p3 are divisible by D′

3. 2-cochains

k ≥ 0, r ≥ 1, k ≤ r:

P2
kr = ∆k0QkrY23 + ∆k0QkrY31 + ∆krQkrY12

R2
kr = ∆k0Pk−1,r−1∂23 + ∆k0Pk−1,r−1∂31 + ∆krPk,r−1∂12

S2
kr = {xkzr−k

D
[∆k0iY23 + ∆k0jY31] : i, j ∈ R}

A potential cochain π = 1
D

[∆k0p1Y23 + ∆k0p2Y31 + ∆krp3Y12] is a real cochain if and only if
∆k0[p1x1 − p2x2] is divisible by D′

4. 3-cochains

k ≥ 0, r ≥ 0, k ≤ r:

P3
kr = QkrY123

R3
kr = Pkr∂123

S3
kr = 0

The spaces of potential and real cochains coincide

We write the coefficients (e, f, g, h) (resp. (i, j)) of the coboundary ∂Sσ0
kr (resp. ∂Sσ1

kr) in terms
of the coefficients (c, d) (resp. (e∆kr, f∆kr, g∆k1, h∆k1)) of the supplementary cochain σ0

kr ∈ S0
kr,

k ≥ 2, r ≥ 3, k ≤ r − 1 (resp. σ1
kr ∈ S1

kr, k ≥ 1, r ≥ 2, k ≤ r) and of the Pauli type matrices

µ0 =

(

1 0
0 1

)

, µ1 =

(

0 1
1 0

)

, µ2 =

(

0 1
−1 0

)

, µ3 =

(

1 0
0 −1

)

.

The expressions of φ(σd
kr) are not all indispensable.

Formulary 2

1. 0-cochains

Coefficients of ∂Sσ0
kr in terms of the coefficients of σ0

kr, k ≥ 2, r ≥ 3, k ≤ r − 1:









e
f
g
h









=

(

2b(r − k)µ1 − a(r − k − 1)µ3

a(k − 2)µ0 − 2bkµ2

)(

c
d

)

2. 1-cochains

Coefficients of ∂Sσ1
kr in terms of the coefficients of σ1

kr, k ≥ 1, r ≥ 2, k ≤ r:

(

i
j

)

=
(

2bkµ0 − a(k − 2)µ2 | a(r − k − 1)µ1 + 2b(r − k)µ3

)









e∆kr

f∆kr

g∆k1

h∆k1
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Value of φ(σ1
rr) in terms of the coefficients of σ1

rr, r ≥ 2, a = 0:

φ(σ1
rr) = bxr−2

D
[−rx(gx + hy)Y23 + (−hx2 + rg xy + (r − 1)h y2)Y31]

= −bxr−2[(rgx + (r − 1)hy)∂23 + hx∂31]

3. 2-cochains

Coboundary ∂Sσ2
kr, k ≥ 0, r ≥ 1, k ≤ r:

∂Sσ2
kr = 0

Value of φ(σ2
rr) in terms of the coefficients of σ2

rr, r ≥ 1:

φ(σ2
rr) =

xr−1

D
[(ai − brj)x − briy]Y123 (6)

4. 3-cochains

Coboundary ∂Sσ3
kr, k ≥ 0, r ≥ 0, k ≤ r:

∂Sσ3
kr = 0

5 0 - cohomology spaces

5.1 S - cohomology

Proposition 6. The 0 - cohomology space of S vanishes: H0(S) = 0.

Proof. If (c, d) are the coefficients of an arbitrary cochain σ0
kr (k ≥ 2, r ≥ 3, k ≤ r − 1), we have for

instance

M0

(

c
d

)

= 0, M0 = a(k − 2)µ0 − 2bkµ2.

Since detM0 = a2(k − 2)2 + 4b2k2 > 0, it follows that σ0
kr = 0.

Corollary 4. For any k ≥ 2, r ≥ 3, k ≤ r − 1, we have dim im1
kr ∂S = dim S0

kr = 2.

5.2 P - cohomology and R - cohomology

Theorem 1. The 0 - cohomology spaces of P and R coincide:
(i) if a 6= 0, H0(P) = H0(R) = H0

23(P) = H0
23(R) = R,

(ii) if a = 0, H0(P) = H0(R) =
⊕∞

k=1 H0
2k,3k(P) =

⊕∞

k=1 H0
2k,3k(R) =

⊕∞

m=0 RDm.

