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Summary
To establish an alternative analytical framework for the elastic-wave imaging of
underground cavities, the focus of this study is an extension of the concept of
topological derivative, rooted in elastostatics and shape optimization, to three-
dimensional elastodynamics involving semi-infinite and infinite solids. The main
result of the proposed boundary integral approach is a formula for topological
derivative, explicit in terms of the elastodynamic fundamental solution, obtained
by an asymptotic expansion of the misfit-type cost functional with respect to the
creation of an infinitesimal hole in an otherwise intact (semi-infinite or infinite) elastic
medium. Valid for an arbitrary shape of the infinitesimal cavity, the formula involves
the solution to six canonical exterior elastostatic problems, and becomes fully explicit
when the vanishing cavity is spherical. A set of numerical results is included to
illustrate the potential of topological derivative as a computationally efficient tool
for exposing an approximate cavity topology, location, and shape via a grid-type
exploration of the host solid. For a comprehensive solution to three-dimensional
inverse scattering problems involving elastic waves, the proposed approach can be used
most effectively as a pre-conditioning tool for more refined, albeit computationally
intensive minimization-based imaging algorithms. To the authors’ knowledge, an
application of topological derivative to inverse scattering problems has not been
attempted before; the methodology proposed in this paper could also be extended
to acoustic problems.

1. Introduction

Stress-wave identification of cavities and objects embedded in an elastic solid is a long-
standing problem in mechanics prompted by its applications in exploration seismology,
nondestructive material testing, and underground facility detection. For this class of inverse
scattering problems, often associated with the semi-infinite domain assumption for the ‘host’
elastic solid and free-surface distribution of motion sensors, a variety of approaches are
available. Most of such imaging solutions are based either on the far-field approximation
of the wave equation (ray theory, see (1)), or its finite-difference analogue (2). In order

Q. Jl Mech. Appl. Math. (2004) 57,161:179 (??), 1–20 c© Oxford University Press 2004



2 Bojan B. Guzina and Marc Bonnet

to provide comprehensive three-dimensional subterranean images, however, these domain
methods commonly necessitate an extensive experimental and computational effort.

For problems where rapid imaging of underground openings is required, on the other hand,
the boundary integral equation (BIE) formulations, which furnish a direct mathematical
link between the observed surface waveforms and the geometry of a hidden object, could
be used to effectively compensate for the limited field data and expedite the interpretation
process (see (3) for acoustic problems). In the context of elastic-wave imaging, however,
an appreciable computational cost of the relevant half- or full-space fundamental solutions
precludes the use of BIE methods in conjunction with global search techniques like genetic
algorithms which entail a large number of forward simulations. As a result, an expedient
BIE identification of subterranean cavities (or material defects) via elastic waves is amenable
primarily in terms of the gradient-based optimization techniques, especially with the help of
analytical shape sensitivity estimates (4). Unfortunately, the stand-alone use of gradient-
type minimization for such purpose is not satisfactory for its success is strongly dependent
on a reliable prior information about the geometry of the hidden void.

These considerations led the authors to investigate the usefulness of the concept of
topological derivative in connection with the elastodynamic inverse problem. Considering a
generic cost functional J of the void shape, size, location, and topology, its topological
derivative, T (x0), synthesizes the sensitivity of J with respect to the creation of an
infinitesimal cavity at a prescribed location x0 inside the host solid. The information
provided by the topological derivative distribution T (x0) is thus potentially very useful,
providing a rational basis for selecting the void topology and its initial location/geometry,
both of which are necessary for the application of gradient-based minimization to the
inverse scattering problem at hand. The concept of topological derivative first appeared
in (5) and (6) in the context of shape optimization of mechanical structures. Recently, its
rigorous mathematical formulation has been established within the framework of elastostatic
problems and Laplace equation (7, 8). Beyond its direct application to the structural shape
optimization problems, however, the topological derivative may also have potential use in
solving inverse problems, a topic in its early stages of investigation to which the present
article is intended to contribute (see also (9) for two-dimensional elastostatics).

In this communication, the concept of topological derivative is extended to three-
dimensional inverse scattering of elastic waves involving semi-infinite and infinite domains.
In the approach, the formula for topological derivative (explicit in terms of the fundamental
solution) is obtained within the framework of BIE methods by an asymptotic expansion of
the featured cost functional with respect to the creation of an infinitesimal hole in the
intact host solid. Dependent on the prescribed shape of the infinitesimal cavity, the formula
involves the solution to six exterior elastostatic problems, and becomes fully explicit if the
infinitesimal cavity is spherical. A set of numerical results is included to illustrate the
approach, which could be used most effectively as a pre-conditioning tool for more accurate
gradient-based imaging algorithms (4). Reliant on the availability of suitable fundamental
solutions, the proposed method could be directly extended to elastic-wave imaging of finite
solid bodies.
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Fig. 1 Illumination of an underground cavity (Ωtrue
C ) by elastic waves

2. Inverse problem
Consider the imaging problem depicted in Fig. 1 where the semi-infinite solid, probed by
elastic waves, houses a hidden void (or a system thereof). With the Cartesian frame {O :
ξ1, ξ2, ξ3} set at the top surface S, the homogeneous isotropic half-space Ω={(ξ1, ξ2, ξ3)|ξ3 >
0} is characterized by the Lamé constants λ and µ, and mass density ρ. Without loss of
generality, it will be assumed that the sought cavity, Ωtrue

C ⊂ Ω, is illuminated by a time-
harmonic point source f acting at ξ = xS ∈ Ω with frequency ω. For imaging purposes,
the induced surface motion uobs is monitored over a finite set of control points ξ=xm ∈ Ω
(m=1, 2, . . . M).

