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A nonlinearly ill-posed problem of

reconstructing the temperature from interior
data *

Pham Hoang Quan’ - Dang Duc Trong !
Alain Pham Ngoc Dinh!

Abstract. We consider the problem of reconstructing, from the interior data u(z, 1), a
function u satisfying a nonlinear elliptic equation

A’u = f(I7y7‘u(I7y))7 T E R’y > 0'

The problem is ill-posed. Using the method of Green function, the method of Fourier
transforms and the method of truncated high frequencies, we shall regularize the problem.
Error estimate is given.

Keywords Fourier transtorm, Contraction, ill-posedness.

AMS Classification 2000: 47J06, 35J60, 42A38, 47TH10.

1 Introduction

In this paper, we consider the problem of reconstructing the temperature of a body from
interior measurements. In fact, in many engineering contexts (see, e.g., [BBC]), we cannot
attach a temperature sensor at the surface of a body (e.g., the skin of a missile). Hence, to
get the temperature distribution on the surface, we have to use the temperature measured
inside the body.

Precisely, we consider a two-dimensional body represented by the half-plane R x R™.
Letting u(x,y) be the temperature of the body at (z,y) € R x R* and letting f = f(z,y,u)
be a (nonlinear) heat source, we have the following nonlinearly nonhomogeneous equation

Au=f, zeR,y>0 (1)
where A = % + %. We assume that the temperature on the line y = 1 is known, i. e.,

u(z, 1) = p(2), (2)
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and that
u(z,y) — 0 as [z],y — . (3)

The problem can be referred as a sideways elliptic problem and the interior measurement
@(x) is also called (in geology) the borehole measurement. The problem can be splitted into
two problems:

Problem 1: finding the function u satisfying

Au=f, zeR,y>1 (4)

subject to the conditions (2), (3). Generally, the problem is well-posed. Using the solution
of the problem we can calculate the quantity u,(z, 1) = ¢(z).

Problem 2: finding a function u(z,y) zeR,0<y <1
satisfying

Au=f, z2zeR0<y<l1 (5)

subject to the conditions u(z,1) = p(x), uy(x, 1) = ¢(z).

The latter problem is a Cauchy elliptic problem and, as known, it is severely ill-posed.
Hence, a regularization is in order.

The homogeneous problem (f = 0) was studied, by various methods in many papers. Us-
ing the mollification method, the homogeneous sideways parabolic problems were considered
in [HRS, HR1, AS, L, LV, M] and the references therein. Similarly, the number of papers
devoted to the Cauchy problem for linear homogeneous elliptic equation are very rich (see,
e.g., [HR, T, B, CHWY, K¥J).

Although there are many papers on homogeneous cases, we only find a few papers on
nonhomogeneous sideways problems (for both parabolic and elliptic equations). Especially,
the papers on the nonlinear case are very rare. In [QT], we use the method of integral
equations to consider a sideways elliptic equation with a nonlinear heat source. However,
we cannot get an effective method to regularize the problem. In the present paper, we shall
consider the problem with a nonlinear heat source f = f(x,y,u(x,y)). The remainder of our
paper is divided in three sections. In Section 2, using Green functions, we shall transform
Problems 1 and 2 into integral equations. In Section 3, we shall prove that Problem 1 has
a unique solution. Moreover, we shall give an effective way to approximate the quantity
uy(z,1). In Section 4, using ¢(z), u,(x, 1), we shall regularize Problem 2. The main result
of the section and of the paper is Theorem 3 (in Subsection 4.2). The method of truncated
high frequencies (of Fourier images) will be used and the regularized solution can be found as
a fixed point of a contraction. In our knowledge, the latter method is new. Error estimates
are given.

2 Integral equations of Problems 1 and 2

2.1 Problem 1



Put

. _ b @y —n)
N@wwnbm) =-g1 (2 =62+ (y+n—2)7*

For y > 1,z € R, integrating the identity
9] 0
a—f(’uNg — Nug) + %('uNn — Nuy) = =Nf (7)

over the domain (—m,m) x (1,n)\B((z,y),¢), where B((z,y),¢) is the ball with center at
(z,y) and radius ¢ > 0, and letting n — oco,m — o0,e — 0, we get, after some rearrange-
ments,

u(:c,y) = Au(x,y), (8)
where
Au(z,y) = h(z,y,¢) — / /N(x,y;f,n)f(f,n,'u(f,n))dfdn (9)
and

+oo
Wy, ) = / N, (5,6, 1)ip(€)d.

