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Lasmea, UMR6602, CNRS, Blaise Pascal University,
Clermont-Ferrand, France

{Surname.NAME}@lasmea.univ-bpclermont.fr

Abstract. Two basic facts motivate this paper: (1) particle filter based
trackers have become increasingly powerful in recent years, and (2) object
detectors using statistical learning algorithms often work at a near real-
time rate.
We present the use of classifiers as likelihood observation function of a
particle filter. The original resulting method is able to simultaneously
recognize and track an object using only a statistical model learnt from
a generic database.
Our main contribution is the definition of a likelihood function which
is produced directly from the outputs of a classifier. This function is an
estimation of calibrated probabilities P (class|data). Parameters of the
function are estimated to minimize the negative log likelihood of the
training data, which is a cross-entropy error function.
Since a generic statistical model is used, the tracking does not need
any image based model learnt inline. Moreover, the tracking is robust
to appearance variation because the statistical learning is trained with
many poses, illumination conditions and instances of the object.
We have implemented the method for two recent popular classifiers: (1)
Support Vector Machines and (2) Adaboost. An experimental evalua-
tion shows that the approach can be used for popular applications like
pedestrian or vehicle detection and tracking.
Finally, we demonstrate that an efficient implementation provides a real-
time system on which only a fraction of CPU time is required to track
at frame rate.

1 Introduction

We address the problem of real-time detection and tracking of an object using
only a generic statistical model of the object. The idea is to bring together two
popular fields of computer vision: statistical learning algorithms and particle
filtering. Statistically based object detector using boosting [1] and support vector
machine (SVM) [2] are now fast enough to run in real-time. Furthermore, particle
filter based trackers [3, 4] provide successful solutions in following objects in
clutter from a video. They have been used with edge-based [4], appearance [5] or
kinematic [6] models, most of them, learnt for the specific object to be tracked.

We propose to use a generic model of the class of the object, computed of-
fline by a statistical learning algorithm from a database. The resulting approach
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is able to detect and track any instance of the generic object model. A classi-
cal particle filter is used to estimate the posterior probability density function
(posterior) of the state of the object.

Object detection and tracking methods are used in many applications. Most
popular ones are pedestrian tracking [7], vehicle tracking [8] or face tracking [9].
The problem is complex because each instance of the object class, for example
my sister face, is different from other instances (other faces). Moreover, the
appearance (image) of my sister face is not the same according to illumination
and pose conditions. This example shows the real difficulty to have a generic
model of an object.

Since object recognition methods working at a near real-time rate are recent,
there is not many works related to visual tracking using statistical learning
algorithms. The introduction of support vector tracking [8] by Avidan is the first
paper which uses the output of an SVM object detector to perform a tracking
task. The idea is to link the SVM scores with the motion of the pattern tracked
between two images. This method provides a solution to track classes of objects.
No model of the current object is learnt but the classifier uses a generic model
learnt offline. Williams [10] proposes a probabilistic interpretation of SVM. He
presents a solution based on RVM (relevante vector machine) [11], combined
with a kalman filter to make a temporal tracking. RVM are used to link the
image luminance measure to the relative motion of the object with a regression
relation. However, this method supposes a learning step for the current object.

In [12], Okuma proposes an particle filter based approach which merges an
Adaboost detector [1] and color model in order to build the posterior probability.
The resulting system is able to recognize and track multiple players from a
hockey game video sequence. this paper does not use directly the classifier as an
observation function, as we propose here.

The paper is organized as follows. In section 2, we present the principle of
the method and how to use outputs of classifiers as the observation likelihood
function of a particle filter. Section 3 describes the image features extraction
and the two steps algorithm used to train the classifier. Experimental results
and real-time implementation are shown in section 4.

2 Principle of the Method

This section describes the object tracking method. We present a probabilistic
formulation of visual tracking and a sequential Monte Carlo technique (particle
filter) as a way to make it practical. Our main contribution is the definition of
an observation likelihood function from the outputs of a classifier.

