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Abstract

We address the problem of camera motion and 3D structur@sece-
tion from line correspondences across multiple views, froitralization to
final bundle adjustment. One of the main difficulties whenlidgawith line
features is their algebraic representation.

First, we consider the triangulation problem. Based orcliicoordi-
nates to represent the 3D lines, we propose a Maximum Likediralgo-
rithm, relying on linearizing the Plucker constraint aral @ Plicker cor-
rection procedure, computing the closest Plicker coatdto a given 6-
vector.

Second, we consider the bundle adjustment problem, whitsiantially
a nonlinear optimization process on camera motion and 3bgarameters.
Previous overparameterizations of 3D lines induce gawggglfyms and / or
internal consistency constraints. We propose the ortmabrepresenta-
tion, which allows handy nonlinear optimization of 3D linesing the min-
imum 4 parameters with an unconstrained optimization engin

We compare our algorithms to existing ones on simulated ealddata.
Results show that our triangulation algorithm outperfostendard linear
and bias-corrected quasi-linear algorithms, and that leuajustment using



our orthonormal representation yields results similath standard Maxi-
mum Likelihood trifocal tensor algorithm, while being usalor any num-
ber of views.

1 Introduction

The goal of this paper is to give methods for reconstructioime features from
image correspondences over multiple views, from init&tlan to final bundle ad-
justment. Reconstruction of line features is an importapid since it is used
in areas such as scene modeling, augmented reality and sswaing. Bun-
dle adjustment is the computation of an optimal visual retmction of camera
motion and 3D scene structure, where optimal means Maximikelihood in
terms of reprojected image error. We make no assumptiontabelcalibration
of the cameras. We assume that line correspondences oeastthree views are
availablé.

While the multiple-view geometry of lines is well-understh seee.g.[5, 11],
there is still a need for practical structure and motion atgms. The factorization
algorithms [15, 18, 25] yield reliable results but requiadidines to be visible in
all views. We focus on the common three-stage approache.gefl1, §17.5],
consisting in(7) computing camera motion using inter-image matching texsor
(17) triangulating the features arfdi:) running bundle adjustment.

There exist reliable algorithms for st¢p). In particular, it can be solved by
computing trifocal tensors for triplets of consecutive gas, using.g.the auto-
matic computation algorithm described in [£15.6], and registering the triplets
in a manner similar to [6]. Other integrated motion estimatsystems are [20],
based on Kalman filtering techniques and [26], registeraghesiew in turn.

In steps(ii) and(ii7), one of the main difficulties when dealing with line fea-
tures arises: the algebraic representation. Indeed, ih@@ minimal, complete
and globally non singular parameterization of the 4-din@red set of 3D lines,
seee.g.[11, §2.2]. Hence, they are often overparameterized, as the join of
two points or as the meet of two planes (8 parameters), or & tboefficients
of their Plucker coordinates, which must satisfy the leéin Pliicker constraint.
Another overparameterization is two images of the line (@&peeters). The most
appropriate representation depends upon the problemdsyesdi. For example,
the algorithm in [11,5§15.2] shows that the ‘two image lines’ representation is

ILine correspondences over two views do not constrain thescamotion.



well-adapted to the computation of the trifocal tensor,levkine sequential algo-
rithm of [20] is based on Pluicker coordinates.

Concerning steyii), many of the previous works assume calibrated cameras,
e.g.[14, 21, 23, 27] and use specific Euclidean representatibns.linear three
view algorithm of [27] and the algorithm of [23] utilize a west point+direction’
representation, while [21] uses the projections of the inghex = 0 and the
y = 0 planes, which has obvious singularities. These algorityieid sub-optimal
results in that none of them maximizes the individual likebd of the recon-
structed lines.

Bundle adjustment, stefgii), is a nonlinear procedure involving camera and
3D line parameters, attempting to maximize the likelihobthe reconstruction,
corresponding to minimizing the reprojection error whea tioise on measured
features has an identical and independent (i.i.d.) norms#iloution. Previously-
mentioned overparameterizations are not well-adaptethtmlard nonlinear opti-
mization engines. The ‘two point’ and the ‘two plane’ overguaeterizations have
4 degrees of internal gauge freedé@mich may induce numerical instabilities.
The ‘two image lines’ parameterization has 2 degrees ofnalegauge freedoms
and implies that one may have to choose different imagesffereht lines since
all lines may not be visible in all images. Also, one must ¢héat the chosen
images are not too close to each other. Finally, direct apétion of Plucker
coordinates makes sense only if a constrained optimizédicmique is used to
enforce the bilinear Plicker constraint. An approprigeresentation would not
involve internal constraint or gauge freedom.

To summarize, there is a need for an efficient optimal tridettgan algorithm,
and a representation of 3D lines well-adapted to nonlinpémization. We ad-
dress both of these problems through the following contigios.

In §3, we give an overview of various 3D line representationshair Charac-
teristics.

In §4, we propose triangulation methods based on using Plizgckedinates to
represent the lines. A simple and optimal algorithm is atgdibased on lineariz-
ing the bilinear Pliucker constraint within an iterativegweighted least squares
approach.

In §5, we propose a nonlinear representation of 3D lines thatalehe or-
thonormal representatiorThis representation allows efficient nonlinear optimiza-
tion since only the minimum 4 parameters are computed at&aphwhich allows

2For the former one, the position of the points along the lare] the free scale factor of the
homogeneous representation of these points.



the use of a standard unconstrained optimization enginth s representation,
there is no internal gauge freedom or consistency constiana analytic differ-
entiation of the error function is possible.

Finally, §6 validates our algorithms and compares them to existing.ofilee
next section gives some preliminaries and notations anelsstiae problem.