Proof. The equality of both cohomologies is a consequence of Corollary 3. So let k ≥ 2, r ≥ 3, k ≤ r−1
and π0

kr = q ∈ P0
kr ∩ ker∂P . We have X1(q) = X2(q) = 0. Apply now Proposition 2 and Corollary 1.

If 3k − 2r 6= 0 and if 3k − 2r = 0, a 6= 0 and k 6= r − 1, the cocycle vanishes. If 3k − 2r = 0 and a = 0
or k = r − 1, q = αD

k
2
−1 (α ∈ R).

6 1 - cohomology spaces

6.1 S - cohomology

Proposition 7. If a 6= 0, H1(S) = 0, and if a = 0, H1(S) =
⊕∞

m=2 H1
mm(S) =

⊕∞

m=2
xm−1

1

D
(Rx1 +

Rx2)Y3.
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Proof. Set M1 = 2bkµ0 − a(k − 2)µ2 and N1 = a(r − k − 1)µ1 + 2b(r − k)µ3 (k ≥ 1, r ≥ 2, k ≤ r). The
coefficients of any 1-cocycle of degrees k, r verify

∆kr

(

e
f

)

= −∆k1M
−1
1 N1

(

g
h

)

.

If k = 1, the cocycle vanishes. If k = r the cocycle equation reads N1

(

g
h

)

= 0, with N1 = −aµ1. For

a 6= 0, the cocycle vanishes again, and for a = 0, the cohomology space is H1
rr(S) = xr−1

D
(Rx+Ry)Y3,

since coboundaries do not exist for k = r. Finally, if 2 ≤ k ≤ r − 1, r ≥ 3, Corollary 4 shows
that there is no cohomology. (A direct proof of this result, based upon the multiplication table
µiµj = (−1)ij+1[δijµ0 + εijkµk] (i, j ∈ {1, 2, 3}), where εijk is the Levi-Civita symbol, is also easy.)

6.2 P - cohomology and R - cohomology

Theorem 2. The first cohomology groups of P and R are isomorphic:
(i) H1(P) = H1(R) = H1

23(P) = H1
23(R) = RY1 + RY2 + RY3, if a 6= 0,

(ii) H1(P) = H1(R) =
⊕∞

k=1 H1
2k,3r(P) =

⊕∞

k=1 H1
2k,3r(R) =

⊕∞

m=0 Dm(RY1+RY2+RY3), if a = 0.

Proof. Let π1
kr = ∆krq1Y1 + ∆krq2Y2 + ∆k1q3Y3 (k ≥ 1, r ≥ 2, k ≤ r) be a member of P1

kr ∩ ker∂P .
The cocycle equation reads

X2(∆k1q3) − X3(∆krq2) = 0,
X3(∆krq1) − X1(∆k1q3) = 0,
X1(∆krq2) − X2(∆krq1) = 0.

Moreover, for k ≥ 2, r ≥ 3, k ≤ r − 1, this cocycle can be a coboundary, i.e. there is π0
kr = q in P0

kr

such that
X1(q) = q1, X2(q) = q2, X3(q) = q3.

1. k = 1 or k = r

We treat the first case (resp. the second case). The cocycle equation implies X3(q1) = X3(q2) = 0
(resp. X2(q3) = 0). In view of Corollary 1 (resp. Proposition 2) X3 (resp. X2) is invertible and
cocycles vanish.

2. 2 ≤ k ≤ r − 1 (then r ≥ 3)

2.a. 2r − 3k 6= 0

Set q = X−1
2 (q2). Due to Proposition 3 and the cocycle relations, we then have X1(q) = q1, X3(q) = q3,

so that all cocycles are coboundaries.

2.b. 2r − 3k = 0 (then k ∈ 2N)

Here X2 = 0 and X3 = −2X1. The cocycle condition is X1(q2) = 0 and X3(q1) = X1(q3), i.e.
X1(2q1 + q3) = 0.

2.b.I a 6= 0 and k 6= r − 1 (i.e. a 6= 0 and (k, r) 6= (2, 3))

In this case q2 = 0 and we choose q = X−1
1 (q1). This entails that X3(q) = q3.

