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A Thermodynamic Analysis
of Wear 

HUY DuoNG Bm, MARTA DRAGON-LOUISET, and CLAUDE STOLZ 
Laboratoire de Mecanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France 

8.5.1 INTRODUCTION 

Wear phenomena due to contact and relative motion between two solids 
depend on the loading conditions and material mechanical behaviors and are 
characterized by a loss of materials. Particles are detached from sound solids 
n1, n2 when some criteria are satisfied at the boundaries c (i = 1, 2) between 
Qi and the complex medium Q3, called hereafter the "interface", with some 
wear rates </Ji (normal component of the velocity). The interface is a com­
plex medium made of detached particles, eventually a lubricant fluid, and 
damaged zones. Macroscopic descriptions of the interface are known in 
the literature [1-4]. Recently, Dragon-Louiset [5,6] and Stupkiewicz and 
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Mroz [7] introduced microscopic scale models in order to derive macroscopic 
laws. A thermodynamical analysis of the evolution of the moving surfaces r; 
is provided by Zmitrowicz [8], Dragon-Louiset and Stolz [9], and Stolz and 
Pradeilles-Duval [ 12]. The evolutions of the damaged surfaces are complex, 
particularly in the transient phase of the interface life. However, for particular 
geometry of the interface, and for the steady state case, with constant fluxes of 
materials, continuous wear states can be studied experimentally. There are 
useful wear criteria, such as Archard's law [10], but most of them depend on 
experimental conditions and cannot be used for other geometry or for 
different loading conditions. 

In contrast with the eulerian description used in References [5, 6], we 
reconsider the model of the interface given in References [5, 6, 11], using 
rather the lagrangian approach. In this paper, the interface description is 
based on given macroscopic laws and differs from the one derived from 
microscopic considerations in Dragon-Louiset [5, 6]. The local approach 
allows us to make a distinction between mechanical quantities evaluated 
on a given geometry and for specific loading conditions and intrinsic 
ones associated with any moving wear surfaces r;. Our approach to wear 
criteria is based on the energy release rate like quantities, similar to 
Griffith's theory in fracture mechanics. All these quantities, some of them 
accessible to experiments, make it possible to better define wear criteria and 
wear rates. 

Throughout this article, we make the small perturbations assumption. 

8.5.2 GENERAL THERMODYNAMICAL 

CONSIDERATIONS ON WEAR PHENOMENA 

We consider a system consisting of two sliding contacting solids (01 and 02) 
and the contact interface zone 03, having some mechanical properties which 
are assumed to be known and described by usual laws of continuous media 
(Fig. 8.5.1). Such interface laws may be understood in a macroscopic sense, as 
average or homogenized through the thickness of 03 (for a model of 
macroscopic laws issued from microscopic considerations, see Dragon­
Louiset [5, 6]). The interface thickness is small compared to the size of the 
tribological system; it results from damage mechanisms occurring in sound 
solids at r;. Outside the damaged process zones in both solids the behavior 
laws are described by the free energies!/!; and the dissipation potentials d;. As
a result of wear mechanisms, the boundaries r; move with the velocities </>;n; 
in the reference configuration. Along the boundary, we define [f lr, = f;+ -f;­with the ( +) sign in O;, (-) sign in 03. 
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FIGURE 8.5.l The contact interface. 

By expressing the conservation laws in Qi and across ri as in 
References [6, 9, 12], we get the following equations for the quasi­
static case: 

• Mass conservation (v: velocity; µi: mass flux; p: density; a: stress):

p + div(pv) = 0 in nil 

• Momentum conservation:

div2pta = 0 in nii ni. [a]r= 0 one,
' 

(1) 

(2) 

• Energy balance (q: heat flux; &: strain; x: internal energy; s: entropy;
T: temperature):

PX= (J : t; - div q in nii (3) 

µi[l/t + sTJr, -nj.CJ.[vlr,+[qJr, .ni = 0 on ri.

On each moving surface, using the second conservation law (Eq. 3), one can 
show that there exists a heat source along C, with the density 

(4) 

8.5.2.1 ANALYSIS OF ENTROPY PRODUCTION 

The internal entropy production is positive and consists of different kinds of 
separately positive contributions: 

• volumic thermal conduction:

Dth = -q. \JI /T2 � 0 (5) 

• volumic intrinsic mechanical irreversibility:

Dm = �(CJ: grad v - p ( ifr + sT)) � 0 (6) 
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• and surface (or line in two-dimensional problems) irreversibility terms: 
1

Dr= - (µi[l/l]r -ni.O'.[v]r) 2 0T , , 

If at any point of ri the mass flux vanishes µi = 0, the displacement u is 
continuous, the velocity jump is [v]r i = 0, and then Dr = 0. This means that 
the last dissipation Dr is a characteristic of material loss, i.e, the part of 
dissipation due to wear. 

