
HAL Id: hal-00092528
https://hal.science/hal-00092528v1

Submitted on 11 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Parallel Implementation of a Particle Filter
Based Visual Tracking

Joel Falcou, Thierry Chateau, Jocelyn Serot, Jean-Thierry Lapresté

To cite this version:
Joel Falcou, Thierry Chateau, Jocelyn Serot, Jean-Thierry Lapresté. Real Time Parallel Implementa-
tion of a Particle Filter Based Visual Tracking. CIMCV 2006 - Workshop on Computation Intensive
Methods for Computer Vision at ECCV 2006, 2006, Grazz, Austria. �hal-00092528�

https://hal.science/hal-00092528v1
https://hal.archives-ouvertes.fr


Real Time Parallel Implementation of a Particle

Filter Based Visual Tracking

Joel Falcou, Thierry Chateau, Jocelyn Sérot, and Jean-Thierry Lapresté

LASMEA, UMR6602, CNRS, Blaise Pascal University,Clermont-Ferrand, France
{Surname.NAME}@lasmea.univ-bpclermont.fr

Abstract. We describe the implementation of a 3D visual tracking al-
gorithm on a cluster architecture.Parallelisation of the algorithm makes
it possible to obtain real-time execution (more than 20 FPS) even with
large state vectors, which has been proven difficult on sequential architec-
ture. Thanks to a user-friendly software development environment, this
large gain in performance is not obtained at the price of programmability.

1 Introduction

Particle filtering is a widely used method to solve vision tracking problems.
However realistic applications require large state vectors - and thus large parti-
cle distribution sets -to produce accurate and/or robust results. In practice, this
precludes real-time execution - at more than a few frames per second, typically -
of these applications on standard, sequential platforms. We therefore propose a
parallel implementation of a 3D tracking algorithm operating on a stereo video
stream and running in real-time on a cluster architecture. We demonstrate the
efficiency of this implementation with a pedestrian tracking application.

The paper is organized as follow : in section 2, we’ll introduce the general
problem of probabilistic visual tracking and how to solve it using sequential
Monte Carlo method. in section 3, we’ll describe the parallel architecture we
used for implementing a parallel version of this tracking algorithm and discuss
results of this implementation in section 4.

2 Probabilistic Visual Tracking

Visual tracking can be seen as the estimation, at time t, of the posterior prob-
ability function p(Xt|Z0:t) where Xt is the hidden state (position) of the object
and Z0:t

.
= (Z0, ...,Zt) denotes the temporal data sequence (images). In the case

of a conditionally independent observation process and a Markovian prior on the
hidden states, the sequence of filtering distributions p(Xt|Z0:t) to be tracked are
defined by the recursive equation:

p(Xt+1|Z0:t+1) ∝ p(Zt+1|Xt+1)

∫

Xt

p(Xt+1|Xt)p(Xt|Z0:t)dXt (1)

33



2

Assuming that the distributions of probabilities are Gaussian, the Kalman filter
provides an optimum analytical solution. However, visual tracking applications
are highly non-linear and multi-modal problems. In this case, the posterior can
be estimated by sequential Monte Carlo techniques [1].

2.1 Particle Filter

Particle filtering [2, 3] is a sequential importance sampling algorithm for estimat-
ing properties of hidden variables given observations in a hidden Markov model.
Standard particle filter assumes that posterior P (Xt|Zt) can be approximated
by a set of samples (particles). Moreover it also assumes that the observation
likelihood P (Zt|Xt) can be easily evaluated.

A particle filter approximates the posterior using a weighted particle set
{(Xn

t , πn
t ) : n = 1, .., N}. Figure 1 describes the algorithm used here, also called

Condensation[3]

1. initialize {(Xn

0 , πn

0 )}N

n=1 from the prior distribution X0

2. for t > 0
(a) resample {(Xn

t−1, π
n

t−1)}
N

n=1 into {(X
′
n

t−1, 1/N)}N

n=1

(b) predict, generating Xn

t ∼ p(Xt|Xt−1 = X
′
n

t−1) to give {(Xn

t , 1/N)}N

n=1

(c) weight, setting πn

t ∝ p(Zt|Xt = Xn

t ) to give {(Xn

t , πn

t )}N

n=1 normalized
so

P

N

n=1
πn

t = 1

(d) estimate X̂t

.
= 1

N

P

N

n−1
Xn

t

3. t++, jump to 2.