2.b.II a = 0 or k = r − 1 (i.e. a = 0 or (k, r) = (2, 3))

Corollary 1 allows to decompose q1 in the form q1 = α1D
k
2
−1+X1(q) (α1 ∈ R, q ∈ Qkr). It is clear that

q2 = α2D
k
2
−1 +X2(q) (α2 ∈ R) and that q3 = α′

3D
k
2
−1 −2q1 = α3D

k
2
−1 +X3(q) (α′

3, α3 ∈ R). Hence,

the considered cocycle is cohomologous to D
k
2
−1(α1Y1 +α2Y2 +α3Y3). As the kernel and the image of
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X1 and X3 are supplementary and X2 vanishes, such cocycles—with different α-coefficients—can not
be cohomologous.

As for the isomorphism between the P- and R-cohomology, remember that H0(S) = 0. Corollary
3 then implies that i♯ ∈ Isom(H1

kr(R),H1
kr(P)), for all k, r. Indeed, if H1

kr(S) 6= 0, we have k = r ≥ 2
and H1

kr(P) = 0 = im1
kri♯.

7 2 - cohomology spaces

7.1 S - cohomology

Proposition 8. If a 6= 0, H2(S) = H2
11(S) = x1

D
(RY23 + RY31), and if a = 0, H2(S) =

⊕∞

m=1 H2
mm(S) =

⊕∞

m=1
xm
1

D
(RY23 + RY31).

Proof. As S3 = 0, any cochain is a cocycle. Let σ2
kr (k ≥ 0, r ≥ 1, k ≤ r) be a cocycle with

coefficients (∆k0i,∆k0j). If k ≥ 1, r ≥ 2, k ≤ r, it is a coboundary if there are coefficients
(∆kre, ∆krf, ∆k1g, ∆k1h), such that

(

i
j

)

=
(

2bkµ0 − a(k − 2)µ2 | a(r − k − 1)µ1 + 2b(r − k)µ3

)









∆kre
∆krf
∆k1g
∆k1h









.

If r ≥ 1, k = 0, all cochains vanish. If r = 1, k = 1, there are no coboundaries. Consider now the case
r ≥ 2, k ≥ 1. If k 6= r and if k = r and a 6= 0, any cocycle is a coboundary. If k = r and a = 0, the
unique coboundary is 0.

7.2 P - cohomology

Proposition 9. The second cohomology group of the complex (P, ∂P) is,
(i) if a 6= 0,

H2(P) = H2
23(P) ⊕ H2

11(P)
= RY23 + RY31 + RY12

⊕ 1
D

[

R
(

(D − a
b
x1x2x3)∂23 + a

b
x2

1x3∂31

)

+ R
(

(D + a
b
x1x2x3)∂31 −

a
b
x2

2x3∂23

)]

,

(ii) if a = 0,

H2(P) =
⊕∞

k=1 H2
2k,3r(P) ⊕ H2

11(P) ⊕
⊕∞

m=1 H2
0m(P)

=
⊕∞

m=0 Dm (RY23 + RY31 + RY12)
⊕ R∂23 + R∂31 ⊕

⊕∞

m=0 Rxm
3 ∂12.

Proof. The cocycle equation for a cochain π2
kr = ∆k0q1Y23 + ∆k0q2Y31 + ∆krq3Y12 (k ≥ 0, r ≥ 1, k ≤

r; q1, q2, q3 ∈ Qkr) reads
X1(∆k0q1) + X2(∆k0q2) + X3(∆krq3) = 0.

This cocycle can be the coboundary of a cochain π1
kr = ∆kr̺1Y1 + ∆kr̺2Y2 + ∆k1̺3Y3 (k ≥ 1, r ≥

2, k ≤ r; ̺1, ̺2, ̺3 ∈ Qkr):
X2(∆k1̺3) − X3(∆kr̺2) = ∆k0q1,
X3(∆kr̺1) − X1(∆k1̺3) = ∆k0q2,
X1(∆kr̺2) − X2(∆kr̺1) = ∆krq3.

1. k = 0, r ≥ 1 (then k ≤ r)

We get X3(q3) = 0. If a 6= 0, the cocycle π2
0r vanishes, and if a = 0, it has the form

π2
0r =

α0

D
zrY12 = α0z

r−1∂12 (a = 0, r ≥ 1, α0 ∈ R).
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2. k ≥ 1, r ≥ 1,k = r

Cocycle condition: q2 = −X−1
2 X1(q1).