8.5.3 GLOBAL APPROACH OF THE INTERFACE 

BEHAVIOR LAWS 

At each front ri, the normal ni is directed toward the sound solid. The 
interface of thickness e = 2h(x, t) is defined by its mean surface r. The total 
dissipation per unit area of r is given by 

D = J D3dz + � (;i (µMJr, -ni.O".[vlr,) 2 0 (8) 

where D3 is the volumic dissipation of the interface medium: 

D3 = {-q.\7T/T
2

+�(0":gradv-p(�+st)) }03 (9) 

The total global dissipation associated with each surface contact element 
contains two distinct terms, D3 due to friction associated with relative 
movements of solids, and terms on C due to the fluxes of material losses 
(µ1 and µ2). 

For a given mechanical behavior of the interface 03, issued either by 
experiments or by micromechanical considerations as was done in References 
[5, 6], the resolution of the evolution equations of a strip of height e(x), 
subjected to uniform loadings, with the surfaces z = ±h sliding with the 
relative velocity V, may give separately the dissipation rates by friction 
and by wear. 

8.5.3.l INTERFACE STUDY 

The displacement is assumed to be continuous across the sound solids 
and the interface. Let us describe the tribological system 01, 02, 03 by 

4



considering the interface 03 as an abstract medium with some surface 
energy lfis and dissipation potential Ds to be defined hereafter. The mean 
surfacer is defined by S(x, t) = 0. At each point x of r, with the normal n(x) , 
we define the surfaces r1 and r2, respectively, by x + h(x, t)n(x) and 
x - h(x, t)n(x). 

We introduce the convected differential Drf of functions J (scalar, vector) 
with respect to r, 

f( ) 1. 
f(x + <fmdt, t + dt) - f(x, t) 

Dr x, t := imdt->O 
dt 

In particular, we have for the evolution of the middle surface 

DrS(x, t) = 0, 

Dr(x + h(x, t)n(x))  = ¢1n, Dr(x + h(x, t)n(x)) = ¢2n

Dr(x) = ¢n, Dr(n(x)) = divr(¢n) 

At each r;, the displacement u is continuous, and the velocity fields v 
satisfy the Hadamard condition Dr[u]; = 0, or equivalently 

[vlr, +¢;['vu]r,-n; = 0 (10) 

The total dissipation takes the form 

(11) 

where G; and G3; are the same expressions as given in References [5, 6]: 

(12) 

(13) 

In Eq. 11, the two dissipation terms are of different natures. The first one, 
volumic at the origin (or at a microscopic scale in Reference [5]), becomes a 
surface dissipation by the thickness average process, per unit contact area 
(the macroscopic scale in Reference [5]). It corresponds to friction, which 
depends on the characteristics of 03. The complementary terms in Eq. 11 are 
due to wear rates ¢;, which depend on the characteristics of both media O; 
and 03. 
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Let us consider the isothermal evolution of the interface under uniform 
temperature. The global dissipation is written in the following form: 

D = �{ 1 ( <J3: grad v3 - p3�3 ) dz+� <MGi - G3i)} ;:::: 0 (14)

It follows that a global approach of wear can be done by means of surface­
free energy defined a priori on r. The interface of thickness 2h is 
characterized by the free energy per unit volume 1/13 and the local strain s. 
We define the surface energy by 

if; s = (2p5(x)h(x) r1 r p(x, z)i/13 (s (x + zn) )j(x, z)dz (15) l2h 
where j(x, z) is a scalar which takes account of the curvature of r (case of 
wear in rotors, for example). The associated mass p5 is defined as 

Ps = (2h(x)r1 { p(x,z)j(x,z)dz (16) l2h 
The section of the interface of thickness 2h is in equilibrium with external 

loads. Since the displacement fields are continuous on ri, the surface energy 
if; 5 is a function of the displacement fields and internal parameters a, 
discussed later. The global potential energy of the tribological system can be 
written as 

where u1 = u(x + hn, t) and u2 = u(x-hn, t). At equilibrium, a =  p/)l/J)as 
and div (J = 0 on nj. 