Fig. 1. The particle filter algorithm (Condensation)

2.2 State Space and Dynamics

We want to track an object in a 3D space defined in a reference frame Rw. Left
and right camera projection matrices between Rw and the image plane are given
by Cl and Cr. At time t, the state vector is defined by Xt

.
= (Pt,Vt)

t, where Pt

is the 3D position of the center of a bounding box associated with the object to
be tracked and Vt is the associated velocity. For a state Xt, the corresponding
2D points pl

t and pr
t of the center of an image bounding box for left and right

camera are given by :

(

(p
(l,r)
t )t 1

)t

∝ C(l,r)

(

(P
(l,r)
t )t 1

)t

, (2)

where C(l,r) is the projection matrix associated to the left (right) camera, ob-
tained by a classical calibration step. Since height and width of the 3D bounding
box are assumed to be constant, the corresponding height and width of each

34



3

image bounding box is computed using projections matrices. A first order auto-
regressive dynamics is chosen on these parameters:

Xt+1 = AXt + Bvt , vt ∼ N (0, Σ) (3)

Matrices A, B and Σ can be estimated from a set of sequences for which the true
position of the object is known.

2.3 Observation Likelihood

This section describes the tracker likelihood function P (Z|X) which is defined
as the likelihood that the state of the object (position) is X according to an
observed image Z. Many particle filter based trackers use a likelihood function
linked to a distance between the model and the current particle to be weighted
like π = exp(−λ.d(., .)). However, the parameter λ must be adjusted to provide
good performances. The method proposed here does not use empirical probabili-
ties build from distances, but directly calibrated probabilities computed from the
output of an Adaboost Classifier [4]. Features used are multiscale Haar wavelets
[5] and a compact description of the object is selected from the Adaboost offline
learning step [6]. This classifier st(Xt) = (sl

t(Xt), s
r
t (Xt))

t returns an uncali-
brated vector1 of values for the input 3D state Xt. We propose to build the like-
lihood function used to evaluate weights of the particle filter from st(Xt). Since
the likelihood function used by the particle filter is a probability, P (class|input)
must be produced from the output of the classifier. A sigmoid is used to build
calibrated probabilities from st(Xt) [7].

P (Zt|Xt)
.
=

1

1 + exp(θ̂1.sr
t (Xt) + θ̂2)

.
1

1 + exp(θ̂1.sl
t(Xt) + θ̂2)

(4)

Parameters of the sigmoid (θ̂1, θ̂2) are estimated using Platt scaling method [8].

If s
(.)
t (Xt) is the output of the classifier, calibrated probabilities can be produced

from the sigmoid:

P (positive|s(.)
t (Xt)) =

1

1 + exp(θ̂1.s
(.)
t .(Xt) + θ̂2)

(5)

where θ̂1 and θ̂2 are computed using maximum likelihood estimation from a
calibration set (si, yi) (si represents output of classifier and yi ∈ {0, 1} repre-

sent negative and positive examples). θ̂1 and θ̂2 are computed by a non-linear
optimization of the negative log likelihood of the training data, which is a cross-
entropy error function:

arg min
(θ̂1, ˆθ2)

(−
∑

i

yi log(pi) + (1 − yi) log(1 − pi)) (6)

1 Two values corresponding to classifier score associated to left and right camera.

35



4

where

pi =
1

1 + exp(θ̂1.si + θ̂2)
(7)

The easiest solution is to choose the same training set to fit the sigmoid than
the training set used to train the classifier. However, Platt shows that it causes a
biased estimate of the distribution of probability. A solution is to use a fraction
of the training set (70% for example), to train the classifier, and to use the other
fraction (30%) to estimate the parameters of the sigmoid. An other solution is
to use a cross-validation method (see [9] for details).