2.a. k = r = 1

It follows immediately from Equation 3, Equation 4 and Equation 2, that

π2
11 = 1

D
(α1x + α2y)Y23 + 1

D

(

(α2 + a
b
α1)x + (a

b
α2 − α1)y

)

Y31

= 1
D

[

α1

(

(D − a
b
xyz)∂23 + a

b
x2z∂31

)

+ α2

(

(D + a
b
xyz)∂31 −

a
b
y2z∂23

)]

(α1, α2 ∈ R).
(7)

2.b. k = r ≥ 2

As the coboundary condition reads X2(̺3) = q1, X1(̺3) = −q2, we only need choose ̺3 = X−1
2 (q1).

3. k ≥ 1,k ≤ r − 1 (then r ≥ 2)

Cocycle condition: X1(q1) + X2(q2) + X3(q3) = 0.

3.a. k = 1

Coboundary condition: X3(̺2) = −q1, X3(̺1) = q2, X1(̺2) − X2(̺1) = q3. It suffices to take
̺1 = X−1

3 (q2), ̺2 = −X−1
3 (q1).

3.b. k ≥ 2 (then r ≥ 3)

All ∆-factors in the cocycle and coboundary conditions disappear.

3.b.I. 3k − 2r 6= 0

Set ̺2 = 0, ̺3 = X−1
2 (q1), ̺1 = −X−1

2 (q3).

3.b.II. 3k − 2r = 0

Since X2 = 0 and X3 = −2X1, the equations read X1(q1 − 2q3) = 0 and X1(̺2) = 1
2q1, X1(2̺1 +̺3) =

−q2, X1(̺2) = q3 respectively.

3.b.II.α. a 6= 0, (k, r) 6= (2,3)

As X1 is invertible, q1 = 2q3 and we set ̺1 = 0, ̺2 = X−1
1 (q3), ̺3 = −X−1

1 (q2).

3.b.II.β. a = 0 or (k, r) = (2,3)

Corollary 1 allows to write qi (i ∈ {1, 2, 3}) in a unique way as the sum qi = α2+iD
k
2
−1 + q′i, α2+i ∈

R, q′i ∈ Qk, 3

2
k of an element of ker X1 and an element of imX1. As q1 − 2q3 − (α3 − 2α5)D

k
2
−1 =

q′1 − 2q′3 ∈ ker X1 ∩ im X1, we conclude that q′1 = 2q′3. Hence q′1Y23 + q′2Y31 + q′3Y12 is the coboundary
of ̺1Y1 + ̺2Y2 + ̺3Y3, where ̺1 = 0, X1(̺2) = q′3, X1(̺3) = −q′2. Finally, the original cocycle is
cohomologous to

π2
k, 3

2
k
≃ D

k
2
−1 (α3Y23 + α4Y31 + α5Y12)

(a = 0 and k ∈ {2, 4, 6, . . .} or a 6= 0 and k = 2;α3, α4, α5 ∈ R).

Due to the supplementary character of the kernel and the image of X1, two different cocycles of this
type can not be cohomologous.
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7.3 R - cohomology

Theorem 3. (i) If a 6= 0,

H2(R) = H2
23(R) = RY23 + RY31 + RY12,

(ii) if a = 0,

H2(R) =
⊕∞

k=1 H2
2k,3k(R) ⊕

⊕∞

m=1 H2
mm(R) ⊕

⊕∞

m=1 H2
0m(R)

=
⊕∞

m=0 Dm (RY23 + RY31 + RY12)
⊕

⊕∞

m=1 xm−2
1 (Rx1∂23 + R(x1∂31 + (m − 1)x2∂23)) ⊕

⊕∞

m=0 Rxm
3 ∂12.

Proof. We apply once more Corollary 3.
If (kr) 6= (mm) (m ≥ 1), the map i♯ is an isomorphism between H2

kr(R) and H2
kr(P).

If (kr) = (11), we get i♯ ∈ Isom(H2
11(R), im2

11 i♯). Since no coboundaries exist for this degree, the
R-cohomology is made up by the P-cocycles in R. But, π2

11 ∈ R, see 7, if and only if aα1 = aα2 = 0.
So, for a 6= 0, we have H2

11(R) = 0, whereas for a = 0, we obtain H2
11(R) = R∂23 + R∂31.