2.1 Probabilistic Visual Tracking

Visual tracking can be seen as the estimation, at time t, of the posterior prob-
ability function p(Xt|Z0:t) where Xt is the hidden state (position) of the object
and Z0:t

.
= (Z0, ...,Zt)denotes the temporal data sequence (images). In the case
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of a conditionally independent observation process and a Markovian prior on the
hidden states, the sequence of filtering distributions p(Xt|Z0:t) to be tracked are
defined by the recursive equation:

p(Xt+1|Z0:t+1) ∝ p(Zt+1|Xt+1)

∫

Xt

p(Xt+1|Xt)p(Xt|Z0:t)dXt (1)

Assuming that the distributions of probabilities are Gaussian, The Kalman filter
provides an optimum analytical solution. However, visual tracking applications
are highly non-linear and multi-modal problems. In this case, the posterior can
be estimated by sequential Monte Carlo techniques [3].

2.2 Particle Filter

Particle filtering [13, 14] is a sequential importance sampling algorithm for es-
timating properties of hidden variables given observations in a hidden Markov
model. Standard particle filter assumes that posterior P (Xt|Zt) can be approx-
imated by a set of samples (particles). Moreover it also assumes that the obser-
vation likelihood P (Zt|Xt) can be easily evaluated.

A particle filter approximates the posterior using a weighted particle set
{(Xn

t , πn
t ) : n = 1, .., N}. Figure 1 describes the algorithm used here, also called

Condensation[14]
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Fig. 1. The particle filter algorithm (Condensation)

2.3 State Space and Dynamics

We want to track a region of interest (ROI) in the image plane It. The state
of this ROI is defined by it center c

.
= (x, y) (expressed into the image plane

reference) and a scale factor st between the ROI and the size of the images used
to train the classifier. The state Xt associated to the object is then defined by:

Xt
.
= (ct, ct−1, st, st−1) (2)

For a state Xt, the corresponding ROI is extracted by:

R(Xt)
.
= ct + stW, (3)
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where W is the 0-centered reference window with the same size then images used
in the training step.

A first order auto-regressive dynamics is chosen on these parameters:

Xt+1 = AXt + Bvt , vt ∼ N (0, Σ) (4)

Matrices A, B and Σ can be estimated from a set of sequences for which the
position of the object is known.

2.4 Observation Likelihood

This section describes the tracker likelihood function P (Z|X) which is defined
as the likelihood that the state of the object (position) is X according to an
observed image Z. Many particle filter based trackers use a likelihood function
linked to a distance between the model and the current particle to be weighted
like π = exp(−λ.d(., .)). The parameter λ must be adjusted to provide good
performances. The method described here does not use parameter of this kind.

Let us define a generic classifier m(f) that returns an uncalibrated real value
for the feature parameter f . This value can be a margin in the case of a SVM
classifier or a score in the case of an Adaboost algorithm. We propose to build the
likelihood function used to evaluate weights of the particle filter from m(f). Since
the likelihood function used by the particle filter is a probability: P (class|input)
must be such a value computed from the classifier output.

The classifier m(f) ∈] − ∞; +∞[ ranks examples well if : m(f1) < m(f2)
then P (class|f1) < P (class|f2). Generally, m(f) ∈ [amin; amax] (where amin

and amax depend of the problem and the classifier), and we want to map the
scores into the [0; 1] interval by rescaling them. if mr(f) is the re-scaled score, the
naive way is to produce it by: mr(f) = (m(f) − amin)/(amax − amin). However,
the estimate of P (class|f) by mr(f) does not provide well calibrated posterior
probability distribution (see [15] for details).

In [16], three calibration methods used to obtain calibrated probabilities from
Boosting are compared:

– Logistic Correction: [17] a method based on Friedman et al.’s analysis of
boosting as an additive model,

– Isotonic Regression: [15] a method used by Zadrozny and Elkan to cali-
brate predictions from Boosted naive Bayes, SVM, and decision tree models

– Platt Scaling: [18] a method proposed by Platt to transform SVM outputs
to posterior probabilities

Since Platt scaling can also be used to estimate probabilities from Boosting
[16], we use this method. In this section, we closely follow the description of Platt
calibration method. if m(f) is the output of the classifier, calibrated probabilities
can be produced from the sigmoid:

P (positive|m(f)) =
1

1 + exp(A.m(f) + B)
(5)
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where A and B are estimated using maximum likelihood estimation from a
calibration set (mi, yi) (mi = m(f i) and yi ∈ {0, 1} represent negative and
positive examples). A and B are computed by a non linear optimization of
the negative log likelihood of the training data, which is a cross-entropy error
function:

argmin(A,B){−
∑

i

yi log(pi) + (1 − yi) log(1 − pi)}, (6)

where

pi =
1

1 + exp(A.mi + B)
(7)

The easiest solution is to choose the same training set to fit the sigmoid then
the training set used to train the classifier. However, Platt shows that it causes a
biased estimate of the distribution of probability. A solution is to use a fraction
of the training set (70% for example), to train the classifier, and to use the other
fraction (30%) to estimate the parameters of the sigmoid. An other solution is
to use a cross-validation method (see [18] for details).