2.2 Problem 2

We repeat 9(z) = uy(x,1) with u being an exact solution of Problem 1. We note that
we only consider ¢ as an exact data. The function % is a processed data dependent on .
In fact, in Lemma 1 (Section 3), we shall construct a function v, which is an approximation
of .

Consider

Au= f(z,y,u(z,y)), z€R, ye(0,1)

subject to the boundary conditions below

u(z,1) =¢(x), = €R, (10)
Ju
@(r,l) =¢(z), z€R

We assume in addition that the exact solution u satisfying @(¢)el¢, ’IZJ\(C)GM € L*(R). We
divide this problem into two problems.
Problem 2.1 Consider the problem

Av=0, z€R, ye€(0,1), (11)
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v(z, 1) =¢(z),z € R, (12)

9 (2,1) = ¥(z), 2 € R. (13)

We shall prove that, under appropriate conditions, the problem has a unique solution vgy
approximated by a regularized solution v..

Problem 2.2 Let ug be an exact solution of (10). If we put wy = ug — v then wy is the
solution of the problem

Aw=g(z,y,w), v € R, y€(0,1) (14)
w(z,1)=0, =z €R, (15)
gj@g):o,xeR (16)

where g(z,y,w) = f(x,y,w + vg). We shall find a w. which is an approximation of wy and
estimate ||w. — wyl|, where ||.||, is the norm in L*(R x (0,1)). Let u. = v. 4+ w., we shall
estimate ||u. — uo||,.

2.2.1 An integral equation of Problem 2.1

Let

F(x,y,f,n) = —iln [(.17 — 5)2 + (.y _ 7])2]
and

G(rul/vf?n):F(x7y7€7n)_r(r7_y7£7n) (17)

For z € R,0 < y < 1, integrating the identity

0 0
8_5 (—vGe + Gog) + 8_77 (—vGy, 4+ Gu,) =0

over the domain (—n,n) x (0,1)\B((z,y), ) and letting n — oo,e — 0, we get, after some
rearrangements

o(z,y) = — / (o(6)Go sy, €.1) — Gy, £, 1)(E)] dE +
+ [ Golov £ 00,00 (18)



Letting y — 1 in (18), we have

+ oo

=

41

— 00

+ oo

— 00

It can be rewritten as

where

Letting

and

=
&
—~
=
~—
Il

+o0
1
g
;5f;7;570@0($)'— v(z,y).
=y 14y
R P R
Ly (z) = il /)8 (0<y,n<l, z€R),

2+ (y +n)?

we have the Fourier transform of M, L, F' as followed

+o0
1 —iz ﬁ _
F(y)(C) = E/F(y)(x)e Cd'r:ﬁe y|C|’

‘t(n »(C) = \/%|1—| [e_(y+”)|<| — e—ly—nllCl]
b C s

. g . i
My1(Q) = % [e(y nicl _ ¢ (y+1)|C|] _

From (20), (21), we get

From (19), (20), we have

b0 () = e (VER R (C) + (0))

5

v@ﬁﬂﬂ+/PWQWMLL&U+G@J£JW@H%=¢®)

(19)

(20)

(21)

(22)

(23)



Taking the Fourier transform of (18), we get

N N 2 N
b€ = FE(0 (2f(<l)<o+%¢<<>> VR (0)
500 Tet=wll 4 ow-vi _ L
52(C) [e + ] 71¢]

2.2.2 An integral equation of Problem 2.2

We recall that wy an exact solution of Problem (14) — (16).

Let vg € L*(R x (0,1)) be the exact solution of (11) — (13) and v, € L*(R x (0,1)) be a
regularized solution.