Consider now (kr) = (mm) (m ≥ 2). As H1
mm(P) = H2

mm(P) = 0, the map φ♯ is an isomorphism
between H1

mm(S) and H2
mm(R). So, if a 6= 0, both spaces vanish. In the case a = 0, we obtain, see

Formulary 2, H2
mm(R) = xm−2 (Rx∂23 + R(x∂31 + (m − 1)y∂23)).

Remark. So, when passing from the P- to the R-cohomology, the P-class of degree (kr) = (11) is lost
for a 6= 0, whereas for a = 0 new R-classes of degree (kr) = (mm), m ≥ 2 appear. This is coherent

with the picture described in section 4, if φ(σ), σ = xm−1

D
(gx+hy)Y3 ∈ S1

mm ∩ker∂S , m ≥ 2, g, h ∈ R,
is a coboundary in P but not in R. Since πS∂Pσ = ∂Sσ = 0, we definitely have φ(σ) = ∂Pσ. If φ(σ)
were an R-coboundary, φ(σ) = ∂Rρ, ρ ∈ R1

mm, the difference ρ− σ would be a P-coboundary in view
of Theorem 2: ρ − σ = ∂Pp, p ∈ P0

mm = 0.

8 3 - cohomology spaces

8.1 S - cohomology

Proposition 10. The third cohomology group of S vanishes: H3(S) = 0.

Proof. Obvious.

8.2 P - cohomology

Proposition 11. (i) For a 6= 0,

H3(P) = H3
23(P) ⊕ H3

00(P)
= RY123 ⊕ R∂123,

(ii) for a = 0,
H3(P) =

⊕∞

k=1 H3
2k,3k(P) ⊕

⊕∞

m=0 H3
0m(P)

=
⊕∞

m=0 DmRY123 ⊕
⊕∞

m=0 Rxm
3 ∂123.

Proof. Of course any cochain π = qY123 ∈ P3
kr, q ∈ Qkr, k ≥ 0, r ≥ 0, k ≤ r is a cocycle. For

k ≥ 0, r ≥ 1, k ≤ r, this cocycle is a coboundary, if there are ̺1, ̺2, ̺3 ∈ Qkr such that

X1(∆k0̺1) + X2(∆k0̺2) + X3(∆kr̺3) = q.

1. r = 0

The cocycle reads

π3
00 =

α0

D
Y123 = α0∂123 (α0 ∈ R)
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and no coboundaries do exist.

2. k = 0, r ≥ 1

The coboundary condition reads X3(̺3) = q. If a 6= 0, we set ̺3 = X−1
3 (q). Otherwise we decompose

q in the form q = α1zr

D
+ q′, α1 ∈ R, q′ ∈ imX3. Then the cocycle

π3
0r =

α1z
r

D
Y123 = α1z

r∂123 (a = 0, r ≥ 1, α1 ∈ R)

is not a coboundary (except of course if α1 = 0).

3. k ≥ 1, r ≥ 1,k = r

Coboundary condition: X1(̺1) + X2(̺2) = q. As 2r − 3k = −r 6= 0, it suffices to take ̺1 = 0 and
̺2 = X−1

2 (q).

3. k ≥ 1, r ≥ 1,k ≤ r − 1 (then r ≥ 2)

Condition: X1(̺1) + X2(̺2) + X3(̺3) = q.

3.a. 2r − 3k 6= 0

We only need choose ̺1 = ̺3 = 0 and ̺2 = X−1
2 (q).

3.b. 2r − 3k = 0 (then (kr) ∈ {(23), (46), (69), . . .})

Here X2 = 0 and X3 = −2X1 and the condition reads X1(̺1 − 2̺3) = q. If a 6= 0 and (kr) 6= (23),

take ̺3 = 0 and ̺1 = X−1
1 (q). If a = 0 or (kr) = (23), set again q = α2D

k
2
−1 + q′, α2 ∈ R, q′ ∈ imX1.

The cocycle
π3

2m,3m = Dm−1α2Y123 (a = 0,m ∈ N∗ or a 6= 0,m = 1; α2 ∈ R)

can not be a coboundary (if α2 6= 0).