Following the conventional approach (4), the cost function for the inverse scattering
problem described in Fig. 1 can be defined in a misfit-type fashion as

J (Ω\ΩC;f) =
1
2

M∑
m=1

{u(xm, ω)−uobs(xm, ω)}·Wm ·{u(xm, ω)−uobs(xm, ω)}, (2.1)

where ΩC = ΩC ∪ Γ indicates the closure of a trial cavity ΩC bounded by a closed smooth
surface Γ; over-bar symbol denotes complex conjugation; Wm (m = 1, 2, . . . ,M) are
suitable Hermitian and positive definite matrices, and u is the displacement field which
solves the elastodynamic scattering problem for the semi-infinite solid Ω\ΩC: u satisfies the
field equations

∇·(C :∇u) + f = −ρ ω2u, ξ ∈ Ω \ ΩC, (2.2)

and Neumann boundary conditions

t ≡ n·C :∇u = 0, ξ ∈ Γ ∪ S. (2.3)

Here, t denotes the surface traction, n is the unit normal on Γ outward to Ω\ΩC, and

C = λ I2 ⊗ I2 + 2µ Isym
4 (2.4)

is the isotropic elasticity tensor with I2 and Isym
4 symbolizing the second-order and

symmetric fourth-order identity tensors, respectively.
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In what follows, it is assumed that u satisfies the standard continuity requirements for
smooth bounding surfaces, u∈ C2(Ω \ ΩC) ∩ C1((Ω \ ΩC) ∪ S). For this class of scattering
problems, the displacement field u satisfying (2.2) and (2.3) can be shown to admit a
Somigliana-type integral representation (10)

u(x, ω) = ek

∫
Γ

t(ξ, ω;n)·ûk(ξ,x, ω) dΓξ − ek

∫
Γ

u(ξ, ω)·t̂k(ξ,x, ω;n) dΓξ

+ ek

∫
Ω\ΩC

f(ξ, ω)·ûk(ξ,x, ω) dΩξ, x ∈ Ω\ΩC, (2.5)

where ek is the unit vector in the ξk-direction (k=1, 2, 3); Einstein summation convention
is assumed over the spatial coordinate index k, and ûk(ξ,x, ω) and t̂

k
(ξ,x, ω;n) constitute

the elastodynamic fundamental solution for a uniform semi-infinite solid by denoting the
respective displacement and traction vectors at ξ∈Ω due to a unit (time-harmonic) point
force acting at x∈Ω in the kth direction. As shown in (11), these Green’s functions can be
decomposed into a singular part ([û]1, [̂t]1) and a residual (regular) component ([û]2, [̂t]2) via

ûk
i (ξ,x, ω) = [ûk

i (ξ,x, ω)]1 + [ûk
i (ξ,x, ω)]2,

t̂ki (ξ,x, ω;n) = [t̂ki (ξ,x, ω;n)]1 + [t̂ki (ξ,x, ω;n)]2,
(2.6)

where, for point forces located at a non-zero distance from the free surface (x3 > 0), [û]1
and [̂t]1 are given by the (elastostatic) Kelvin solution for an infinite solid.

For the ensuing treatment, the total displacement field u featured in (2.5) can be
conveniently decomposed as

u(ξ, ω) = uF(ξ, ω) + uS(ξ, ω), ξ ∈ Ω \ ΩC, (2.7)

where uS denotes the scattered field, and uF is the free (incident) field defined as the response
of a cavity-free half-space Ω due to given body force distribution f . On the basis of the
traction-free boundary condition (2.3) and the Maxwell-type symmetry of the fundamental
solution where ûk

i (ξ,x, ω)= ûi
k(x, ξ, ω), the first and the third term on the right-hand side

of (2.5) reduce respectively to zero and uF, resulting in an integral representation for the
scattered field in the form of

uS(x, ω) = −ek

∫
Γ

u(ξ, ω)·t̂k(ξ,x, ω;n) dΓξ, x ∈ Ω \ ΩC. (2.8)

3. Topological derivative
To search the semi-infinite domain Ω for cavities in the context of (2.1), let Ba(xO)=xO+aB
define the cavity of size a>0 and volume a3 |B|, where B⊂R3 is a fixed and bounded open
set of volume |B| containing the origin. For further reference, Ba is assumed to be bounded
by a simply connected, smooth surface Γa, with Ba =Ba∪Γa denoting its closure. Without
loss of generality, B is chosen so that Ba(xO) is contained inside the sphere of radius a
centred at xO (see Fig. 1). With such definitions, the topological derivative of (2.1) can be
defined as