We write w,)(z) = w(z,y) and fi,u,00)(€) = F(§; 1, v0(€,m) + wo(€; 7))
For z € R,0 < y < 1, let G be defined in (17), integrating the identity

IZ(O[ 1=yl _ (y—l)lé“l] =N((,y). (24)

DO | —

0
——(—woly + Gwo,) = G f(5,00,00)(§) (25)

0
( wOG& + Gwoﬁ) an

9¢

over the domain (—n,n) x (0,1)\B((z,y),¢) and letting n — oo,e — 0, we get, after some
rearrangements,

+o00 4o 1

wo(z,y) = /'wo(é,O)Gn(fE,y,é,O)df—//G(»’v,y,é,n)fm,wo,vo)(é)dédn- (26)

—00 —oo O

From (26), we have

+co
1 Y
) ' = — w —d
U«O('x7y) . / LLO(€70)( _f)Q‘I’yQ f
1 4o )2
(y—mn ‘
tim [ [ o (€0, (21)
0 —co
Letting y — 1, we get
1 4o 400
[ T S et + [ a0 e =0 (29
n Wo ,Vo ‘ Y Y = *
(L )2 (e SV R PIEN
0 —oo — 0
From (21), we get
2 2
_ Y el C k)
Fiy(e) = W,L(n,y)(x) = hlm (0<y,m<l, z€R),
. T . 1
Fiy(€) = %e—ylﬁl Liy(Q) = 1/27rm [e—(y+77)|4| _ e—ly—nllél] ) (29)



We write

wo(y) () = wo(z,y).
From (28), (29) can be rewritten as

1
1
wo(o) * Fruy(@) + 7 / Ly1) * fnwowo)(®)dn = 0.

0
Taking the Fourier transform, we have

1

T ~ 1 A A
T €O+ 7 [ Loy gy O = 0

0

From (29), we have

o 1 / 1 A
€)= =5 [ 167 7= fi O

From (26), we have

1
V2 1
wo(y)(T) = \/—;LUO(O) * Iy () + ﬁ/L(W) * flnwowo) (2)d.
0

Taking the Fourier transform of (31), we get

2
A
—~

— 1 i . A
003 (€) = =B €)-Fy(O) + 57 / L) (©)-Finanny ().

From (29) and (30), Eq. (32) takes the form

1

— 1 1 B o .

'wO(y)(C) = E/m [e(n Y -y 77||C|] f(n,wo,vo)(odn
0

for (. We have

1 4o

1

woy)(¢) =

0 —oo

zm/ / éﬂe(”‘“"'—e"y‘"”"} Fono) (€)e ™ déd.

(30)

(31)

(32)

(34)



3 Finding the solution of Problem 1

From (8)-(9), we readily get the following result

Theorem 1. (see [QT]) Suppose that for all (£,n7,() € R x R* xR

| &m0 < p(&sm),
where p(€,n) € L*(R x (1,400)),p > 0 satisfies

+oo 400

K= sup //Nry5n><fn>dfdn<1

(z,y)ER X (1,400)

Put

J = {uEC(Rx(l,—I—oo))‘ lim u(:l:,y)z()}.

22 +y? —+co

(35)

(36)

(37)

Then A :J — J is a contraction and hence u is uniquely determined and can be found

by successive approximation.

Let ¥ (z) = uy(z,1) with u be an exact solution in the half plane z € R,y > 1. From
a measured data . of ¢(x) = u(x,1), we construct . being an aproximation of ¥ and

estimate ||, — ;/JHLQ by the following lemma

Lemma 1

Let u be a solution of (8) as in Theorem 1 and let ¢ € L*(R)N L*=(R) satisfy

#(C)el! € LA(R).
Suppose that f satisfies the conditions

f(¢,n,0)=0

and

|f(€7777C1) - f(fﬂ];@ﬂ < |P(577])| |C1 - C2| fOT all (’5777) € R x R+7C17C2 eR

where p € L*'(R x (1,+00)),

400 400

K= sup //N:cyfn>|p<fn>|dfdn<1

(z,y)ERX(1,4+00)
—oo 1

and

4o [ 400 40 2

/ | | e e | de < e

1 —oo



For every 0 < ¢ < 1, we call . € L*(R) a measured data such that

P = ¢llp2 ) < &

From ., we can construct a function ¢, € L*(R) such that

[vpe — |l o) < Ce™?

where C' is independent on .