3 Parallel Implementation

3.1 Architecture Synopsis

Our cluster architecture has been introduced in [10] . It is sketched in fig 2.
It includes fourteen computing nodes. Each node is a dual-processor Apple G5
XServe Cluster Node running at 2 GHz with 1Gb of memory. Nodes are intercon-
nected with Gigabit Ethernet and provided with digital video streams, coming
from a pair of digital cameras, by a Firewire IEEE1394a bus. This approach
allows simultaneous and synchronized broadcasting of input images to all nodes,
thus removing the classical bottleneck which occurs when images are acquired
on a dedicated node and then explicitly broadcasted to all other nodes.

ProcessorsNode

FIREWIRE IEEE1394A NETWORK @ 400Mb/S

ETHERNET GIGABIT SWITCH

Camera Camera

Fig. 2. Cluster architecture

Another distinctive point of this cluster is the presence of the Altivec [11]
extension. This extension can provide, at a single processor level, speedups in
the range of 2-12 for a large class of low- to -mid-level image processing op-
erations [12], thus making it possible to reach global speedups up to 30 to 50
without requiring to a large, costly and power-consumming cluster.

Programming relies on a hybrid three-level parallel programming model :

1. At the lowest level are the Firewire drivers handling the transfer of im-
ages from the cameras to the processor memory (using the DMA). For the

36



5

programmer, the calls to these drivers are encapsulated within CFOX[13], a
dedicated library which provides in particular functions for configuring cam-
eras, obtaining a pointer to the most recently acquired frame in memory and
to synchronizing video streams.

2. The middle layer deals with parallelism issues. We use a hybrid three-level
parallel programming model, involving a fine-grain SIMD-type parallelism
within each processor [11], a coarse grain shared-memory multi-processing
between the two processors of a node and a coarse grain message passing
based multi-processing between two processors of distinct nodes. The first
level can be exploited using the Altivec native C API [11] or, more easily,
using eve [12], a high-level vectorization library specifically tuned for this
extension. The second level is exploited by describing the process running
on each node as two concurrent threads using the pthread library. At the
third level, the application is decomposed into a set of processes running in
SPMD mode and communicating using the mpi library. The use of pthread

to explicitly schedule the execution of applications on the two processors of
each node is due to the fact that the lowest level of the software architecture
doesn’t map correctly onto the dual processor architecture. Each node is
viewed as a single Firewire node by the driver layer and as a two-processor
node by the parallel layer. This duality leads to resources sharing conflicts
that can’t be handled correctly by mpi. We need to keep a one-for-one map-
ping between the Firewire level and the mpi level and use pthread for this
purpose.

3. The upper layer acts as a high-level programming framework for im-

plementing parallel applications. This framework, QUAFF, is a C++,
ready-to-use library of abstractions (skeletons, in the sense of [14]) for par-
allel decomposition, built-in functions for video i/o and mechanisms allow-
ing run-time modification and parameterization of application-level software
modules. Developing specific applications with QUAFF boils down to write
independent algorithmic modules and to design an application workflow
using those modules. One can develop various workflows prototype using
a simple XML description and dynamically choose which one is used by
the application. Once a prototype is considered finalized, the developer can
use a small tool to turn this XML based applications into a strongly op-
timized, templates based code. This off-line, optimisation step can boost
performances by a factor 2.

3.2 Parallelisation Strategy

For the visual tracking application, we use a pure data-parallel strategy in which
the particle distribution {(Xn

t , πn
t ) : n = 1, .., N} is scattered among the compute

nodes. Each node therefore performs the prediction, measure and weighting steps
on a subset of the initial particule distribution. On each node the left and right
projections and measures are themselves computed in parallel at the SMP level,

37



6

each by one processor. Moreover, on each processor, computations are vectorized
whenever possible at the SIMD level. Once the new particules weights have been
evaluated, they are merged back to the root node which perform the estimation
step. The final resampling is then performed over all nodes by scattering the sum
of measures scores, and evaluating an index matrix that are gathered on root
node. Then the root node performs the particules swapping and replications to
update X̂t.