8.3 R - cohomology

Theorem 4. (i) If a 6= 0,
H3(R) = H3

23(R) ⊕ H3
00(R)

= RY123 ⊕ R∂123,

(ii) if a = 0,

H3(R) =
⊕∞

k=1 H3
2k,3k(R) ⊕

⊕∞

m=0 H3
0m(R) ⊕

⊕∞

m=1 H3
mm(R)

=
⊕∞

m=0 DmRY123 ⊕
⊕∞

m=0 Rxm
3 ∂123 ⊕

⊕∞

m=0 xm
1 (Rx1 + Rx2)∂123.

Proof. If a 6= 0, (kr) 6= (11) and if a = 0, (kr) 6= (mm),m ≥ 1, then

i♯ ∈ Isom(H3
kr(R), H3

kr(P)) (a 6= 0, (kr) 6= (11) or a = 0, (kr) 6= (mm),m ≥ 1).

As H3
mm(P) = 0, m ≥ 1, it follows from Corollary 3 that φ♯ ∈ Isom(H2

mm(S)/ker2
mmφ♯,H

3
mm(R)).

If a = 0,m ≥ 2, the group H2
mm(P) also vanishes and

φ♯ ∈ Isom(H2
mm(S),H3

mm(R)) (a = 0,m ≥ 2).

For m = 1, we have to compute the kernel ker2
mmφ♯. If φ♯[σ]S = 0, σ ∈ S2

11 ∩ ker ∂S = S2
11, the image

φ(σ) = ∂Pσ is an R-coboundary ∂Rρ, ρ ∈ R2
11. So, ρ − σ ∈ P2

11 ∩ ker ∂P . Equation 7 shows that

ρ − σ = π2
11 =

1

D

[(

(α −
a

b
β)x + βy

)

Y23 +
(

βx + (
a

b
β − α)y

)

Y31

]

+
x

D

[a

b
βY23 +

a

b
αY31

]

,
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where the first (resp. second) term of the r.h.s. is a member of R2
11 (resp. S2

11). Hence, if a = 0, the
cochain σ vanishes and ker2

11 φ♯ = 0:

φ♯ ∈ Isom(H2
11(S),H3

11(R)) (a = 0).

If a 6= 0 and σ = x
D

(iY23 + jY31), see Formulary 2, we get α = − b
a
j, β = − b

a
i, which provides ρ in

terms of σ. Equations 3, 4, and 6 then immediately give ker2
11 φ♯ = H2

11(S), so that

H3
11(R) = 0 (a 6= 0).

The announced theorem is then a direct consequence of Equation 6.

9 Further results

In this section, we provide complete results regarding the formal cohomology of structure 7 of the
DHC,

Λ7 = b(x2
1 + x2

2)∂1 ∧ ∂2 + ((2b + c)x1 − ax2)x3∂2 ∧ ∂3 + (ax1 + (2b + c)x2)x3∂3 ∧ ∂1.

We obtained these upshots, using the same method as above for structure 2. Computations are quite
long and will not be published here. We assume that c 6= 0, otherwise we recover structure 2.

In the following theorems, the Yi (i ∈ {1, 2, 3}) denote the same vector fields as above, namely,

Y1 = x1∂1 + x2∂2, Y2 = x1∂2 − x2∂1, Y3 = x3∂3.

Moreover, we set
D′ = x2

1 + x2
2, D = (x2

1 + x2
2)x3.

If b
c
∈ Q, b(2b+c) < 0, we denote by (β, γ) ≃ (b, c) the irreducible representative of the rational number

b
c
, with positive denominator, β ∈ Z, γ ∈ N∗. If b

c
∈ Q, b(2b + c) > 0, (β, γ) ≃ (b, c) denotes the irre-

ducible representative with positive numerator, β ∈ N∗, γ ∈ Z∗. Furthermore, we write Λ instead
of Λ7,

⊕

ij Cas(Λ)Yij instead of Cas(Λ)Y23 + Cas(Λ)Y31 + Cas(Λ)Y12, Sing(Λ) =
⊕

r≥0 Singr(Λ) in-

stead of R[[x3]] =
⊕

r≥0 Rxr
3, and CγY3 (γ ∈ {2, 4, 6, . . .}) instead of RD′

γ
2
−1x−1

3 Y3 = RD′
γ
2
−1∂3.

Some comments on the results given in the following theorems can be found below.