Proof
Let
+0o0 400
k(z,y,u) = —//N(:v,y;&n)f(f,m'u(f,n))dﬁdn
and

+oo
w%wz/M@%mwwm

We have u(z,y) = h(x,y,¢) + k(z,y,u).

Put
pelr) = = / pe(C)erdC.

|C|< 511/2

We have

= 2:(0) Kl<am
SOE(C):{ 0 |C|251+/2

Let u. be a solution of (8) with ¢ replaced by ¢, i.e.

ue = h(z,y,0c) + k(z,y, ue).

We denote
h(z,y,0) = h(z,y),
h(z,y,0:) = he(z,y),
k(z,y,u) = k(z,y),
k(z,y,u.) = ke(z,y).
Let

1/)5(17) = hsy($7 1) + ksy(xv 1)'

9

(40)

(41)



We have

+o0
hayy) = /AMLM&DMO%
+o0

_ l y—1
o7 / (3;_5)2+(y_1)299(5)d5-

— 00

If we put Fy)(z) = %=,y > 0, then

— 2?4y

+oo
7 1 —iz ﬁ _
Fiy(¢) = NerS / Fy(z)e ™ de = e vl¢|

Taking the Fourier transform of (42), we get

/E(Ca y) = %F(y/_l)\* @(C) = @(C)e—(y—l)m

and R
hy(Cy) = = [C|F(¢)e I
Similarly, we have
he(Coy) = 3(C)e DIl

We shall find an estimation of ||, (., 1) — hy(., 1)
Using the inequality u* < e?** Vu > 1, we have

22 )

B(0) - 50| &

+oo
Vhey (1) = by Dy = /KV

IN

Therefore

| ereo-woras [

K< =75 ¢1> 4

c2ll

CI*

~ 2
Hhsy('? 1) - hy('7 1)”22(1@) <e+e HG'C'SO(C)HL%R) = 0125

where Cy = \/1 + H€|<|9/5(C)Hi2(R)'

Hence

”hsy(-a 1) - hy(-a 1)”1;2(]1{) < Cl\/g-

10

~

[2

(O d¢.

(42)

(43)



We have
400 400

H%wz—//N@%&WMmM£W%W
It follows that

4+ oo 400

// (z—¢ 1—77 f(f n,u(é,n))dEdn.

1 —oo

Similarly, we get

+00 400
o)== [ [ g € udedcan

1 —

We have

Hksy('7 1) - kl/(‘? 1)HL2(R) =

+o0 + oo o0

B : / / / $ — 1 n 77 (f(f n,u (5777)) - f(gvnvus(gvn))dfdn) dx

A |
-

oo [ o0 o0 2
1 S N x
S;\gz_jpé(x_@2+@_nPWQwﬂ| E&mid
< D=l L »
where
+o0 [ 400 400 2
J / {/ / (z—¢ ~ | (f,n)dédn] dz < 400,

Moreover, we have

lu—wll, <  sup V Ny, €.1) [0(€) — Fal€)] de

 (2y)ERX(1,400)

//Nxmw FEmulE,n) — F(E,n,ua(€,n))) dédny

—oo 1

11



< sup [/1 i e - E)

(z,y)ER X (14c0) T (,17 _ 5)2 + (,y _
+oo 400

//Nx g ) 1p(€ )| Jul€,m) — wal€, )| dEdy

—oo 1

< e = @ellpoeey + K llu = uell

where
+o00 400
K= sup / [ N (e dedn € (0,1) (45)
(z,y)ER x (14c0) o

Hence
! 0. 46
Ju = el < 7 o~ Bl (16)

We get

o — Pellpe@y = Sgﬁlﬁ(fﬂ)—@(ﬂf)l

+co
= su 1 P eiCa: o ~ ei(z
— sup / S(()ewd / B(C)e=d

i<t

IN

8-
=)

/ () — B0 dC + / (0] d¢

_|<|<ﬁ K> =7

IN

i
=)