T (xO,f) = lim
a→0

J (Ω\Ba;f)− J (Ω;f)
|Ba|

= lim
a→0

J (Ω\Ba;f)− J (Ω;f)
a3 |B|

, xO∈ Ba, (3.1)
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which furnishes the information about the variation of J (Ω;f) if a hole of prescribed shape
B and infinitesimal characteristic size is created at xO∈Ω. Within the framework of shape
optimization, it was shown (7, 8) that the elastostatic equivalent of (3.1) can be used
as a powerful tool for the grid-based exploration of a solid for plausible void regions in
terms of the chosen shape functional J . In what follows, this concept will be extended to
elastic-wave imaging of semi-infinite solids on the basis of the elastodynamic fundamental
solution for a homogeneous isotropic half-space. As pointed out earlier, the topological
derivative is investigated here as a pre-conditioning tool for selecting the initial ‘guess’
for an optimization-based approach to the solution of inverse scattering problems, and is
therefore considered only in relation to the unperturbed half-space Ω, as suggested by (3.1).
The reader is referred to the end of Section 5 for further discussion on this subject.

4. Small cavity approximation
In the context of (3.1), the trial cavity featured in (2.5) to (2.8) can be specialized to
a small void of size a containing xO so that ΩC = Ba(xO). For this problem, integral
representation (2.8) can be conveniently expanded by virtue of (2.7) as

uS(x, ω) = −ek

∫
Γa

uF(ξ, ω)·t̂k(ξ,x, ω;n) dΓξ︸ ︷︷ ︸
uS,F

−ek

∫
Γa

uS(ξ, ω)·t̂k(ξ,x, ω;n) dΓξ︸ ︷︷ ︸
uS,S

, (4.1)

for x ∈ Ω\Ba, where n denotes the unit normal on Γa outward to the exterior domain. By
means of the divergence theorem, the first term can be rewritten as

uS,F(x, ω) = −ek

∫
Γa

n(ξ)·σ̂k(ξ,x, ω)·uF(ξ, ω) dΓξ

= ek

∫
Ba

{(
∇ξ ·σ̂k(ξ,x, ω)

)
·uF(ξ, ω) + σ̂k(ξ,x, ω) : ∇uF(ξ, ω)

}
dΩξ, (4.2)

for x∈ Ω\Ba, where σ̂k =(σ̂k)T denotes the elastodynamic stress Green’s function,

∇ξ ·σ̂k(ξ,x, ω) + δ(ξ−x)ek = −ρω2ûk(ξ,x, ω), x, ξ ∈ Ω, k = 1, 2, 3. (4.3)

To evaluate the limiting form of (4.2) as the cavity size a vanishes, one may invoke the
Taylor expansion of ûk inside the void,

ûk(ξ,x, ω) = ûk(xO,x, ω) + (ξ−xO)·∇ξû
k(ξ,x, ω)|ξ=xO + . . . ,

≡ ûk(xO,x, ω) +ψ(ξ,xO,x, ω), ξ∈Ba, |ψ|=O(a), a→0, (4.4)

and write similar expressions for σ̂k, uF, and ∇uF. As a result, on employing (4.3), the
limiting behaviour of (4.2) as a → 0 can be reduced to

uS,F = a3|B| ek

{
σ̂k(xO,x, ω) : ∇uF(ξ, ω)|ξ=xO − ρω2ûk(xO,x, ω)·uF(xO, ω)

}
+ η

= a3|B| ek

{ 1
2µ
σ̂k(xO,x, ω) :σF(xO, ω)− ν

2µ(1+ν)
(tr σ̂k(xO,x, ω)) (trσF(xO, ω))

− ρ ω2ûk(xO,x, ω)·uF(xO, ω)
}

+ η(xO,x, ω), x ∈ Ω\Ba, (4.5)
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where |η| = o(a3) as a → 0, σF = 1
2C : (∇uF + ∇TuF) is the free-field stress tensor and

ν = λ/{2(λ + µ)} denotes the Poisson’s ratio of the semi-infinite solid. It should be noted
that (4.5) rests on the implicit assumption that xO 6= x, a hypothesis that will be addressed
in the sequel.

4.1 Boundary distribution of the scattered field
To elucidate the contribution of the second term uS,S in (4.1) for diminishing a, it is necessary
first to determine the asymptotic behaviour of the scattered field, uS, along Γa in the limit
as a → 0. For the latter problem, one has

∇·(C :∇uS) = −ρ ω2uS, ξ ∈ Ω \Ba,

tS = −tF for ξ ∈ Γa and tS = 0 for ξ ∈ S,
(4.6)

where tS and tF are the surface tractions associated respectively with uS and uF. On the
basis of (4.6), the regularized BIE for the scattered field (10) can be written as∫

Γa

tF(ξ, ω;n)·ûk(ξ,x, ω) dΓξ +
∫

Γa

(uS(ξ, ω)−uS(x, ω))· [̂tk(ξ,x, ω;n)]1 dΓξ

+
∫

Γa

uS(ξ, ω)· [̂tk(ξ,x, ω;n)]2 dΓξ = −uS
k(x, ω), x ∈ Γa, k = 1, 2, 3. (4.7)

For the ensuing developments, it is useful to employ (2.6) and rewrite (4.7) as∫
Γa

tF(ξ, ω;n)·
(
[ûk(ξ,x, ω)]1 + [ûk(ξ,x, ω)]2

)
dΓξ

+
∫

Γa

(uS(ξ, ω)−uS(x, ω))·
(
[̂t

k
(ξ,x, ω;n)]1 + [̂t

k
(ξ,x, ω;n)]2

)
dΓξ

= −uS(x, ω)·
(
ek +

∫
Γa

[̂t
k
(ξ,x, ω;n)]2 dΓξ

)
, x ∈ Γa, k = 1, 2, 3. (4.8)