2 Preliminaries and Notation

Notation. We make no formal distinction between coordinate vectodspnys-
ical entities. Everything is represented in homogeneoosdivates. Equality up
to scale is denoted by, transposition and transposed inverse'm@nd—T. Vec-
tors are typeset using bold fontk, (1), matrices using sans-serif fonts, A, R)
and scalars in italics. Bars represent inhomogeneousnigaudirts of vectors or
matricese.g.M" ~ (MT | m). TheL,-norm of vectorv is denoted|v||. The
identity matrix is denoted. SO(2) and SO(3) denote the 2D and 3D rotation
groups.
The 2D orthogonal (Euclidean) distance between pgiand linel weighted
by ¢s is:
& (q,1) = (a)?/ (2 + 12). (1)

Matrix factorization. We make use of the Singular Value Decomposition of
matrices, dubbedvp. ThesvD of matrix A is A« = UnxnZnxnV, ., Where

U andV are orthonormal, anH is diagonal, containing the singular valueshah
decreasing order. Ther factorization of matrixA is A,.,xn = QuxmRimxn, With

Q orthonormal and upper triangular. More details on these matrix factoraadi

can be read ie.g.[7].

Maximum likelihood estimation. As noted in [11,§15.7.2], no matter how
many points are used to represent an image llirtee quadratic error function
on it can be expressed in the forf (x,1) + d (y,1) for two weighted points
x, y onl. We will use this representation for simplicity. If we havB 8nes
S ={L',..., L™} and camerag1 = {P!,... P"}, the negative log likelihood
function&(S, M) for the reconstruction, corresponding to the reprojectioor,



can be written in terms of individual reprojection erréd.’, M) for each linej:

E(S, M) = ié’(Lj,M) ()

J=1
n

EW/, M) = > (&3 (x7,17) +d} (y7,1Y)) . 3)

i=1

3 Representing 3D Lines

We describe several representations for 3D lines in priggspace and their char-
acteristics. Some of these representations are ‘panidlieé sense that they can
only represent a subset of all 3D lines. For example, som& wormetric re-
construction, particularly in photogrammetry, assume tiva reconstructed lines
do not lie at infinity. The goal of this study is to choose a esgntation for the
triangulation and bundle adjustment problems. Concerttiegriangulation, the
most important criterion is that the reprojected lines imadr function of the 3D
line. Bundle adjustment is a nonlinear procedure allowiragarflexibility in the
choice of the parameterization. The quality of the paranegtion is assessed
based on criteria such as the number of internal gauge fmegdo internal con-
straints. A summary of the reviewed representations islyipabvided. The first
representation that we describe is the Plicker coordinaie link all the other
representations to Plicker coordinates.

3.1 Complete Representations

Pliicker coordinates. Given two 3D pointsM'™ ~ (M' |m) andNT ~
(NT | n) one can represent the line joining them by a homogeneousker
6-vectorL” ~ (a | b"), seee.g.[11, §2.2]:
a = MxN
{ b = mN—nM. (4)
Other conventions for Plucker 6-vectors are also possiBlach comes with a

bilinear constraint that the 6-vector must satisfy in ortterepresent valid line
coordinates. For our definition, the constraint is:

C(L)=0 where C(L)=a'b. (5)

5



Similarly, one can construct the Plucker coordinates ahadlefined as the meet
of two planes. The Plucker coordinates of a line defined astéet of two planes
PT ~ (PT | p)andQ" ~ (QT | ¢) are given by:

a = pQ—qP
{b - PxQ ©)

As an example, triangulation from two views has the follogviosed-form solu-
tion. LetP! andP? be the two projection matrices ahdandl? the two imaged
lines. The Plucker coordinates of the corresponding 3B dire given as the meet
of the two viewing planesi ~ Pi'I'.

Given a standard x 4) perspective projection matriX ~ (P | p), a(3 x 6)
matrix projecting Pluicker line coordinates [2, 5] is givan

P ~ (det(P)P~T | [p]«P). (7)

It can be easily derived by expanding the expression of thdir&bjoining the
projections of two points:

l ~ mAn
~ (PM) A (PN)
~ (PM + mp) A (PN + np)
~ (PM) A (PN) + mp A (PN) — np A (PM)
~ det(P)P~T(M A N) + [p]P(mN — nM)
~ PL.

Seoet al.[20] use the Plucker coordinates representation for sagié&tructure-
From-Motion with a Kalman filtering technique. Pottmaginal. [17] use these
coordinates for 3D shape reconstruction and understarficing3D data.

Pair of points or pair of planes. These are two dual representations, described
in details in [11,§2.2.2]. In the first case, the line is defined as the join of two
pointsM andIN, and in the second case, it is defined as the intersectionf tw
planesP andQ. These representations have similar characteristicsy fitvee 8
parameters, hence 4 degrees of gauge freedom, the poditrenaoints along the
line (respectively the position of the planes in the penigdlanes around the line)
and the scale factors in the homogeneous coordinates obthsr the planes.



For metric reconstruction, if one drops the lines at infinihe two point repre-
sentation has 6 parameters. There is a direct link withKeliicoordinates using
equations (4) and (6). The reprojected lirie a bilinear function of the entries of
the point or the plane coordinates. For example, for the tamtpepresentation,

1 ~ (PM) x (PN). Hartley [10] proposes a triangulation algorithm based on
these representations. Halabal.[9] use the two point representation for bundle
adjustment. They consider that the line is not at infinity.e Bmbiguity on the
position of the points along the line is fixed by constrainihgm to reprojected
near the end-points observed in one of the images.