Itps O d¢+

_|_

[ esigera. [ e

¢ 1> =y

1 V2 5
| 1/ - <]~ 3/4
Vi [/ I = el + 2 KB ey ]

< 0253/4 (47)

IN

12



where

1 2
_ : 2l ellls
Cy = o V2 + \/;He L,O(C)HL,Z(R)] )
Inequalities (44) — (47) give
L - LC,
koy( 1) — ky (G D)2y < —————— ||l — - b L 4

In view of (38) — (41),(43) and (48), we have

[ — '@bHLZ)(R) = Jluey (- 1) — uy (., 1)||L2(R)
= |lhey( 1) 4+ key (1, 1) = Ay (1, 1) — Ky (-, 1)||L2(R)
< ”hsy('v 1) o hy('? 1)”L2(R) + ||k6y('7 1) o ky(w 1)”L2(R)
LC, 3/4 1/2 LG, 1/2
S < | —— .
< 7:'(1—[&’)6 + Cie’* < 7(1_]()4-01 €

This complete the proof of Lemma 1.

4 Regularization of problem

We shall first regularize the Problem 2.1 (Subsection 4.1). Using the approximated solution
ve of Problem 2.1, we shall regularize the Problem 2.2 (Subsection 4.2).

4.1 Problem 2.1 (Problem (24))

We have the following result

Theorem 1 R

Let ¢ € L*(R)N L>(R). Suppose 3(¢)ell € LAHR),y(()ell € L*(R). Then Problem
(11) — (13) has a unique solution vy € L*(R x (0,1)).

Proof

From (24) and the inequality

elzl 1

E < el#l we have

R(Cy)| < € 1E(C) + e[ G(0)| € 12(R), forall 0 <y < 1

where R is as in (24).
Hence Problem (11) — (13) has a (unique) solution vy € L*(R x (0,1)).
The proof is completed.
Theorem 2
Let assumptions in Theorem 1 hold.
For every 0 < ¢ < e™®, let ¢. € L*(R) be measured data such that ||¢. — QQHLZ’(R) <e.

If, in addition, the assumptions of Lemma 1 hold and we have |(|@(()el!l € L*(R),
(1 (Q)el € LA(R).

13



Then, from p., we can construct a regularized solution v, such that ||[vg — v.||, < D (ln %)_1,
where ||.||, is the norm in L*(R x (0,1)) and D is a positive constant independent of ¢.

Proof

We recall that . is defined in Lemma 1, we get

12 = ellz2ey = / [@2(0) = ()1 d¢ + / GO d¢

[¢|<e=1/2 [¢|>e=1/2
) 2 2/
< 52‘|‘ |S‘O(C)|4€ dC
q
[¢|>e—1/2
2 2|0yl _ 202
< g +e ‘@(C)G HLQ(R)_EC3

where Cy = /1 + | 3(Q)el/|}
Therefore [|o: — ¢| 2y < Cae.
Put

We have

It follows that

éln%
N 2 S~ 2 vl
H (qﬁs(C) - 99(5)) K o 2.(0) = 2(0)| eld¢ + / B0)? 2ldc
_%ln% |C|>%ln%
< B = ol + % HC@(C)MH;(R)
(§1n})
lipl 1 5 2
< Glevtmee? + 5 [|CBO) | e,
(§1n})
36 2
2 5/3 5 ¢
< OSP4 T [¢B(¢)e! |HL2(R)'
Using the inequality £5/3 < ln;l as £ < e3, we get
N 2 1
= I¢l C?——
H (¢E(C) S‘Q(C)) € [2(R) <Gy 1H2 %7

14



where

Ci = 1/ C2 436 RO 22 g,
Using lemma 1, there exists 1. € L*(R) such that

e = ¥l o) < Ce'/.
Put

o
—
=

=

U (¢)eed.

o =

We have
\/I’\s(o:{ %(C) |C|<éln% ]

0 (| >1Ind

Similarly, using the inequality ¢%/% < ln% T as e < e 3 we get

~ ~ 2 1
| (w0 —d0) ). < O
where
~ 2
Cs = \/02 +36 HQ/}(C)6|<| .
L*(R)
We put
1~ —~
N.((,y) = 5 -(¢) [e(l—y)ICI + e(y—l)l(l] _ m\pa(o [e(l—y)lil _ 6,(y—l)ICI]
and

+co
L e
s( 7y)_ \/%_/ Ns(Cay) dC

From (24), (50), we get
[0 = woll, = [[Re = Rl

2

< % ( (@(Q _ @(C)) [e1=0Cl 4 =D

—~

|0 = e
< (Cy+ C5) <1n é) - .