Under the assumption that the sampling point xO is located at a fixed non-zero (but
otherwise arbitrary) depth inside the half-space, [û]1 and [̂t]1 in (4.8) are, for any sufficiently
small a, given by the Kelvin’s solution so that

[ûk(ξ,x, ω)]1 = O
(
|ξ−x|−1

)
, [ûk(ξ,x, ω)]2 = O(1)

[̂t
k
(ξ,x, ω)]1 = O

(
|ξ−x|−2

)
, [̂t

k
(ξ,x, ω)]2 = O(1), ξ,x ∈ Γa ⇒ |ξ−x|≤2a, (4.9)

as a → 0. On utilizing (4.9) together with the expansion of the free-field traction

tF(ξ, ω) = n(ξ)·
{
σF(xO, ω) + (ξ−xO)·∇σF(ξ, ω)|ξ=xO + . . .

}
,

≡ n(ξ)·σF(xO, ω) + φ(ξ,xO, ω), |φ| = O(a), ξ∈Γa, a → 0, (4.10)

around ξ=xO, the limiting form of (4.8) as a → 0 can be reduced to∫
Γa

n(ξ)·σF(xO, ω)·[ûk(ξ,x, ω)]1 dΓξ +
∫

Γa

(v(ξ, ω)−v(x, ω))· [̂tk(ξ,x, ω;n)]1 dΓξ

= −vk(x, ω), x ∈ Γa, k = 1, 2, 3, (4.11)
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where v denotes the leading asymptotic behaviour of uS along the cavity boundary,

v(ξ, ω) = Asym
a→0

uS(ξ, ω), ξ ∈ Γa. (4.12)

With reference to (2.6) and (4.6), a comparison of (4.7) and (4.11) reveals that v can be
interpreted as an elastostatic solution of the exterior problem

∇·(C :∇v) = 0, ξ ∈ R3\Ba,

tv = −n·σF(xO, ω), ξ ∈ Γa,
(4.13)

for the cavity Ba in an infinite elastic medium, where tv = n · C :∇v. In fact, since the
prescribed boundary traction tv is defined in terms of a constant stress tensor, the solution
to (4.13) can be conveniently recast as

v(ξ, ω) = a σF
k`(x

0, ω) ϑkl(ζ), ζ = (ξ − x0)/a, k, l = 1, 2, 3, (4.14)

in terms of the individual solutions ϑkl =ϑlk to six canonical problems

∇ζ ·(C :∇ζϑ
kl) = 0, ζ ∈ R3\ B,

tϑ = − 1
2 n·(ek ⊗ el + el ⊗ ek), ζ ∈ ∂B, k, l = 1, 2, 3,

(4.15)

for the normalized cavity B in an infinite elastic solid where tϑ = n·C :∇ζϑ
kl. It is useful

to note that the reduced problems (4.15) are independent of x0 and a.

4.2 Domain variation of the scattered field
From (4.1), (4.5), (4.12) and (4.14), one finds that the limiting behaviour of (4.1) for
vanishing cavity size can be synthesized as

uS(x, ω) = a3|B| ek

{
σ̂k(xO,x, ω) :A :σF(xO, ω)− ρ ω2ûk(xO,x, ω)·uF(xO, ω)

}
+ϕ(xO,x, ω), x ∈ Ω\Ba, |ϕ|=o(a3), a → 0, (4.16)

with the constant fourth-order tensor A given by

Aijkl =
1
2µ

{
Iijkl −

ν

1 + ν
δijδkl

}
− 1
|B|

∫
∂B

ϑkl
i (ζ) nj(ζ) dΓζ . (4.17)

4.3 Infinitesimal cavity of spherical shape
When vanishing spherical cavities are considered (that is, when B is a unit ball), the
elastostatic exterior problem (4.13) can be recast in terms of spherical harmonics. In this
way, an explicit solution to (4.13) can be obtained (see (12)) in the form

v(ξ) =
a3

4µ

[σF·er

r2
+

r

3
er×

{
∇×

(
σF·er

r2

)}
− 4−10ν

7−5ν
r∇·

(
σF·er

r2

)
er

+
5ν−1

3(7−5ν)
r2∇∇·

(
σF·er

r2

)
+

r2−a2

7−5ν
∇∇·

(
σF·er

r2

)]
, ξ ∈ R3\Ba, (4.18)
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where σF ≡ σF(xO, ω) and er = er(ξ) is the unit vector in the r-direction of the spherical
coordinate system (r, θ, φ), originated at the centre of the cavity. On employing the identities

∇·
(
r−2σF·er

)
= r−3 [trσF − 3σF: (er ⊗ er)] ,

∇∇·
(
r−2σF·er

)
= −3r−4 [{trσF − 5σF: (er ⊗ er)} er + 2σF·er] , (4.19)

er×
{
∇×

(
r−2σF·er

)}
= −3r−3 [{σF: (er ⊗ er)} er − σF·er] ,

and the fact that r(ξ) = a and er(ξ) = −n(ξ), ξ∈Γa, for a spherical cavity, the boundary
variation of v in (4.18), and thus that of uS as a → 0 can be reduced to

v(ξ) = −a

µ

[4−5ν

7−5ν
σF(xO, ω)·n(ξ)− 3−5ν

4(7−5ν)
(trσF(xO, ω))n(ξ)