Theorem 5. If a 6= 0, the cohomology spaces are

H0(Λ) = Cas(Λ) = R, H1(Λ) =
⊕

i

Cas(Λ)Yi,

H2(Λ) =
⊕

ij

Cas(Λ)Yij , H3(Λ) = Cas(Λ)Y123 ⊕ Sing0(Λ)∂123.

Theorem 6. If a = 0 and b = 0, the cohomology is

H0(Λ) = Cas(Λ) =
⊕

r≥0

RD′r, H1(Λ) =
⊕

i

Cas(Λ)Yi,

H2(Λ) =
⊕

ij

Cas(Λ)Yij ⊕ Sing(Λ)∂12, H3(Λ) = Cas(Λ)Y123 ⊕ Sing(Λ)∂123.

Theorem 7. If a = 0 and 2b + c = 0, the cohomology groups are

H0(Λ) = Cas(Λ) =
⊕

r≥0

Rxr
3, H1(Λ) =

⊕

i

Cas(Λ)Yi ⊕ C2Y3,

H2(Λ) =
⊕

ij

Cas(Λ)Yij ⊕ Sing(Λ)∂12 ⊕ C2Y3 ∧ (RY1 + RY2),

H3(Λ) = Cas(Λ)Y123 ⊕ Sing(Λ)∂123 ⊕ C2Y3 ∧ RY12.
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Theorem 8. If a = 0 and b
c

/∈ Q or b
c
∈ Q, b(2b + c) < 0,

H0(Λ) = Cas(Λ) = R, H1(Λ) =
⊕

i

Cas(Λ)Yi ⊕

{

(b, c) ≃ (−1, γ), γ ∈ {4, 6, 8, . . .} : CγY3

otherwise : 0
,

H2(Λ) =
⊕

ij

Cas(Λ)Yij ⊕ Sing(Λ)∂12 ⊕



















(b, c) ≃ (−1, γ), γ ∈ {4, 6, 8, . . .} :

CγY3 ∧ (RY1 + RY2)

otherwise :

0

,

H3(Λ) = Cas(Λ)Y123 ⊕ Sing(Λ)∂123 ⊕

{

(b, c) ≃ (−1, γ), γ ∈ {4, 6, 8, . . .} : CγY3 ∧ RY12

otherwise : 0

Theorem 9. If a = 0 and b
c
∈ Q, b(2b + c) > 0,

H0(Λ) = Cas(Λ) =
⊕

n∈N,nγ∈2Z

RD′nβ+ nγ
2 xnβ

3 , H1(Λ) =
⊕

i

Cas(Λ)Yi,

H2(Λ) =
⊕

ij

Cas(Λ)Yij ⊕ Sing(Λ)∂12, H3(Λ) = Cas(Λ)Y123 ⊕ Sing(Λ)∂123

Remark. Let us emphasize that Casimir functions are closely related with Koszul-
exactness or “quasi-exactness” of the considered structure. Observe that Cγ = RD′−1+ γ

2 x−1
3

(γ ∈ {2, 4, 6, . . .}) has the same form as the basic Casimir in Theorem 9 and that the nega-
tive superscript in x−1

3 can only be compensated via multiplication by Y3 = x3∂3. Clearly,
such a compensation is not possible for RD′−n+ nγ

2 x−n
3 , n > 1. Hence cocycle CγY3 is in

some sense “Casimir-like” and “accidental”. Note eventually that the “weight” of the
singularities in cohomology increases with closeness of the considered Poisson structure
to Koszul-exactness.

10 Suitable family of quadratic structures

The objective of this final section is to explain that our technique applies to all the
quadratic Poisson classes induced by a special type of r-matrices.

It is well-known that the action tangent to the canonical action of the Lie group GL(n,R) on Rn,
is the Lie algebra homomorphism

J : g := gl(n,R) ∋ a = (aij) → aijxi∂j ∈ Sec(TRn) =: X 1(Rn)

(Sec(TRn): Lie algebra of smooth sections of the tangent bundle TRn, i.e. Lie algebra of vector fields
of Rn; x = (x1, . . . , xn): canonical coordinates of Rn; ∂1, . . . , ∂n: partial derivatives with respect to
these coordinates), which is a Lie isomorphism if valued in the Lie algebra X 1

0 (Rn) of linear vector
fields.