< |[@(6) = du(cpet

2

15
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-1

Hence ||vg — v.||, < D (ln %)

The proof is completed.

4.2 Problem 2.2 (Problem (34))

Theorem 3

Let assumptions in Theorem 1 and Theorem 2 hold.

Let vy € L*(R x (0,1)) be an exact solution of (11) — (13) and v. € L*(R x (0, 1)) be the

regularized solution of (11) — (13).

Suppose that f satisfies the conditions (27) and |p(¢é,n)| < k V(&,n) € R x (0,1).

: 10

Assume in addition that the exact solution ug = vo+wg € L*(R x (0,1)) of ( ) satisfying

| Fan o ()] € LAR x (0,1)).

Then there exists a regularized solutions w. and u. = v, + w. of (10) such that

1\ 12
|we — wol|, < C <ln —)
5

1\ -1/2
|lwe — uoll, < E <1n g)

where C' and E independent of ¢.
Proof
From (33), we have

and

1

- 1 1 B o -~

'U)O(y)(C) = E/m [e(n I _ o=l nIICI] f(mwwo)@)dn
0

— nylél_eynlél/\ dn.
/|<:| ] Fonamnan ()

We put

1 o
« 1 1 - - N i(x
T(‘w( )(J:,y)) = S //m [6(77 VI oy n)l(l} f(n,w(O“),ve)(OeC d¢dn
Yy —o

We shall prove

< <k262a)m (1 — y)m H ‘w(oz)

m!

77 () () = T (@0 ()| o e

_ wl(a)Hf (51)

for every a > 0,y € (0,1),m > 1 and w® w'® € C([0,1]; L*(R)), where |||.||| denotes
sup-norm in C([0,1]; L*(R)).

16



We shall prove (51) by induction.
We define

1 «
X[—a,a](C) = { 0 IE:I §Oz :

For m = 1, noting that

/\

(C y) el / |C| =9l _ (y=n ICl] fn ) ) (C)dﬁa

we have

2

Tw™ (., y) — Tw" (.,
| =1

L2 (R)
1 2
1 e(=vI _ oly—nldl /. ~
= Z /X[—a,a](C) |C| (f(n,w(o‘),ve)(C) - f(n,wl(a),ve)(C)> dn
v 12(®)
+oof 1 2
S / /X[_o“o(](C)e(n_y)'d ‘f(n,w(o‘),ve)(C) - f(n,u}l(o‘),'ua)(C)‘ d77 dC
—c0 |y
+oof 1 2
§ / /e(n_y)a f(n wle) UE)(C) - f(n wl(o‘),va)(C)‘ dT] dC
400 1 )
W) [ [ [Foiornt€) = Foaronan O dnac
—c0 y
1 400
< k*e*(1 //w rr]—w 177]|dxd7]
y —oo

< 62&(1 - y)k / Hw -777) - wl(a '777 HLQ(R)dT]

Y

< eQa(l B y)kQ ‘Hw(a) B w1(a)H|2‘

Therefore (51) holds.
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Suppose that (51) holds for m = j. We shall prove that (51) holds for m = j + 1. We

have

|77 (W) = T (0 ) ||

= 0 @) - T )

2

L2(R)

< k(1 —y) / |9 () = 17 (0 0) ||

< k2€2a(1 B y)/<k2€2a)j (1 - n)’ H

’ w® — @) ‘2 dn
7!

Y

o ] 1_y it o o
< (i)™ o ) = w0 O

Therefore, by the induction principle, (51) holds for every m. From (51), we get
1

)" et

m.