]
, ξ ∈ Γa. (4.20)

By virtue of (4.20), the normalized solutions ϑkl to (4.15) can be directly written as

ϑkl(ζ) = − 1
2µ

[4−5ν

7−5ν

{
nl(ζ) ek + nk(ζ) el

}
− 3−5ν

2(7−5ν)
δkl n(ζ)

]
, ζ ∈ ∂B,

along the boundary of B, where n(ζ) is the normal outward to R3\ B. With such result
and the identity ∫

∂B
n⊗n dΓζ =

4π

3
I2,

which applies when ∂B is a unit sphere, the fourth-order tensor A in (4.17) reduces to

A =
3(1−ν)

2µ(7−5ν)

[
5 Isym

4 − 1+5ν

2(1+ν)
I2 ⊗ I2

]
. (4.21)

On substituting (4.21) into (4.16), the limiting behaviour of (4.1) for a vanishing spherical
cavity can be expressed explicitly as

uS(x, ω) =
4πa3

3
ek

[ 3(1− ν)
2µ(7−5ν)

{
5 σ̂k(xO,x, ω) :σF(xO, ω)

− 1+5ν

2(1+ν)
(tr σ̂k(xO,x, ω)) (trσF(xO, ω))

}
− ρ ω2ûk(xO,x, ω)·uF(xO, ω)

]
+ϕ(xO,x, ω), x∈Ω\Ba, |ϕ|=o(a3), a → 0. (4.22)

5. Topological derivative for elastic-wave imaging
From (2.1) and (2.7), one finds that the perturbation of the cost functional, J , with respect
to the creation of a hole in an otherwise intact (semi-infinite) medium can be written as

J (Ω\Ba;f)−J (Ω;f)

=
1
2

M∑
m=1

[
{uF+u−uobs}·Wm·{uF+u−uobs} − {uF−uobs}·Wm·{uF−uobs}

]∣∣∣
x=xm

=
1
2

M∑
m=1

[
u·Wm ·u+ 2 Re

(
{uF−uobs}·Wm ·u

)]∣∣∣
x=xm

, (5.1)
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in terms of the scattered field u. By virtue of (3.1), (4.16) and (5.1), the formula for
topological derivative that is relevant to elastic wave imaging immediately follows as

T (xO,f) = lim
a→0

1
a3|B|

M∑
m=1

1
2

[
u·Wm ·u+ 2 Re

(
{uF−uobs}·Wm ·u

)]∣∣∣
x=xm

=
M∑

m=1

Re
[
{uF(xm, ω)− uobs(xm, ω)}·Wm·ek

×
(
σ̂k(xO,x, ω) :A :σF(xO, ω)− ρ ω2ûk(xO,x, ω)·uF(xO, ω)

)]
, (5.2)

with the Einstein summation convention assumed over index k = 1, 2, 3. In particular, when
Ba is a spherical cavity of radius a, expression (5.2) holds with the constant tensor A given
by (4.21), and the topological derivative takes the explicit form

T (xO,f) =
M∑

m=1

Re
[
{uF(xm, ω)−uobs(xm, ω)}·Wm·ek

( 3(1− ν)
2µ(7−5ν)

{
5 σ̂k(xO,xm, ω) :σF(xO, ω)

− 1 + 5ν

2(1+ν)
(tr σ̂k(xO,xm, ω)) (trσF(xO, ω))

}
− ρ ω2ûk(xO,xm, ω)·uF(xO, ω)

)]
. (5.3)

It is worthwhile noting that on setting ω = 0 and replacing ûk and σ̂k (k = 1, 2, 3) with their
elastostatic counterpart, (5.3) can be shown to be in agreement with the results obtained
in (8) for the three-dimensional elastostatic case.

For testing configurations synthesized in Fig. 1 where the incident seismic field is
generated by a point force f acting at xS on the surface of the half-space, (5.3) can be
further specialized by writing

uF(x, ω) = fj û
j(x,xS, ω), x ∈ Ω\B̄a, (5.4)

so that

T (xO,f) = fl

M∑
m=1

Re
[
{fjû

j(xm,xS, ω)− uobs(xm, ω)}·Wm·ek

×
( 3(1− ν)

2µ(7− 5ν)

{
5 σ̂k(xO,xm, ω) : σ̂l(xO,xS, ω)

− 1+5ν

2(1+ν)
(tr σ̂k(xO,xm, ω)) (tr σ̂l(xO,xS, ω))

}
− ρω2ûk(xO,xm, ω)·ûl(xO,xS, ω)

)]
(5.5)

with the summation convention assumed over indexes j, k, l = 1, 2, 3. Similar to the
restriction made in (4.5), here it is assumed that no two of the source point xS, the
observation point xm, and the trial point xO are coincident, a hypothesis that is common
for this class of imaging problems.
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A generalization of (2.1) and (5.2) through (5.5) to multiple seismic sources f q (q =
1, 2, . . . Q) is straightforward and involves external summation in the form of

Jf (·) ≡
Q∑

q=1

J (·;f q) and Tf (·) ≡
Q∑

q=1

T (·;f q). (5.6)

A noteworthy feature of (5.5) and (5.6)2 is that they are explicit in terms of the
elastodynamic fundamental solution, which makes their computation relatively economical.
Moreover, (5.5) and the approach leading to it in fact hold for any geometrical configuration
Ω for which the elastodynamic fundamental solutions ûη and σ̂η (η = 1, 2, 3) satisfying
suitable boundary conditions on ∂Ω are known. This of course includes the infinite domain
Ω = R3 and the corresponding full-space fundamental solution.