3.2 Partial Representations

Closest point and direction. A 3D line is represented by its closest point to
the origin, with coordinate™ ~ (QT 1), and its direction, with coordinates
QL ~ (QI 0), giving a total of 6 parameters. This representation doés no
include lines at infinity and hence can not be used in projecdpace. The link
with the Plucker line coordinatds s given by:

Q x Qu

Qs

Reprojecting the line with the camera matfix~ (P p) is a bilinear function of
the line parameterd:~ (PQ + p) x (PQ..). The line reconstruction algorithms
proposed by Wengt al. [27] for three views and by Taylor and Kriegman [23]
for multiple views use this representation. In the field obf@grammetry, Tom-
maselli and Lugnani [24] use this representation for buadjestment. Mulawa
and Mikhail [16] use the additional constrajf@®..|| = 1.

Two projections. A 3D line can be represented by two projections [10, 21].
This is related to the fact that reconstructing a line froro twews has in general
a unique solution.

Spetsakis and Aloimonos [21] use the intersection of twogdaone parallel
to the planer = 0, and the other one parallel to the plane 0. These two planes
are formulated using 4 parametersh, c andd by x = az + bandy = cz + d
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respectively. The pencil of poin®Q on the 3D line is parameterized by the
coordinate:

az+b
cz+d
z
1

This representation has obvious singularities: lines tvaie parallel to the plane
z = 0 can not be represented. Indeed, the points lying on suck hiage a
constant: coordinate, and since the points are parameterized by dbisimate,
one always gets the same point if theoordinate is constant. One can link this
representation to the Plicker coordinalesf the line by considering any two
points lying on the lineg.g.for = = 0 andz = 1, and equation (4), giving:

Ayache and Faugeras [4] use this representation for matliletmavigation. In
the field of photogrammetry, Habib [8] extends this représ@m by using dif-
ferent pairs of planes depending on the 3D line, in order todcathe singularities.

Hartley [10] uses two images of the line. This representdtias the following
singularities: all 3D lines lying in an epipolar plane inéddy the two cameras
have the same images in both views. The 3D lines that can natigeely repre-
sented thus form a Linear Line Complex, €2@.[22]. Note that these singulari-
ties can be encountered in practice. The Pliicker coorBradrresponding to this
representation can be calculated by intersecting the tewing planes induced
by the two image lines using equation (6). Hartley showsttmatreprojection of
the line in other views in a bilinear function of the paramsgte

The Denavit-Hartenberg parameters. The Denavit-Hartenberg representation
[3] has become the standard way of representing robots aniéling their mo-
tions. The ideais to relate each joint to the next by usingrtimémal 4 parameters,
namely two distances and two angles. A general 3D Euclideasformation, be-
tween two Euclidean coordinate frames, has 6 degrees afdneeFor using the

8



Denavit-Hartenberg representation, thaxis of one coordinate frame has to be
aligned with the line orthogonal to theaxes of both coordinate frames, which
cancels out 2 degrees of freedom, 1 in rotation and 1 in @#insl This suggests
to represent a 3D line by theaxis of a coordinate frame, and to parameterize it by
the 4 Denavit-Hartenberg parameters with respect to aamtercoordinate frame,
e.g.the world coordinate frame. The Plucker coordinates spwading to these
parameters can be obtained dg.applying the coordinate transformation given
by the 4 parameters to theaxisLT ~ (0 0 0 0 0 1) of the reference frame using
a 3D line rigid displacement matrix [2]. The projection efioa is nonlinear in
the Denavit-Hartenberg parameters since it involves prtsdand trigonometric
operators.

One problem with this parameterization is that two distarere used as pa-
rameters, which prevents from representing the lines atiinfiThere is also an
indeterminacy in the choice of one of the coordinate framemthe line is parallel
to thez-axis of the reference coordinate frame.

Roberts [19] proposes to model 3D lines using two distanndswo angles.
His representation has drawbacks similar to those destabeve.

Note that there are other representations for modelingtsolior example,
Hayatiet al.[12] introduce an extra rotation parameter to the Denawattéhberg
representation to model the error due to near parallel aXas.representation is
thus not minimal.

3.3 Summary

Table 1 summarizes the characteristics of the aforemesdiogpresentations, and
of the orthonormal representation that we proposgbinNe observe that the only
representation for which the reprojected lines is a lineacfion of the 3D line
parameters is the Pliicker coordinates. It is also seeésades our orthonormal
representation, no other complete representation allomsnanal update with
4 parameters, which is due to gauge freedoms and / or inteomaistency con-
straints. Minimal update is an important criterion for gsanrepresentation within
bundle adjustment.

4 Triangulation

This section discusses computation of structure given cametion. We propose
direct linear and iterative nonlinear methods to recovéckdr line coordinates.



representation | comp. | # gauge| # cstr | reprojection| min. up.
closest point and direction no 1 1 bilinear no
two image lines no 2 0 bilinear no
Denavit-Hartenberg no 0 0 non-linear yes
two points or two planes yes 4 0 bilinear no
Plucker coordinates yes 1 1 linear no
orthonormal representation yes 0 0 non-linear yes

Table 1. Summary of different representations for 3D linéhwheir character-

istics. The ability of the representation to cover all line$? is on the column

‘comp.” (completeness). The number of gauge freedoms ifwol# gauges’)

and internal constraints (column ‘# cstr’) are stronghkéd. The ‘reprojection’

column is about the equation for reprojecting the 3D lindwaitperspective cam-
era. The column ‘min. up.’ indicates if the representatian be updated with 4
parameters.

These algorithms are general in the sense that they can Henitbecalibrated,
partially calibrated or uncalibrated cameras.

