
Direct evaluation of double singular integrals and
new free terms in 2D (symmetric) Galerkin BEM

M. Bonnet a,*, M. Guiggiani b

a Laboratoire de M�eecanique des Solides (UMR CNRS 7649), Ecole Polytechnique, 91128 Palaiseau cedex, France
b Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universit�aa di Pisa, via Diotisalvi 2, 56126 Pisa, Italy

In this paper a new general algorithm is developed for the direct evaluation of all singular double integrals arising in

the 2D Galerkin BEM, including those with hypersingular kernels. A distinguishing feature of the proposed method is

that double singular integrals are treated as a whole, that is, not as inner integrals followed by outer ones. Therefore,

when applied to the symmetric Galerkin BEM, the proposed technique is strictly symmetry preserving. Moreover, a

careful analysis of the limiting process is performed which shows that some new free terms may arise.
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1. Introduction

As is well known, the symmetric Galerkin BEM (SGBEM) typically employs boundary integral equa-

tions with hypersingular kernel functions. However, when SGBEM was first formulated [1,2] very little

attention was paid to the limiting process which has necessarily to be performed to obtain a boundary

integral equation (BIE) with singular kernels. Actually, a proper understanding of the direct treatment of

hypersingular boundary integral equations, in the simpler collocation BEM, was obtained only a few years

later.

This attitude towards singularities in the SGBEM is still present in the recent review paper [3], whose

Section 2 provides a far from complete treatment of the limiting process. To circumvent this sort of dif-
ficulties, several indirect regularization techniques have been proposed (and briefly reviewed in Section 8 in

[3]). The basic idea is to reduce the order of singularity of the kernel functions thus making the limiting

process trivial. In [4] simple solutions were employed, whereas in [5] a procedure based on Stokes theorem

(or integration by parts in 2D, as in [6,7]) was developed. Regularization via integration by parts has been
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also presented in [8] for Kirchhoff plates. A systematic explanation of the SGBEM and of these regular-
ization techniques can be found in the recent book [9].

Another approach for the evaluation of singular integrals, often called limit to the boundary, was pre-

sented for SGBEM by Balakrishna et al. in [10,11]. Recent developments on this technique can be found in

[12]. Most of the integrations are performed when the source (singular) point is not on the boundary, thus

allowing for the analytical cancellation of all unbounded terms when taking the limit. The procedure is

particularly simple for straight elements, but can be extended, with some complications, to curved elements.

SGBEM formulations based on the so called finite part integrals have been also developed. In [13,14] they

are evaluated numerically, while in [15] an analytical evaluation is pursued.
A method specifically designed to compute integrals with strongly singular kernels for the (unsym-

metric) Galerkin BEM in 3D originated in [16] and was enhanced in [17]. It takes advantage of certain

symmetry property exhibited by all Cauchy singular kernel functions, even when mapped onto the para-

meter space. Further details on this approach, but only for strongly singular kernels, can be found in

[18,19]. To apply it in the SGBEM, that is to hypersingular kernels, an analytic regularization is therefore

necessary, as shown in [20] and [21], where simple solutions and Stokes theorem are employed, respec-

tively.

The direct approach [22–27] for the evaluation of element integrals arising from the discretization of
strongly singular and hypersingular boundary integral equations is now well established for the collocation

BEM and widely used. A fairly comprehensive account of it can be found in [28] (see also [9]).

This paper concerns the extension of the direct approach to hypersingular boundary integral equations in

weighted form, like those arising in the SGBEM. The extension is by no means trivial since the Galerkin

BEM involves double element integrals. The algorithm presented here deals with both the coincident and

adjacent cases, for 2D problems. Indeed it appears that they must be considered together to allow cancel-

lation of potentially unbounded terms.

Double integrals are considered as a whole (i.e. not as inner singular integrals followed by outer
nonsingular ones, like in e.g. Ref. [20]) through the introduction of suitable coordinate transformations in

the two-dimensional space of intrinsic coordinates. The proposed algorithm is in particular applicable to

the symmetric Galerkin BEM (SGBEM) and is devised so as to define in that case a perfectly symmetric

integration procedure, even when the numerical quadrature is not exact. In this regard, the present paper

also departs from [29] where the direct method was applied to the Galerkin BEM with strongly singular

kernels.

In line with previous works on the direct approach, the limiting form of the weighted integral identity

must be derived as a small neighbourhood of the singular point vanishes, and this is done, again, after
discretization. (Of course, the finite part of divergent integrals is never employed.) Quite surprisingly, it is

shown that a new kind of finite free terms arises. It should be noted that, like in the collocation BEM, these

free terms are related to the way the limiting process is performed, not to the algorithm eventually adopted

for the evaluation of singular integrals. In the present case the limit is carried out on the weighted integral

identity. Apparently, an analysis of the free terms arising in the SGBEM based on the vanishing exclusion

neighbourhood was so far missing.