6. Computational issues and results

For a testing configuration involving Q source points xS, M observation points xm, and a
probing grid of N sampling points xO, computation of (5.5) involves MQ + MN + NQ
evaluations of the fundamental solution, thus permitting a computationally efficient
exploration of the semi-infinite solid Ω for cavities. On evaluating Tf (xO) over a suitable
spatial grid spanning the volume of interest, regions in Ω where Tf takes the largest
negative values constitute possible cavity locations (see (7) within the framework of shape
optimization) and may be used to form an initial guess, in terms of the expected topology,
location and shape of the hidden cavity, for a more refined gradient-based minimization.
With reference to (5.3) and (5.5), it is also worth noting that T ≡ 0 when uF = uobs, which
infers no preferential cavity location.

In the context of shape optimization, an iterative algorithm based entirely on the
topological derivative is also proposed (8) where for each iteration, holes are created in
the solid wherever values of T fall below a certain (negative) threshold value. In the
subsequent iteration, the total field in the cavitated solid serves as an unperturbed, ‘free’
field. In the present context of elastodynamics, however, evaluation of the equivalent of (5.5)
for a cavitated half-space is in principle feasible but requires a computational effort that
is several orders of magnitude larger than that associated with (5.5). For this reason, the
stand-alone iterative minimization using exclusively topological derivatives is considered to
be inferior to the proposed ‘hybrid ’ method which combines the grid search with gradient-
based optimization. In what follows, the usefulness of the topological gradient given by (5.5)
and (5.6b) in selecting an initial guess for the optimization-based approach to inverse
scattering problems in elastodynamics will be demonstrated through numerical examples.
First, the correctness of (5.5) is checked numerically in Section 6.1; with such result, the
preliminary imaging of a single spherical cavity and a dual cavity system are presented in
Sections 6.2 and 6.3, respectively.

6.1 Comparison with BIE approximation
In what follows, a reference will be made to the testing configuration depicted in Fig. 2.
The ‘true’ cavity Ωtrue

C is spherical, of diameter D = 0.4d, and centred at (d, 0, 3d) inside
the half-space. In succession, the cavity is illuminated by sixteen point sources f q (q =
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Fig. 2 Sample imaging problem

1, 2, . . . 16) acting normally on the surface of the semi-infinite solid; for each source location
xS, Cartesian components of the ground motion, uobs, are monitored via twenty five sensors
xm distributed over the square testing grid. In the absence of physical measurements,
experimental observations (uobs) are simulated using the regularized BIE method (10)
with the surface of the cavity discretized via eight-node quadratic boundary elements (13).
To provide a focus for the numerical study, all topological gradients computed in the sequel
are based on the formula (5.5) which postulates that the infinitesimal cavity is of spherical
shape.

For simplicity, the matrices of weighting coefficients, Wm (m = 1, 2, . . . M) are taken
as identity operators. In a general imaging situation involving repeated experiments with
random measurement errors, Wm could be taken as an inverse of the data covariance
operator characterizing uobs(xm) to discriminate between the waveform measurements with
strong and poor signal-to-noise ratios (14).

To validate (5.5) numerically, a use is made of (5.1) so that the multi-source formula for
Tf (xO) given by (5.6b) and (5.5) can be compared to its finite-difference approximation,
T̃f (xO; a) =

∑Q
q=1 T̃ (xO;f q, a), where

T̃ (xO,f ; a) =
3

8πa3

M∑
m=1

[
ũS(xm, ω;xO, a)·Wm·ũS(xm, ω;xO, a)

+ 2 Re
{
{uF(xm, ω)−uobs(xm, ω)}·Wm ·ũS(xm, ω;xO, a)

}]∣∣∣∣
x=xm

. (6.1)

In (6.1), uF(xm, ω) = fj û
j(xm,xS, ω) = f3 û

3(xm,xS, ω) where xS is the point of action
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Table 1 Number of surface elements in the BIE solution used for calculating uobs and ũS

ω̄ 1.0 2.0 4.0 8.0
uobs 216 216 384 384

ũS|a=d/10 96
ũS|a=d/20 96 96
ũS|a=d/40 96 96 96 96
ũS|a=d/80 96 96 96 96
ũS|a=d/160 96 96 96
ũS|a=d/320 96 96

of f and ũS is, as an approximation to u, computed via a BIE method by discretizing
the surface of the trial spherical cavity Γa (with fixed small radius a) in terms of quadratic
surface elements. As an illustration, a comparison between Tf and T̃f is made at the interior
point xO =(−d, d, 2d) and four excitation frequencies