First, we describe a somehow trivial linear algorithm wharbiased error
function (compared to the reprojection error) is minimizethis algorithm is
subject to the same kind of drawback as the eight-point ghgorfor computing
the fundamental matrix: due to possible noise in the datardbulting 6-vectors
do not generally satisfy the bilinear Plucker constrai)t §imilarly to the matrix
computed by the eight-point algorithm not being rank defici@1, §10.2]. We
propose what we call Rlucker correctionprocedure, which allows to compute
the closest Plucker coordinates to a 6-vector.

Second, we propose an algorithm where the reprojectiom efrthe line is
minimized. The cornerstone of this algorithm is the lineation of the Plicker
constraint.

Since the reconstruction of each line is independent frarothers, we drop
thej index in this section.

4.1 Linear Algorithm

We describe a linear algorithn,IN’. In the reprojection error (3), each term is
based on the square of the 2D point-to-line orthogonal wicstd , , defined by
equation (1). The denominator of this distance is the catisieeononlinearity.
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Ignoring this denominator leads to an algebraic distanceteld,, biased com-
pared to the orthogonal distance. Itis linear in the preditinel and defined by
d?(q,1) = d? (q,1) w? = (q"1)?, where the scalar facter encapsulates the bias
asw? =12 + 1%

, ~ 2 ~ 2
()’ = ((PLh) + (PL)) . (8)
We define the biased linear least squares error function:
BIL M) = > (x"PL2+ (v PLy?) (9)
=1

7
= HA(QnXﬁ)LHQ with A = T~ (10)

yZ P’L

SinceL is an homogeneous vector, we add the constidifit = 1. TheL that
minimizes B(L, M) is then given by the singular vector éf associated to its
smallest singular value, that we compute ussvg. Due to noise, the recovered
6-vector does not in general satisfy the Plicker congt(ajn

4.2 Plicker Correction

The Plucker correction procedure is analogous to the atdn@nk correction of
the fundamental matrix based @vD: the eight-point algorithm linearly com-
putes a full-rank matri, whose smallest singular value is nullified to obtained
the rank-two matrise, seee. g.[11]. Matrix F is the closest rank-two matrix
in the sense of the Frobenius norm. It is used to initializelinear algorithms.

The Plicker correction procedure computes the closeskBt coordinates to
a given 6-vector, where closest is to be understood in theesehthel,-norm,
equivalent to the matrix Frobenius norm. It is also equnate the Euclidean
distance between two points iR°. This correction is necessary to initialize
the nonlinear algorithms from the solution provided by &inenethods ignoring
the Plucker constraint. Pottmamethal.[17] use the Euclidean distance between
Plucker coordinate vectors to compare 3D lines. They umdathe facts that this
distance is practical for minimization purposes and is icoadgance with visual-
ization in the region of interestge. near the origin.

More formally, letL™ ~ (a' | b") be a 6-vector that does not necessar-
ily satisfy the Pliicker constraint (5), i.ea’b might be non-zero. We seek
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LT ~ (u' | v7), defined byming v, IL — L||2. This is a linear least squares
optimization problem under a nonlinear constraint. Althlout has a clear and
concise formulation, it imot trivial.

Obviously, one can modify one entry of the Pliicker coortésan accordance
with the Pliicker constraing.g.seta; = —(agbs + agbs)/by. This simple solution
has the disadvantage that the entry must be chosen depeamdihg actual values
of the coordinates since the correction rule uses a divisikdso, all entries are
clearly not treated uniformly.

By comparison, our solution orthogonally projects the 6tgeon the Klein
quadric and treats all its entries the same way. Kanatahigdfoses a general
iterative scheme for projecting points on nonlinear mddgpsuch as projecting
points inIR% on the Klein quadric. Our algorithm performs this projentio a
non iterative manner, which thus guarantees that the oppnogected point on
the Klein quadricj.e. the optimal 3D line, is found. Its derivation is quite tricky
but it can be readily implemented with few lines of code frasssummary shown
in table 2.

Compute the Singular Value Decompositienb) = UZVT.
LetZ = ¥VT, form matrix T = (22 72 ),

212 —Z211
Compute the singular vect@rassociated to the smallest singular value
of matrix T.

DefineV = (2 %) and se{u v) ~ UV diag (VTEVT>.

2

Table 2: ThePlucker correctionalgorithm. Given a 6-vectaE.™ ~ (a' | bT),
this algorithm computes the closest Plucker coordinétes~ (u' | vT7), i.e.
u'v = 0, in the sense of th&,-norm, i.e.||L — L||? is minimized.

A geometric interpretation. We interpret the 3-vectors, b, u andv as coor-
dinates of 3D points. These points are not directly linketh® underlying 3D
line. This interpretation is just intended to visualize flreblem. The Pliucker
constraintu™ v corresponds to the fact that the lines induced by the origfin w
andv are perpendicular. The correction criterion is the sum absgd Euclidean
distances betweenandu and betwee andv. Hence, the problem may be for-
mulated as finding two poinisandv, as close as possible 4candb respectively
and such that the lines induced by the origin witandv are perpendicular. We

12



begin by rotating the coordinate frame such thandb are transferred on the
z = 0 plane. This is theeduction of the problemWe solve the reduced prob-
lem, by finding two points on the = 0 plane, minimizing the correction criterion
and satisfying the Pliicker constraint. Finally, espress the solutioback to the
original space.