Using Platt scaling, the likelihood function is defined by:

P (Z|X) =
1

1 + exp(Â.m(f) + B̂)
, (8)

with f the feature vector associated to the state X and Â, B̂ are the estimates
of A and B.

3 Learning Classification Functions

This section presents the features used to describe the image and the principle
of the learning algorithm, based on two steps: (1) a feature selection step using
an Adaboost algorithm and (2) a training step.

3.1 Features Extraction

A great number of object recognition methods (pedestrian, vehicles etc.) are
using Haar wavelets, or cascades of simple filters[19], to encode the image [7, 20]
in order to obtain a compact description of the object.

Descriptors used here are inspired from these previous works. Figure 2 presents
the five T ×T = 2t × 2t filters (F1, ...F5. used here ). All of them are: (1) square
filters of 0 mean value, (2) they allow to detect symetries of the tarjet object,
and (3) their computation can be greatly optimized by the pre-computation of
an integral image [9]. The image is then described by a vector resulting of the
response of the five filters at three different scales. For instance for an image of
27 = 128 lines and 26 = 64 columns, the filter size for scale i are 26−i×26−i. The
resulting vector of features has total size (64 + 96 ∗ 32 + 112 ∗ 48) ∗ 5 = 42560.
In the following we will denote by F(W), the function that returns the primitives
vector for the window W.
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Fig. 2. An image is described by a vector resulting of the response of 5 filters at various
scales.

3.2 Features Selection and Training

The features vector F(W) has a high dimension. Since the method has to be real-
time, the size of this vector is reduced using a features selection method inspired
from Tieu et Viola works [19]. They use Adaboost to select the best primitives.
We will denote by F∗(W), the function that returns the vector of the selected
primitives on W.

Two recent classifiers have been trained using a positive and negative database:

– Adaboost [21] is a way to improve rates of success of a “weak” classifier (for
example a Bayesian rule), by training it on different learning subsets. Several
decision rules are so obtained. The final one being computed by a majoritary
concensus.
In order to classify an unknown example of given feature vector f = F∗(W),
it is sufficient to compare each selected component of f to the associated
threshold, namely the score of the object will be computed by :

m(f) =
∑

i=∈f

αi.hi(f) (9)

where hi(f) returns 1 if component i is in the object class, 0 otherwise.
– SVM (Support Vector Machine) detectors [22, 23] are based on the search

in parameter space of the separating hyperplane with maximal distance of
the nearest learning elements, called support vectors. Moreover, to allow
separation, data are imbedded in a higher dimension space by a non linear
transform. The decision function is computed by:

m(f) =

l
∑

i=1

α0
i .yi.K(f i, f) + b (10)

where yi is 1 or -1 wheter the exemple is or is not an object of the class, and
K(., .) is a kernel functionnal.

Using the classifier, the likelihood P (Zt|Xt = Xn
t ) is computed by:

P (Zt|Xt = Xn
t ) =

1

1 + exp
{

Â.m(F∗(cn
t + sn

t W)) + B̂
} (11)
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4 Experiment

This section presents experiment done in order to illustrate the method pre-
sented into the previous section, for two applications: (1) pedestrian detection
and tracking, and (2) vehicles detection and tracking.

4.1 Learning

The learning database (part of the MIT database) is composed of 600 images
for the pedestrian class (450 for the vehicle class) and of 900 images for the
non-pedestrian class (900 for the non-vehicle class). Each image of pedestrian
is 128 rows × 64 columns (w = 6, and h = 7) (64 rows × 64 columns for the
vehicles). Features extraction is limited to the first three scale factors. A vector
of 42560 (resp. 17455 for the vehicles) features is associated to each image.

Feature Selection The size of the feature vector decreases to 40 after feature
selection. Figure 3 shows the features that best discriminate the two kinds of
object. Some of them correspond to symetries (Fig.3.a) others to object structure
(Fig.3.b for the head and Fig.3.e for the vehicle’s projector).