ω̄ ≡ ωd/cs = k, cs =
√

µ/ρ, k = 1, 2, 4, 8, (6.2)

where cs denotes the shear wave speed in the half-space. From (6.2), one may observe
that the ratio between the shear wave length, λs, and the cavity diameter is approximately
equal to λs/D ≈ 8/k (k = 1, 2, 4, 8), thus characterizing the frequencies selected as those
belonging to the so-called resonance region (15) where wave lengths are larger than or
of a comparable size to the diameter of the scatterer. It is also worth noting that the
resonance (‘low-frequency’) region is the one most commonly explored in the inverse acoustic
and electromagnetic theory. For completeness, the number of boundary elements used for
calculating uobs and ũS in (5.5) and (6.1) at each excitation frequency is enclosed in Table 1.

In Fig. 3, the ratio T̃f/Tf is plotted versus the size of the trial cavity, a. From the
display, one may observe that the finite difference results approach the respective ‘exact’
values given by (5.5) with diminishing a for all four frequencies. It is also worthwhile noting
that the difference between T̃f and Tf drops below 0.2% at the end of each curve. As might
be expected, higher excitation frequencies (shorter wave lengths) require in general smaller
values of a for an accurate finite difference estimate. The only exception to this rule is a
‘faster’ convergence of the results for ω̄ = 8 than those for ω̄ = 4; an anomaly apparently
induced by the magnitude of Tf (xO, ω) that is two decades larger at ω̄ = 8.

6.2 Preliminary imaging of a spherical cavity
To examine the effectiveness of (5.5) as a tool for delineating plausible void locations in a
semi-infinite solid, the imaging problem in Fig. 2 is taken as an example. For this testing
configuration, the values of Tf (xO) are computed over the horizontal surface Sh = {ξ ∈
Ω| − 5d < ξ1 < 5d, −3d < ξ2 < 3d, ξ3 = 3d} passing through the centroid of the ‘true’
cavity and plotted in Fig. 4 for the suite of frequencies (6.2). The computational grid is
chosen so that the sampling points xO are spaced by 0.25d in both ξ1 and ξ2 directions. In
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Fig. 3 Topological derivative estimates: finite difference versus explicit formula

the display, the red tones indicate negative values of Tf and thus possible cavity location;
for comparison, the true cavity is outlined in white in each of the diagrams. The results
indicate the potential of the topological derivative as an approximate, yet computationally
efficient tool for exposing the cavity location, with ‘higher’ frequencies (ω̄ = 2, 4) providing
in general better resolution. From the diagram for ω̄ = 8 where λs/D ≈ 1, however, it is also
evident that the topological derivative approach performs best when used in conjunction
with wave lengths exceeding the cavity diameter. This is perhaps not surprising, since the
assumption of an infinitesimal cavity, implicit to (3.1) and (5.5), is better conformed with
by finite cavities that are ‘small ’ relative to the probing wavelength.

For completeness, the variation of Tf (xO) across the vertical planar region Sv = {ξ ∈
Ω|−5d < ξ1 <5d, ξ2 = 0, 0.25d < ξ3 <6d} is given in Fig. 5. Similar to the earlier diagram,
the sampling points xO are spaced by 0.25d in the ξ1 and ξ3 directions. A diminished
resolution relative to the previous result reflects the major limitation of the ‘experimental’
data set, that is, the fact that both source and receiver points are limited to a single planar
surface. Following the classical trade-off between the resolution and variance common to
this class of inverse problems (16), the contour plots for ω̄ = 2 and 4 exhibit greater
accuracy than that for ω̄ = 1, but are also plagued with local minima that are absent in the
former diagram. Consistent with the previous assertion, the non-informative distribution
of Tf for ω̄ = 8 indicates that the use of topological derivative in elastic-wave imaging is
most effective at ‘low’ excitation frequencies, that is, those inside the resonance region.

With diagrams such as those in Figs. 4 and 5, an algorithm for identifying plausible cavity
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ω=1 ω=2

ω=4 ω=8

Fig. 4 Distribution of (µd)−1Tf in the ξ3 = 3d (horizontal) plane: spherical cavity

locations could be devised on the basis of the non-zero distribution of an auxiliary function

?

Tf (xO) =
{
Tf (xO), Tf < C,

0, Tf ≥ C,
(6.3)

where C < 0 denotes a suitable threshold value. With such definition, it is also possible
to combine the individual advantages of different probing wavelengths by employing the
product of (6.3) at several frequencies. As an illustration of the latter approach, Fig. 6

plots the distribution of the product of
?

Tf |ω̄=1 and
?

Tf |ω̄=2 in the vertical plane, with
C set to approximately 40% of the global minima of the respective distributions in Fig. 5.
Despite the limited accuracy and multiple minima characterizing respectively the individual
solutions for ω̄ = 1 and ω̄ = 2, the combined result stemming from (6.3) points to a single
cavity with its centre and size closely approximating the true void configuration.