Reducing the problem. Let us define thg3 x 2) matricesC ~ (a b) and
C ~ (u v). The Plucker constraint is fulfilled if and only if the colmsof matrix
C are orthogonal. We rewrite the correction criterion as :

O=|L-L|*=|C~-C|
Using the followingsvb C3xa) = U(3X2)i(2X2)\7(T2X2) ;
O = [UZVT — C||> = |ZVT - UTC|P%,

sinceU has orthonormal columns. We defide= £VT andZ = UTC. Matrix V
is orthonormal and is diagonal, _hence the rows Eifare ‘orthogonali(e. Z77 is
diagonal, but noZ"Z). Note thatZ = UTC impliesC = UZ, even ifUUT is not
the identity. The problem is reduced to finding a column-orthogbnatrix Z,
as close as possible to the row-orthogonal matrix

Solving the reduced problem. We parameterize the column-orthogonal matrix
Z asZ = VI, whereV is orthonormal and is diagonal. Hence :

O=||EVT —VE|? = |[VTZVT — 5|

The diagonal matriz. which minimizes this expression is given by the diagonal
entries ofVTZVT, and does not depend on the solution Yor The orthonormal

%Indeed, denote; the columns of matrix) and formU = (u; uy u; x uy). We havelTU =
( I(zxg) 0(2X1))T. Let us multlply the correction criterion by™: O = ||( VL 0(2X1))T -
UTC|[%. DenoteY 3.2 = UTC. The optimal solution has the forM" = ( ZT 0(51)), since,
according to the geometric interpretation, the correcteithitp u and v must lie on the plane
defined by pointa, b and the origin, the plane= 0. Therefore, we obtaifi = UY = UY.

4The fact that matrixZ = UTC is column-orthogonal is induced from the Plucker conatrai
Indeed, this constraint implies thatis column-orthogonal, hendg' C is diagonal. MatrixUTC,
where SO(3) > U = (u; uz u; x uz) = (U 1), is also column-orthogonal. Observe that
CTUUTC = CTUUTC + CTaa"C = CTUUTC sincea™C = 0T. Hence, matrixJTC is column-
orthogonal.

13



matrixV = (V1 Vy) is given by minimizing the sum of squares of the off-diagonal
entries ofVTZ, withZ = £VT = (z, z,) :

O = (¥72,)% + (V12,2

Define the 2D rotation matrix with angle/2 by M = ({ ') and parameterize
the orthonormal matri¥ by a unit vectow, as :

61 = G
62 = I\/IG,

The correction criterion can be rewritten as :

-
O = "2)?+ (¥ M'z)? = |TV|* with T= (Z—ZI—QM) :
1
The unit vectow minimizing this expression is given by the singular vectsa
ciated to the smallest singular value of maiffix

Expressing the solution. From vectorv which solves the reduced problem, we
form the orthonormal matri¥ = (”1 e ) The diagonal matrix is given by

b2 1
Y = diag(VTZVT).

4.3 Quasi-Linear Algorithms

We describe algorithm®LIN1’ and ‘QLIN2’, that consider the reprojection error
(3). They are based on an iterative bias-correction, thraegveighting of the
biased error function (9). Such algorithms are coined gliaesar.

We showed previously that the orthogonal and the algebistarttes are re-
lated by a scalar factor, given by equation (8), dependinghen3D line. The
reprojection error and the biased error functions are tbereelated by a set of
such factors, one for each image of the line. The fact thagtfectors depend on
the unknown 3D line suggests an iterative reweighting sehem

The first approach that comes to mind@.IN1". The linear system consid-
ered for methodIN is formed and solved. The resulting 6-veckgyris corrected
to be valid Plucker coordinates. This yields a biased edBrof the 3D line. Us-
ing this estimate, weight factors that contain the bias eflthear least squares
error function are computed, and used to reweight the eaustiThe process is
iterated to compute successive refined estimbtastil convergence, whereis

14



the iteration counter. Convergence is determined by tiotdsiy the difference
between two consecutive errors. It is typically reached am 3 iterations.

Experimental results show that this naive approach pedoreny badly, see
§6. This is due to the fact that the Plucker constraint is exdo afterhand and is
not taken into account while solving the linear least sgaiagstem.

To remedy to this problem, we proposgLiN2’, that linearizes and enforces
the Plucker constraint (5), as follows. The algorithm isnsarized in table 3.
Rewrite the constraint &L) = LT GL whereG .6 = (9{). By expanding this
expression to first order around the estimbte and after some minor algebraic
manipulations, we obtain the following linear constraintlg, , ;:

Cr(Lpt1) = L GLj 1 = 0.

We follow the constrained linear least squares optimiratn@thod summarized

in [11, §A3.4.3] to enforce this linearized constraint, as well|&g, || = 1. The
idea is to find an orthonormal basis of all possible vectatisfyang the constraint
and to solve for a 5-vectoy expressed in this basis. Such an orthonormal basis
is provided by computing the nullspace bf G usingsvp. LetV be a(6 x 5)
orthonormal matrix whose columns span the basis BGV = 0), we define
Liy1 = Vv, henceCy(Lyy1) = LGV~ = 0 and||Ly.1|| = ||v||. We solve for

~ by substituting in equation (10)|AL,..||*> = ||AV~||?). The singular vector
associated to the smallest singular value of matkixporovides the solution vector
with unit £,-norm such tha3(Ly, 1, M) is minimized.

1. Initialization: Form the linear least squares systénirom equation
(10), computd., by minimizing||AL,||?, se€§4.1, and by applying the
Plucker correction procedure described4n2. Setk = 0.

2. Constraint linearization:Compute the Singular Value Decompositipn
LIG ~ u"diag(1,0,0,0,0,0)(V(sx1) | Visxs) -

3. Estimation:Computemin., jj2—; |AV~||? and sefL;,; = V.

4. Bias-correction: Reweight the linear systemA by computing the
weights according to equation (8).

5. lteration: Iterate steps 2, 3 and 4 until convergence.

U

Table 3: The quasi-linear algorithmLIN2’ for optimal triangulation.
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5 Bundle Adjustment

Bundle adjustment is the nonlinear minimization of the oggetion error (2), over
camera and 3D line parameters. We focus on the parametenzzt3D lines.
Parameterizing the camera motion has been addressegljb, 11,5A4.6].