In the case of the nonviscous interface, one has <J. ni = 2p5haif;5/8ui on ri. 
In the case of the viscous interface, for a given dissipation potential 

D3 = d(i;; a) a similar average through the thickness can be done giving the 
surface dissipation Ds(v1, v2; a): 

2p5hDs(v1,v2)= { pd(i:(x+zn);a)j(z)dz (17) l2h 
Equation 1 7 yields 

The macroscopic description given here ignores the details on the 
microscopic level, so that the thickness h(x) is the relevant parameter 
geometrically defining the interface, while a describes the given physical 
properties of the interface. In a microscopic analysis of the interface, as given 
in References [5, 6, 11], the parameter a also contains a description of the
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constituents, i.e. , the set of volume fractions of debris { <p1, cp2} or the mass 
fractions {m1, m2}, together with their physical properties, etc. It can be shown 
that in the steady state case when only one solid, for example, 02, is subjected 
to wear and when damage occurs in an elastic-brittle manner, both <p2 and m2 
are equivalent to the interface thickness 2h(x). In a microscopic approach to 
wear, the set of internal variables for general constitutive laws of the 
constituents is { <p1, <p2, IX1, 1X2, . . .  } . 

The variation of the potential energy can be written as 

� = �L
,
Pi�de(u)]dw +� [l 2p5hlP5(u1,u2,1X)dA] 

which becomes after simple rearrangements 

� = { Pi�i[e(u)]dw - { PitPAJidA + { {Dr(2p5hlP5) + 2p5hlP5<f>y }dA
t Jn, Jr, Jr 

where y is the curvature. Similarly, the average process through the thickness 
of the mass conservation law yields 

l {Dr(2p,h) + 2p5h<f>y }dA = -p1 ¢1 + p2<f>2 (18) 

Equation 18 makes it possible to relate the internal variables IX, h, or other 
relevant variables defining the interface properties appearing in its left-hand 
side to the wear rates ¢1, ¢2. Equation 18 is another form of the mass 
conservation law, more suitable for the interface description. Its right-hand 
side may be considered as the source terms feeding the contact interface. 

The variation of the potential energy P can be written in the form 

� = { n.u .v dA - { PitPi<f>idA + { tP5[p<f>JidA- { ni.<ri.vidA
t Jo.,;r, Jr, Jr Jr, 

f { a� a� }
+ Jr 

2psh 
Bui . (

vi + Vui.<f>ini) + 2p5h B1X 
. Dr(1X) dA (19) 

We recover the dissipation because of the interface movement. The first 
term corresponds exactly to Gi, and the complementary ones correspond to 
the interface contribution. 

In particular, if 2h is the internal parameter IX, since Dr(2h)n+ 
2hDr( n) = ( <f> 1 - ¢2 )n, the previous expression takes a form similar to the
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global dissipation in which G3i is given by 

G3i = Gsi = l/JsPi - 2psh 
a:as 

In this approach, the interface is in equilibrium at any time. This 
expression shows that Gsi are parameters directly associated with the 
interface model. 

8.5.3.2 WEAR CRITERIA 

8.5.3.2.1 Local Model 

A wear criterion can be defined as a relationship between the normal velocity 
<Pi and the associated thermodynamic force 'Yi = Gi - G3i. One can define a 
dissipation potential d, a convex function of')';, such that </Ji= ad/ah The 
simplest criterion is similar to Griffith's criterion in fracture mechanics, for 
which d(yi) is the supporting function of the convex ')'; :S: 'Yic The wear 
criterion of medium (i) depends on re, r;c, G3i, i.e., on five parameters. 

8.5.3.2.2 Interface Model 

There are simplifications when the free energy and the potential dissipation 
have simple forms 

lf;5(u1,u2,e<) :=J(u1 - u2 , e<) , Ds (v1,v2,e<) :=g(v1 -v2,a) 
We can show that, at first order, [o-].n = 0 and the viscous dissipation 

term is reduced to 2p5h(aD5/8v).[Dr(ui)g. Since the velocities <Pi are 
small compared to the relative velocity V, we have 2p5h(aD5/8v). 
Dr(uJ[i � 2p5h(aD5/8v).V, which means that the dissipation is essentially 
due to friction. Such an approximation is assumed in References [5, 6, 11]. 
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