6.3 Multiple void problem
In view of the fundamental assumption underlying (5.5), that is, a single spherical hole (of
infinitesimal radius) is created inside the semi-infinite solid, it is important to evaluate the
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Fig. 5 Distribution of (µd)−1Tf in the ξ2 = 0 (vertical) plane: spherical cavity

performance of the topological derivative approach in situations involving non-spherical or
multiple cavities. To this end, consider the constellation given in Fig. 7 where the hidden
cavity system (Ωtrue

C ) consists of a spherical void of radius D = 0.4d and an ellipsoidal void
whose principal semi-axes, (D1, D2, D3) = (0.4d, 1.2d, 0.6d), are aligned with the reference
Cartesian frame. The two cavities are centred respectively at (−d, d, 2d) and (2d, d, 2d)
inside the half-space. Also indicated in the Figure is the boundary element mesh used to
simulate the experimental measurements. For comparison with the previous example, the
surface testing configuration is assumed to be the same as that in Fig. 2.

Fig. 8 plots the distribution of Tf (xO) across ξ3 = 2d and ξ2 = d planes for two
representative frequencies, ω̄ = 1 and ω̄ = 2. As a reference, intersection of the ‘true’
cavity system with the respective cutting planes is outlined in white in each of the graphs.
In the top left diagram, the pear-shaped lower frequency contours (ω̄ = 1) for the horizontal
plane correctly envelop both cavities, albeit failing to provide a more detailed map of the
void system. In contrast, the distribution of Tf |ξ3=2d for ω̄ = 2 not only points to the correct
number of cavities, but also reasonably approximates their individual shapes. Similar to
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0

Fig. 6 Distribution of (µd)−2
?

Tf |ω̄=1×
?

Tf |ω̄=2 in the ξ2 = 0 plane: spherical cavity

Fig. 7 Geometry and discretization of the multiple void domain in the half-space (ξ3 > 0)
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Fig. 8 Distribution of (µd)−1Tf in the ξ3 = 2d and ξ2 = d planes: dual cavity problem

the previous example, the results for the vertical (ξ2 = d) plane are characterized by a
somewhat diminished resolution, caused primarily by the limited aperture of the testing
grid. In view of the latter limitation, the proposed imaging tool is expected to work best
with relatively simple, smooth cavity shapes.

Following the multi-frequency approach outlined earlier, Fig. 9 plots the distribution of

the product between
?

Tf |ω̄=1 and
?

Tf |ω̄=2 as a means to enhance the imaging resolution in
the vertical plane ξ2 =d. With reference to (6.3), the threshold values of C used to calculate
?

Tf at each frequency are set to approximately 30% of the global minima of the respective
(ξ3 = 2d) distributions in Fig. 8. Notwithstanding the evident lack of accuracy relative to
the images in the horizontal plane, the hybrid contour image in Fig. 9 unequivocally points
to two distinct cavities approximating the true void constellation.

6.4 Additional considerations

The foregoing examples illustrate the potential of topological derivative as a robust,
albeit approximate tool for exposing cavities hidden in a semi-infinite solid from elastic
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Fig. 9 Distribution of (µd)−2
?

Tf |ω̄=1×
?

Tf |ω̄=2 in the ξ2 = d plane: dual cavity problem

waveform measurements. With such features, the proposed methodology can be regarded
as a full complement to the gradient-based BIE imaging algorithm (4), whose high
resolution potentials are critically dependent on suitable parametrization, and thus on
prior information describing the cavity location, topology, and geometry. To build a
comprehensive computational platform for the three-dimensional inverse analysis of void-
scattered elastic waves, a hybrid scheme could thus be devised where a computationally-
effective probing tool such as (5.5) is used to explore the volume of interest in a grid-type
fashion and thus furnish suitable prior information for the more refined, gradient-based
imaging stage.

In situations where an approximate location of the void is unknown beforehand, a
construction of its full three-dimensional image in the context of previous examples would
entail an inspection of many cutting planes and thus an excessive number of sampling
points. To mitigate the problem, an algorithm similar to that proposed for the linear
sampling method in acoustics (17) could be adopted. In such iterative scheme, a volume
of the host solid under consideration would be initially partitioned into a 2× 2× 2 grid of
cubes; the topological derivative Tf would then be evaluated at their centroids, and each
cube where Tf falls below a certain threshold value would further be subdivided into eight
(2× 2× 2) sub-cubes for the next iteration.

7. Summary

In this communication, the concept of topological derivative that has its origins in
elastostatics and shape optimization is extended to three-dimensional elastic-wave imaging
of semi-infinite and infinite solids. On taking the limit of the boundary integral
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representation of the scattered field caused by a spherical cavity with diminishing radius, the
topological derivative, which quantifies the sensitivity of the featured cost functional due to
the creation of an infinitesimal hole, is formulated explicitly in terms of the elastodynamic
fundamental solution. A set of numerical examples involving a planar testing surface on
top of the semi-infinite solid is included to validate and illustrate the proposed imaging
algorithm wherein plausible void regions are delineated through negative values of the
topological derivative at sampling points. The results for both single and multiple cavity
configurations indicate that the approach is most effective when used at frequencies inside
the resonance region, that is, with wave lengths exceeding the cavity diameter. It is also
found that the use of multiple excitation frequencies as a tool to illuminate the cavity may
enrich the experimental data set and thus mitigate the geometric limitations of the assumed
planar testing surface. To the authors’ knowledge, an application of topological derivative
to inverse scattering problems has not been attempted before; the approach proposed in
this study can be extended to deal with acoustic problems as well.
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