5.1 Problem Statement

As said in the introduction, there are various possibgite overparameterize the
4-dimensional set of 3D lines. In the context of nonlineaimjzation, choosing
an overparameterized representation may induce the fiolipproblems. First,
the computational cost of each iteration is increased bgrlupus parameters.
Second, artificial freedoms in the parameter set (interaabg freedoms) are in-
duced and may give rise to numerical instabilities. Thiame internal consis-
tency constraints, such as the Plucker constraint, mag tealve enforced.

These reasons motivate the need for a representation ofn@éd &llowing
nonlinear optimization with the minimum 4 parameters. lattbase, there is
no free scale induced by homogeneity or internal consigteanstraints, and an
unconstrained optimization engine can be used.

5.2 The Orthonormal Representation

The orthonormal representation has been introduced irofithe nonlinear opti-
mization of the fundamental matrix with the minimum 7 paréeng It consists
in finding a representation involving elements$®(n) and scalars (hence the
term ‘orthonormal representation’). In particular, noetlalgebraic constraints
should be necessary, such as the rank-two constraint oafmedtal matrices or
the bilinear Pliicker constraint. Using orthonormal neasiimplies that the repre-
sentation is well-conditioned. Based on such a represeniddcal update using
the minimum number of parameters is possible.

Commonly used nonlinear optimization engireeg. Newton type such as
Levenberg-Marquardt, often require the Jacobian matrik@error function with
respect to the update parameters. In the orthonormal epegsn framework,
we split it as the product of the Jacobian matrix of the erumction considered
with respect to the ‘standard’ entity representatmg,the fundamental matrix or
Plucker coordinates, and tleethonormal Jacobian matrix.e. for the ‘standard’
representation with respect to the update parameters.
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Example: representingP!. We derive the orthonormal representation of the 1-
dimensional projective spad®. This is used ir§5.3 to derive the orthonormal
representation of 3D lines. Let € P'. Such a 2-vector is defined up to scale and
has therefore only 1 degree of freedom. We represent it by@¢2) matrix W

defined by:
1 01 —032
W= . 11
(o 7) )

The first column of this matrix igr itself, normalized to unit-norm. L&t be

the update parameter. A local update stey/is— WR(¢) whereR(0) is the 2D

rotation matrix of anglé. The Jacobian matri%% evaluated al, = 0 (the update
is with respect to a base rotation) is given by:

oo [ =02\ _
=)= (12)

Eg

- an

o 00

wherew; is thei-th column ofW.

Updating SO(3). A matrix U € SO(3) can be locally updated using 3 param-
eters by any well-behaved (locally non singular) represtén, such as 3 Euler
anglesd’ = (0, | 6, | 65) as:

U< UR(®) with R(8) = Ry(f1)Ry(6)Ry(05), (13)

whereRy(61), Ry(62) andR,(63) are SO(3) matrices representating 3D rotations
around ther-, y- and z-axes with anglé,, 6, andf; respectively. The Jacobian
matrix is derived as follows. As in th80O(2) case, the update is with respect
to a base rotation. The orthonormal Jacobian matrix is tbe¥eevaluated at

0o = 0(3x1):
_(w
60 00, & '
9 (URx(01)Ry(02)R,(03))

After minor algebraic manipulations, we obtain:
6o 891 6o

= (03 |uz| —uy), (14)

au
06

u
o 00

o
o | 00

u
00,
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whereu; is thei-th column ofU. Similarly:

ou

50, o = (~u3 | 03| w) (15)
ou
90, . = (up| —uy | 0s). (16)

These expressions are vectorized to form the orthonormabdan matrix.

5.3 The Case of 3D Lines

The case of 3D lines is strongly linked with the casesS6f(2) and SO(3), as
shown by the following result:
Any (projective) 3D lind. can be represented by:

(U, W) € SO(3) x SO(2),

whereSO(2) and SO(3) are the Lie groups of respective{§ x 2) and (3 x 3)
rotation matrices(U, W) is the orthonormal representation of the 3D lihe

The proof of this result is obtained by showing that any 3[elimas an
orthonormal representatiof, W) € SO(3) x SO(2), while any (U,W) €
SO(3) x SO(2) corresponds to a unique 3D line. The next paragraph illtestra
this by means of Pluicker coordinates.

Note that this result is consistent with the fact that a 3B las 4 degrees of
freedom, since an element 80 (2) has one degree of freedom and an element of
SO(3) has 3 degrees of freedom.

Using this representation of 3D lines, we show that therstex locally non
singular minimal parameterization. Therefore, 3D lines ba locally updated
with the minimum 4 parameters. The update scheme is inspivedthose given
above for 2D and 3D rotation matrices, and can be pluggednust of the ex-
isting nonlinear optimization algorithms. These resutes summarized in table
4.

Relating Plicker coordinates and the orthonormal representation. The or-
thonormal representation of a 3D line can be computed frerRliicker coordi-
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natesL” ~ (a' | b"), as follows. LetC(3x2) ~ (a | b) be factored as :

(el
Cr~ (Wm ol |bxb”) bl
N
-~

50(3)

(lall BT ePr?

In practice, we Us@®R decompositionC(gxg) = U@ax3)X3x2)- The special form

of matrix ¥, i.e.the zero at thél, 2) entry is due to the Plucker constraint. While
U € SO(3), the two non-zero entries &f defined up to scale can be represented
by anSO(2) matrix W, as shown irg5.2.

Going back from the orthonormal representation to Plickerdinates is triv-
ial. The Plucker coordinates of the line are obtained frtsvoithonormal repre-
sentationU, W) as:

LT ~ (wiiu{ | wyiuy), (17)

whereu,; is thei-th column ofU.