7 () = 7 @) < (k)

= w @I

Since lim (k?e?*)™ # = 0, there exists a positive integer number mg such that

m—00

(k2ey™ L <1,
mo!
Hence 7" is a Contraction in C ([0,1]; L*(R)). It follows that the equation 7" (w(®)) =
w(® has a unique solution w® € C ([0, 1]; L*(R)).

We claim that T'(w(®) = w(a) In fact, one has T(T™(w(®)) = T(w®). Hence
T (T(w®)) = T(w®)). By the uniqueness of the fixed point of T one has T(w(®) =
w®, i.e., the equation T'(w(®)) = w®) has a unique solution w(®) € C ([0, 1]; L*(R)).

We have

4 [|wor) = w ()| o ey
T F =9l _ gyl 2
[eln=vicl — ely=n)icl] R
:// Iq tfmwo,%)(é)—f(mw(a)’%)(g) dn| d¢
EF
F el _ o(u-n)ld 2
[eln=wIel — ely=n)icl]
! / / €] frawo,00)(C)dm | dC
Kl>a 1y
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o 1 2

< 4/ /e(n—y)lCl ‘ﬁmwoﬂm)(c) — Foptorony (O] dn| dC

—a |y
1 2

‘|‘4/ /e(n_y)K']/C\(”vwo,vO)(C)dn dC

[C|>e Ty
o 1 2

S 4/ /e(n—y)a ﬁn,wo,vo)(C) _ﬁn,w(a),ve)(c) dT] dC

—a |y

1 2
_|_4e—2ya/ /6(”_y)|4|+yaf(n,wo,uo)(C)dﬂ d¢

[(]>e 1y
a 1
fe v //62770‘
oy
2

1
+ / /e(n—zz)l(lﬂ&ﬁmwmm)(C)dn d¢

I([>a Ty

e {/ ( |f77w0 UO) nw(o” ve) )Qdf) "

1 2

+ / /e|<|+a J?(n,wo,uo)(C)‘dn &

I{[>a Ty

{/ /kQ\vo &) = vel&m) + wo(&,m) —w@ (&, )| dedn

/ 2((¢l+e) /‘fwovo " dnd(

¢I>c

< 46—2ya {2k2/ 2na Hw n) _ w(a)("r])H22(R)dT]

1 4o

+z// €22 [uo(€,n) — va(€, )| dedn

0 —oo

~

Fonmonny (€)= For oo (O dndc
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/ 2(/¢1+a) /‘fﬂwo ) dTldC

[{|>a

< gete { o / 21 (1) = 0y 1) o
Y
42K g — v
/ 2(|¢|[Ha) / ‘fn wo,v0)
[{|>o
We put
M, = 2k?e*® ||vo — vsﬂg
and
1
- 2
M2 = / 62(|<|+a) / ‘f(n,wo,vo)(C)‘ dTldC
[¢]>a y
Therefore

1
e gy 0 ) ey < 28 [ o) = 00 [y + M+ M
Yy

Using Gronwall’s inequality, we have

[ ) = W) [y < (M + M) 070,
hence
1o 9) = w0 9)|[ L2y < €72 (M + My)e? 070, (52)
From Theorem 2, we get
eV, = 2e2(-v)ag? ||vo — vsﬂg
< 2DV <ln é) B : (53)

We have

1
. 2
G_QQyMQ e / 62(|C|+a)/‘f(7777107w0)(€)
Yy

[{|>a
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5l
e?a

ﬁ%UOMO)(C)‘andC

1
< et //

[¢|>a O

el ‘f(n,vo,wo)(C)

2

S 6—2a(y+1) (54)

(e2)]

2

From (52) — (54) and choosing o = In (In1), we get

1
2(1-y)

2 2 1 ! ~
o) = 09|y < € [2k2D2 <lng> + 63'4"f<n,vo,wo)(é)

—1
< (? <1n l) )
€

1\ 12
N 9 z
Hwo w H2 <C <1n 5) )

Denoting w, = w® and u. = v, + we, we get

Therefore

lwo = uell, = [lwo +vo — ve —well,
< Hwo - 'w(a)H2 + ||vo — vel|,

1\ /2 1\t
< C(ln—> -|-D<ln—>
€ €
1\ /2

This completes the proof of Theorem 3.
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