(a) (b) (c) (d) (e) (f)

Fig. 3. example of selected features for the pedestrian classifier ((a), (b) and (c))and
for the vehicle classifier ((d), (e) et (f)). The filter is superimposed to the image. Black
pixels represent the weight 1 and white pixels represent the weight -1.

Recognition The two tested detectors (SVM and Adaboost) have been trained
from the learning database. For pedestrian recognition, their performances have
been evaluated from a test database constituted of 300 images of pedestrian
and 450 images of non-pedestrian. In the case of the Adaboost and for a non
detection rate fixed to 1%, table 1 shows the evolution of the good detection rate
regarding the number of features retained : 40 seems to be a correct compromise
between number of features and good recognition rate.

Calibrated Probabilities Outputs of the classifiers do not provide well cal-
ibrated posterior probabilities. Figures 4 (a) and (b) show the histograms for
p(x|y = ±1), output of SVM (fig.4(a)) and output of Adaboost (fig.4(b)). One
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Number of selected features 30 40 80

% of good detections 85 90 92

Table 1. performances of the Adaboost detector according to the number of selected
features, for a constant false detection rate of 1%(for pedestrian recognition).

can notice that the probability density functions estimated by these histograms
are not gaussian. Figures 4 (c) and (d) show calibrated probabilities computed
from (a) and (b) with Platt scaling method presented section 2.4. The sigmoids
will be used as the observation likelihood function into the particle filter.
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Fig. 4. Example of calibrated probabilities produced with Platt scaling method for
SVM classifier and Adaboost classifier on the pedestrian data set. (a) and (b) are
The histograms for p(x|y = ±1). The solid line is p(x|y = 1), while the dashed line
is p(x|y = −1). (c) and (d) are the posterior probability distributions, defined by a
sigmoid function fitting from a training set.

4.2 Tracking

Initialization Tracking initialization is not a simple problem. Most of the time,
it is supervised. The proposed method naturally automates this stage. Object
localization on the first image is achieved scanning the translations and the scale
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factor with the detector. Particles are then initialized using importance sampling
algorithm from the N higher scores provided by the classifier.

Posterior as an Observation Model for Tracking The main idea of this
paper is to use posterior probabilities (calibrated probabilities) of a classifier as
the observation model of a tracker. We made the assumption that the outputs
of the classifier are linked to the position of the object to be tracked.

Scores provided by the detector have to be correlated with the notion of ob-
ject proximity. To define that link, the evolution of these measurements regarding
variations of the window of interest around the ideal position has been obtained.
For a couple of pedestrian examples, figure 5 illustrates the relationship between
the score of the classifier and an horizontal translation of the measurement win-
dow of interest regarding the real one. We compare SVM and Adaboost. Both
the detectors have a similar behavior: the measured score decreases continuously
if the translation increases. Same conclusions can be noticed from horizontal an
scale factor variation. We conclude that the output of a classifier can be used as
an observation model. Moreover, Avidan [8] obtains similar results for SVM.

-10 -5 0 5 10
0.2

0.4

0.6

0.8
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Adaboost
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-10 -5 0 5 10
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M
a

rg
in

SVM

Fig. 5. Output of two classifiers (SVM and Adaboost) according to the horizontal
translation, for two unseen pedestrians. A maximum is present at the true position.

Figure 6 compares the Adaboost and the SVM classifiers for pedestrian track-
ing (200 particles were used). Time variations of horizontal position (Fig. 6.a)
and vertical position (Fig. 6.b) are presented. Very similar results are obtained
for both the methods. Concerning the scale factor, the same study have been
conducted and the conclusions are identical. This example illustrates a large part
of the tests realized for whose the two classifiers give equivalent results.

Since results are quite similar using SVM or Adaboost classifier, the fol-
lowing experiment use only the Adaboost classifier. Experiment presented now
underline the strengths and weaknesses of the method.