A 4-parameter update. Consider(U,W) € SO(3) x SO(2), the orthonormal
representation of a 3D line. Sintk € SO(3), as reviewed irt5.2, it can not
be minimally parameterized but can be locally updated usipggtion (13), as
U < UR(0) wheref € R3. Matrix W € SO(2) can be updated a4 «— WR(6),
whered € R. We define the update parameters by the 4-vagtor (87 | 6).

We denotel the (6 x 4) Jacobian matrix of the Plicker coordinates, with
respect to the orthonormal representation. Matrixust be evaluated ai, =

O@ax1):
PR L1 P R Y R
Po 00, o 00, o 005 o 06 o '

By using the orthonormal representation to Plucker cowmigis equation (17)
and the Jacobian matrices fetO(2) and SO(3), as defined by equations
(12,14,15,16), we obtain, after minor algebraic manipoies:

_ 0(3><1) —o01ug  O1U2 —0O2Ug
J(6X4)_(U2u3 0(3><1) —ou;  Oouy ) (18)
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Initialization. The initial guess is given by the Plucker coordinalds ~

(ag | by).
e Compute the orthonormal representatighW) € SO(3) x SO(2) of
L, by Qrdecompositioria, | by) = U (Ul 0’2) and setV = (gL 72).

o2 01

e The 4 optimization parameters gs& = (6" | ) where the 3-vecto
and the scala# are used to updaté andW respectively.

Update.(i.e. one optimization step)

e Currentline isL™ ~ (wyu] | wyus™) anddL/0p is given by equas
tion (18).

e Computep by minimizing some criterion.

e UpdateU andW: U — UR(@) andW — WR(9).

Table 4: Elements for 3D line optimization using the minirdalparameters
through the orthonormal representation.

Geometric interpretation. Each of the 4 above-defined update paramepers
has a geometric interpretation. Matki% encapsulates the ratj||/||b||, hence
the distancel from the originO to L. Thus, parametet acts ond. Matrix U is
related to a 3D coordinate frame attached.toParamete#é, rotatesL around a
circle with radiusd, centered orQ, and lying on the plane defined 16y andL.
Paramete#, rotatesL around a circle with radiug, centered or©O, and lying in

a plane containin@, the closest poin® of L to O, and perpendicular th. Pa-
rameter; rotatesL around the axis defined Y andQ. For the last three cases,
the angles of rotation are the parameters themselves. fteigpretation allows
to easily incorporate a priori knowledge while estimatingna. For example, to
leave the direction of the line invariant, one may use the @atg parameters,
andd, while to leave the distance of the line to the origin invatjaone may use
the 3 update parametafs This allows to solve constrained line estimation cases,
as summarized in the table below, indicating which updatarpaters to optimize
in which case:
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scenario 10, 6, 05 0

fixed direction X X
fixed normal to the plane formed with the originx X
fixed distance to the origin X X X

6 Experimental Results

6.1 Simulated Data

Our simulated experimental setup consists of a set of can@o&ing inwards at
3D lines randomly chosen in a sphere with a 1 meter radius.eCasrare spread
widely around the sphere, at a distance of roughly 10 meveay &om the centre
of the sphere. We fix the focal length of the cameras to 100@uimber of pixels).
Note that this information is not used in the rest of the expents. The end-
points of all lines are projected in all views, where theisgions are corrupted
by an additive Gaussian noise. We vary the parameters oé¢higp to assess and
compare the quality of the different estimators on variaene configurations.

We compare the 4 methods given in this papeK, QLIN1, QLIN2 andMLE
(bundle adjustment based on our orthonormal representati8D lines), as well
as the method given in [1315.4.1], denoted byMLE_HARTLEY’. This method
consists in nonlinearly computing the trifocal tensor a#i a®reconstructed lines
by minimizing the reprojection error (2) and parameteigzine 3D lines by two
of their three images. We also comp&eN2 to a direct Levenberg-Marquardt-
based minimization of the reprojection error, dubbbed\ : the two methods gave
undistinguishable results in all our experiments. Noté¢ thast existing methods,
e.g.[14, 21, 23, 27] can be applied only when camera calibras@available.

We measure the quality of an estimate usingdasmation erroras described
in [11, §4], which also provides the theoretical lower bound. Thewsion error
is equivalent to the value of the negative log likelihood ((2. the reprojection
error).

The results are shown on graphs on figures 1 and 2. We obseat/¢hth
different methods are always in the same order. Three didtighaviours can be
seen. MethodsIN andQLIN1 give similar results since they are subject to the
same bias induced by ignoring the Pliicker constraint wnélfinal correction.
MethodsQLIN2 andNLIN are undistinguishable. They give better results than
the biased methods. Finally, methadse andMLE_HARTLEY are hardly ever
distinguishable. Their results are the best since theysadje camera positions
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along with the 3D line parameters.

In more details, we vary the added noise level from 0 to 2 pix&hile con-
sidering 20 lines and 3 views on figure 1 (a). One observes llegbnd 1 pixel
noise, methodsIN and QLIN1 behave very badly. This is mainly due to the
bias introduced by the Plucker correction procedure. Me$loLIN2, MLE and
MLE_HARTLEY degrade gracefully as the noise level increases. Method 2
gives reasonable results. Methadse andMLE_HARTLEY give undistinguish-
able results, very close to the theoretical lower bound.

We vary the number of lines from 15 to 60, while considering@xel noise
and 3 views on figure 1 (b). Similar conclusions as for the iptev experi-
ment can be drawn, except for the fact, that when more tham®8 hre con-
sidered, methodsiN andQLIN1 give reasonable results. Also, metheds and
MLE_HARTLEY give results undistinguishable from the theoretical loweund
when more than 45 lines are considered.