Let us recall that a standard construction allows to associate to any Lie algebroid E a Gersten-
haber algebra, made up by a graded Poisson-Lie algebra structure on the shifted Grassmann algebra
Sec(

∧

E)[1] of multi-sections of E. We denote this Schouten-Nijenhuis superbracket, which extends
the algebroid bracket on Sec(E), by [., .]E or simply by [., .], if no confusion is possible.

The above Lie homomorphism J extends to a Gerstenhaber homomorphism

J :
∧

g → X (Rn) := Sec(
∧

TRn),

where the Gerstenhaber structures have been obtained as just mentioned. Let

˜∧
Rn =

⊕

k

(

Sk(Rn)∗ ⊗
∧

kRn
)
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be the Gerstenhaber subalgebra—of the algebra X (Rn) of poly-vector fields—made up by k-vectors
with coefficients in the corresponding space of homogeneous polynomials in x ∈ Rn. It is obvious that
J viewed as Gerstenhaber homomorphism with target algebra ˜∧Rn,

J :
∧

g →
˜∧

Rn,

is onto. It is also known that the restriction Jk to the space
∧k

g has a non-trivial kernel (provided
that k, n ≥ 2).

Remember that a classical r-matrix is a bi-matrix r ∈ g ∧ g that verifies the classical Yang-Baxter
equation [r, r] = 0. The space S2(Rn)∗ ⊗

∧2
Rn of quadratic bi-vectors coincides with the image

J2(g ∧ g) and
J3[r, r] = [J2r, J2r], r ∈ g ∧ g.

So any bi-vector Λ = J2r that is the image of an r-matrix is a quadratic Poisson structure of Rn.
Conversely, any quadratic Poisson tensor of Rn is induced by at least one bi-matrix. However, the
characterization of those quadratic Poisson structures that are implemented by an r-matrix, is an open
problem (see [MMR02]). Quadratic Poisson structures generated by an r-matrix are of importance
e.g. in deformation quantization, in particular in view of Drinfeld’s method.

One easily understands that the study of r-matrix induced structures involves the orbit OΛ and
stabilizer GΛ of the considered structure Λ for the canonical action on tensors of the general linear
group GL(n,R). Our paper is confined to the three-dimensional Euclidean setting. Let us recall that
the isotropy group GΛ is a Lie subgroup of G := GL(3,R), the Lie algebra of which is the stabilizer
gΛ of Λ for the corresponding infinitesimal action,

gΛ = {a ∈ gl(3,R) : [Ja, Λ] = 0}.

As already stated, the objective of this paper is to provide a universal approach to the formal
Poisson cohomology for a broad family of quadratic structures in the classical physical space. Let us
just indicate that the classes of the DHC (see [DH91]) accessible to our modus operandi
are exactly those classes that are implemented by r-matrices in gΛ ∧ gΛ. The quadratic
Poisson tensors can defacto be classified according to their membership in the family of
structures induced by an r-matrix in the “stabilizer”. It then turns out that the members
of this family are those tensors that read as a linear combination of wedge products of
mutually commuting linear vector fields, hence those that are accessible to the above
detailed and applied technique.

We refer to the classes implemented by an r-matrix in the stabilizer as admissible
classes. The DHC gives the quadratic Poisson structures up to linear transformations.
Let us finally mention that admissibility is of course effectively independent of the chosen
representative. This means that if Λ = J2r, r ∈ gΛ ∧ gΛ, [r, r] = 0, then any equivalent
structure A∗Λ, A ∈ G—A∗ denotes the natural action of A—has the same property, i.e.
A∗Λ is also induced by an r-matrix and this matrix can be chosen in the stabilizer of A∗Λ.
Indeed, it is easily seen that the orbit of J2r for the canonical G-action, is nothing but
the pointwise image of the orbit of r for the adjoint action Ad of G,

A∗(J
2r) = J2(Ad(A)r).

Since the adjoint action respects the Schouten-Nijenhuis bracket, Ad(A)r is an r-matrix
in the stabilizer of A∗Λ.
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Birkhäuser Verlag

[Xu92] Xu P, Poisson cohomology of regular Poisson manifolds, Ann. Inst. Fourier, 42 (1992), pp
967-988