Pedestrian and Vehicle Tracking The aim of this section is to compare the
method with a reference tracker algorithm. The observation model used here is
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Fig. 6. horizontal (a) and vertical (b) position of the object estimated by the tracker
for a pedestrian sequence. The SVM approach and the Adaboost approach give similar
results. (c) and (d) are two images extracted from the video sequence.

not directly learned from the appearance of the object to be tracked but from a
database of other objects of the same category. We compare this paper method
with the the Camshift tracker [24, 25] (OpenCv implementation), considered
as a reference appearance tracking algorithm. The observation model used in the
Camshift algorithm is based on color histograms of the object to be tracked.
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#410 #504 #515 #537 #597

Fig. 7. Example of pedestrian tracking (The video sequence comes from Caviar
database. Upper images show results obtained for the tracker and lower images show
results obtained for the Camshift Tracker

Figure 7 shows the result of the two methods for pedestrian tracking. Se-
quences provide from the Caviar Database1. The Camshift provides wrong re-
sults when the background color is near the pedestrian color (the observation
model used for the Camshift is based on color histograms). Since the model learn
for our method uses a wide range of cluttered backgrounds, the resulting tracker
provides good performances against for cluttered backgrounds

Figure 8 illustrates results for a vehicle tracking sequence (sequence from
PETS). Since the background is almost constant, results obtain by the two
method are quite the sames.

1 http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
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Fig. 8. Example of vehicle tracking (The video sequence comes from PETS database:
Performance Evaluation of Tracking and Surveillance). Upper images show results ob-
tained for the tracker and lower images show results obtained for the Camshift Tracker

Managing Occlusions The tested sequence presents a standing pedestrian
temporarily occluded by another one. Figure 9 shows the corresponding results.
For each image, the PDF associated to the x coordinate (horizontal position)
is constructed from the set of particles. When the tracked person is occluded
by the other one, the PDF becomes bi-modal. . Then, when the dark clothed
person walk away from the white clothed one, the PDF turns uni-modal (almost
gaussian). Multi target tracking is naturally managed by the particles filter. In
this example, the algorithm keeps on tracking the initial target since the output
of detector in use (Adaboost) is greater for pedestrian facing the camera than
for persons of profile. This problem is due to an unbalanced learning database.
Another example is presented further for which the tracked target changes.

Managing Appearance Variations As shown on figure 10 the method is ro-
bust regarding to appearance changes due for example to lightning modifications
(shadowed areas), or object’s pose modification (face, profile or back oriented
pedestrian).

Weaknesses Figure 11 illustrates the main weakness of this method: since the
measurement function is based on a global learning of the object’s appearance,
the tracker will give up with the initial target if another one yielding to a higher
output of the detector passes near the initial one.

4.3 Real-Time Implementation

Simulation and the time development were done with Matlab , leading to far
from real computation times.

The algorithms have been rapidly transfered to C++ , using an efficient matrix
library developped in the laboratory and mimicking Matlab syntax.
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Fig. 9. Example of an occlusion of an object by an other object of the same class. When
the dark clothed pedestrian walks in front of the clear clothed pedestrian, the posterior
probability function estimated from the particle filter function becomes bimodal ((b),
(d), (f) and (h)). White frames represent particles.

ZOOM ZOOM

(a) t=0.3s (b) t=15s (c) t=20s (d) t=38s

Fig. 10. Tracking under strong appearance variations of the object. Here, both illumi-
nation and object pose variations occur.

(a) (36.2s) (b) (37.0s) (c) (37.5s) (d) (38.5s)

Fig. 11. Weaknesses of the method. The tracker fails and changes of target during the
sequence because the new target has a higher classifier score then the initial one. (The
video sequence comes from PETS database: Performance Evaluation of Tracking and
Surveillance).

On a pentium IV 2Gz, the tracking is done at 16ms using 200 particles and
VGA images.

The crucial implementation part is the computation of the Haar masks on
the spots given by the particle filter. This can be achivied with great efficacity
using an integral image containing the accumulated sums of some interest part
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of the current image along rows and columns. Once this image computed, each
mask evaluation turn in a linear combination of at most eight interpolated value
in the integral image.

5 Conclusion

In this paper, we have shown how recent classifiers can be used as obvervation
model into a particle filter. The resulting application is a generic Real-Time
object detection and tracking method, robust to occlusion and both illumination
and pose variations. This observation model is produced by a learning step and
do not need any manual parameter. A statistical learning algorithm is used to
produce a generic model of the object to be tracked. When an unseen object
appears in the image, it is detected and tracked. The system have been tested
for pedestrian tracking.

The Real-Time implementation of this method leaves time to perform other
tasks within the tracking as each image can be treated at less than half video
rate on a three years old laptop.
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