4 Results

Figure 3 shows a sample execution of our pedestrian tracking application. The
upper part of the figure shows the two video streams and the projection of the
particles distribution. Lower part is the estimated 3D path of the pedestrian
projected on the ground plane.

Fig. 3. Sample Tracking Session

38



7

Table 1 shows results obtained on a stereo 640×480×8bits video stream for
several size of particles distribution. Execution times and frame rate are given
for a single processor machine and a complete 14 nodes (28 processors) topology.

200 part. 500 part. 1000 part. 2000 part. 5000 part. 10000 part.

Sequential 0.0609s 0.1439s 0.2874s 0.5952s 1.6393s 3.8462s

16.40 FPS 6.95 FPS 3.48 FPS 1.68 FPS 0.61 FPS 0.26 FPS

14 Nodes 0.0231s 0.0265s 0.0313s 0.0462s 0.0858s 0.1567s

43.31 FPS 37.72 FPS 31.9 FPS 21.64 FPS 11.66 FPS 6.38 FPS

Speed Up ×2.7 ×5.42 ×9.16 ×12.88 ×19.43 ×24.5

Fig. 4. Timing results for various particles number

Near real-time performances are achievable with a low number of nodes : a
20 frames per second rate is achieved by using approximatively 2000 particles
scattered on 14 nodes and a 12 frames per second rate is achieved with nearly
5000 particles. Contrary to the sequential implementation, we’re able to keep up
with real time constraints for more than 3000 particles. We can also see that the
global speed up is linear with the number of particles.

5 Conclusion

This paper shows that real-time execution of a particle filter based visual tracker
can be achieved even with large state vectors thanks to a multi-level paralleli-
sation2, a cluster architecture with a well-designed I/O mechanism and an user-
friendly software development environment that provides large gains in perfor-
mance without loss of programmability.Moreover, this approach can be used for
other Monte Carlo simulations requiring real-time execution like SLAM3. Fur-
ther works will include a multitarget 3D tracking dealing with occultations.

References

1. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods
for bayesian filtering. Statistics and Computing 10 (2000) 197–208

2. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters
for on-line non-linear/non-gaussian bayesian tracking. IEEE Transactions on Signal
Processing 50 (2002) 174–188

3. M. Isard, A. Blake: Condensation – conditional density propagation for visual
tracking. IJCV : International Journal of Computer Vision 29 (1998) 5–28

2 Including SIMD, SMP and MIMD
3 Simultaneous Localization And Mapping

39



8

4. Viola, P., Jones, M.J., Snow, D.: Detecting pedestrians using patterns of motion
and appearance. In: Int. Conf. Computer Vision, Nice, France (2003) 734–741

5. C. Papageorgiou, M. Oren, T. Poggio: A general framework for object detection.
In: IEEE Conference on Computer Vision. (1998) 555–562

6. Tieu, K., Viola, P.: Boosting image retrieval. International Journal of Computer
Vision 56 (2004) 17–36

7. Niculescu-Mizil, A., Caruana, R.: Obtaining calibrated probabilities from boosting.
In: Proc. 21st Conference on Uncertainty in Artificial Intelligence (UAI ’05), AUAI
Press (2005)

8. Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparisons to
Regularized Likelihood Methods. In: Advances in Large Margin Classifiers. MIT
Press (1999) 61–74

9. Platt, J.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: Advances in Large Margin Classifiers. MIT
Press (1999)

10. J. Falcou, J. Serot, T. Chateau, F. Jurie: A Parallel Implementation of a 3D
Reconstruction Algorithm for Real-Time Vision. Parallel Computing 2005 (2005)

11. I. Ollman: AltiVec Velocity Engine Tutorial http://www.simdtech.org/altivec
(2003)

12. J. Falcou, J. Serot: E.V.E., An Object Oriented SIMD Library. Scalable Comput-
ing: Practice and Experience 6 (2005)

13. J. Falcou: CFOX : Open Source High Performance IEEE1394 Driver for OS X
http://cfox.sourceforge.net (2003)

14. Cole, M.: Algorithmic Skeletons : Structured Management of Parallel Computa-
tion. Algorithmic Skeletons : Structured Management of Parallel Computation
(1989)

40