Figure 2 (a) shows the results when the number of imagesiisdvaom 3 to
12. The algorithms that do not optimize the cameras, namgelyQLIN1, QLIN2
andNLIN, have an error which increases with the number of imagesraskse
the bundle adjustment algorithms, namelye andMLE_HARTLEY, have an error
which decreases. This is due to the fact that when the nunibeages increases,
the initial camera estimation degrades, which is charetieiof the camera ini-
tialization algorithm.

When the distance between the lines and the cameras insrdiggee 2 (b)
shows that the error decreases for all methods. This is iegaldy the fact that
the cloud of 3D lines gets smaller and smaller in the imagésciwdecrease the
estimation error, but does not mean that the estimate isrbett

We observed that the quasi-linear methods always convetgm iterations.

6.2 Real Data

We tested our algorithms on several image sequences. Fooftwleem, we
show results. We compared methodsi, QLIN1, QLIN2 and MLE, since
MLE _HARTLEY is for 3 views only.

We observed thaQLIN1 generally needs more iterations to converge than
QLIN2. This is due to the Plicker correction step that signifigamodifies the
estimate iMLIN1, while iInQLINZ2, since the constraint is linearized and enforced
in the estimation, the correction applied to the estimaless important.
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Figure 1: Estimation error for different methods when vagythe variance of
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The ‘books’ sequence. Figure 3 shows images from this 5-frame sequence. We
provided 45 line correspondences by hand. Note that sonfesof &ire visible in
two views only. We used these line correspondences to campaettrifocal ten-
sor corresponding to each subsequence formed by triplesnsiecutive images,
using the linear method describederg.[11, §15.2]. We used methogQLIN2
to reconstruct the lines associated with each triplet. Vgestered these subse-
guences by using the method given in [2]. At this point, we haglboptimal
guess of metric structure and motion. We further refinedirigieur triangulation
algorithms, to reconstruct each line by taking into accalhof its images. The
corresponding estimation errors are, respectivelyfior QLIN1 andQLIN2, 2.30,
2.27 and 1.43 pixels. Note the significant improvemergiafN 2 compared to the
biased methodsiN andQLIN1. MethodsQLIN1 andQLIN2 respectively took 4
and 3 iterations to converge.

We used the result afLIN2 to initialize our Maximum Likelihood estimator
for structure and motion based on the proposed orthonorepaésentation to-
gether with a metric parameterization of the camera motidnich ends up with
a 0.9 pixel estimation error.

For each estimation, we reconstructed the end-pointssmoraling to the first
view (shown on the left of figure 3). The Maximum Likelihooddepoints are
given by orthogonally projecting theirimages onto the imafthe corresponding
line.

These results are visible on figure 4. Note the significantravgment of
methodMLE over methodsIN, QLIN1 andQLIN2. The lines predicted bylLE
and the original lines are undistinguishable. Figure 5 shitve cameras and lines
reconstructed byiLE. There is visually no difference with the reconstruction
provided by algorithn@LIN2, but that reconstructions provided by andQLIN1
appear distorted.

The ‘laptop’ sequence. Figure 6 shows sample images for the 8-frame ‘lap-
top’ sequence, overlaid with the 40 manually-entered lioeespondences. We
performed 3D reconstruction by applying the same algomsthsfor the ‘books’
sequence. We obtained the following estimation errorsHerttiangulation al-
gorithms, namely.IN: 1.34 pixels,QLIN1: 1.29 pixels andQLIN2: 1.04 pixels.
MethodsQLIN1 andQLIN2 took respectively 7 and 5 iterations to converge. For
the bundle adjustment algorithms, we obtained an estimatimr of 0.82 pixels.
Figure 7 shows snapshots of the reconstructed 3D models.

These results show that accurate reconstructed modelsaart&ined on real
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Figure 3: Sample images out of the 5-frame ‘books’ sequemnveslaid with

manually-provided lines. Note that the optical distortismot corrected.
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Figure 4: Zoom on some original (white) and reprojecteddifiddack) for the
‘books’ sequence for different methods.
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Figure 5: Snapshots of the cameras and lines reconstrugtetethodMLE for
the ‘books’ sequence. The images shown in figure 3 corresfitite top- and
bottom-most cameras.
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images taken by amateur digital cameras. They also showrpertance of run-
ning a final bundle adjustment after initial triangulation.

7 Conclusion

We addressed the problem of structure and motion recoveny line correspon-
dences across multiple views.

First, we proposed an optimal triangulation algorithm. €avamera motion,
the Plicker coordinates of the 3D lines are estimated bymiimg the reprojec-
tion error. The algorithm relies on an iteratively reweggghteast squares scheme.
We linearized the bilinear Plucker constraint to incogderit up to first order in
the estimation process. A Plucker correction proceduaoposed to find the
nearest Plucker coordinates to a given 6-vector.

Second, we proposed the orthonormal representation of@&d,lwhich allows
nonlinear optimization with the minimal 4 parameters witAh unconstrained op-
timization engine, contrarily to previously proposed @asameterizations. This
representation is well-conditioned and allows analytftedentiation.

Experimental results on simulated and real data show tleagtdndard linear
method and its naive bias-corrected extension perform badyy in many cases
and should only be used to initialize a nonlinear estimaf@ur bias-corrected
algorithm including the Plucker constraint performs adl &s direct Levenberg-
Marquardt-based triangulation. It is therefore a goodtsmiuo initialize subse-
guent bundle adjustment. Based on our orthonormal repiessam bundle ad-
justment gives results close to the theoretical lower bamaiundistinguishable
from the three-view maximum likelihood estimator of [£15.4.1], while being
usable with any number of views.
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