2. Weighted integral statements

The symmetry of the Galerkin BEM formulation is completely irrelevant in the algorithm that will be

developed, the key points being the hypersingularity of the kernels involved and the double integration.

However, the proposed technique is strictly symmetry preserving when applied to SGBEM.

We deal with two-dimensional problems associated with linear homogeneous elliptic field equations,

among which the Laplace equation r2u ¼ 0 is the simplest and most common. Let X be a 2D bounded
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domain with boundary C ¼ oX (possibly with a finite number of corners). By nðxÞ and tðxÞ we indicate,
respectively, the normal and tangent unit vectors at the generic point x 2 C (Fig. 1). Cartesian coordinates
are used relative to an orthonormal frame ðe1; e2Þ, so that e.g. x ¼ xiei. The starting statement is the classical
third Green identity for the density function u and its normal derivative q ¼ ou=on on the punctured
domain Xe ¼ X � ve, with boundary C � ee þ se (Fig. 1)Z

C�eeþse
½T ðy; xÞuðxÞ � Gðy; xÞqðxÞ	dsx ¼ 0; ð1Þ

where y 2 C is the singular point, Gðy; xÞ is a fundamental solution and

T ðy; xÞ ¼ oGðy; xÞ
onðxÞ ¼ oGðy; xÞ

oxj
njðxÞ: ð2Þ

As usual, e > 0 is a fixed length that controls the size of ve and hence of se and ee.

If we differentiate G and T with respect to any Cartesian coordinate yi of the singular point and multiply
by niðyÞ, we obtain a new pair of (more singular) kernel functions

oGðy;xÞ
oyi

niðyÞ ¼ W ðy; xÞ ¼ T ðx; yÞ;

oT ðy; xÞ
oyi

niðyÞ ¼ V ðy; xÞ ¼ Vijðy; xÞniðyÞnjðxÞ;
ð3Þ

which can be combined, exactly like in Eq. (1), in a hypersingular boundary integral identityZ
C�eeþse

½V ðy; xÞuðxÞ � W ðy; xÞqðxÞ	dsx ¼ 0: ð4Þ

It should be noted that for the normal nðyÞ to be uniquely defined, the boundary C at ymust be smooth, but
this is standard in the Galerkin BEM since y is always located within a boundary element, even when C has
corners.

It is useful to recall that the fundamental solutions are singular at y ¼ x

Gðy; xÞ ¼ Oðln rÞ; T ðy; xÞ ¼ Oðr�1Þ;
W ðy; xÞ ¼ Oðr�1Þ; V ðy; xÞ ¼ Oðr�2Þ;

ð5Þ

(where r ¼ x� y and r ¼ jrj), and that they possess the following symmetry properties:
Gðy; xÞ ¼ Gðx; yÞ; T ðy; xÞ ¼ W ðx; yÞ; V ðy; xÞ ¼ V ðx; yÞ: ð6Þ

Fig. 1. Exclusion of the singular point y by a vanishing neighbourhood ve.
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In this paper, the hypersingular kernel Vijðy; xÞ is assumed to have the following, quite general, form:

Vijðy; xÞ ¼ Vijðe; r; yÞ ¼
1

r2
Vijðe; r; yÞ ðy 6¼ xÞ; ð7Þ

where Vij is bounded in the limiting case x ¼ y, i.e. r ¼ 0, and the unit vector e is defined as r=r. In ad-
dition, the symmetry property (6) implies that the nonsingular factor Vijðe; r; yÞ must satisfy:

Vijðe; r; yÞ ¼ Vjið�e; r; xÞ: ð8Þ

The nonsingular factorVij is bounded at x ¼ y. If y lies within a region having homogeneous constitutive
property (e.g. electrostatic conductivity), the singular behaviour is that of the full-space fundamental so-

lution, e.g.

Vijðe; 0; yÞ ¼
1

2p
½dij � 2eiej	 ð9Þ

for the Laplace equation. If y lies on a discontinuity line of the constitutive property or a boundary in-
volved in the definition of the fundamental solution, the nonsingular factor takes a different value. For

example, the fundamental solution for two half-planes Xþ and X� with respective conductivities kþ and k�,
bonded at their interface S ¼ fy2 ¼ 0g, is given (for the case x, y 2 Xþ) by

Vijðy; xÞ ¼
kþ

2p
1

r2
½dij

�
� 2eiej	 þ

kþ � k�

kþ þ k�
1

�rr2
½di1dj1 � di2dj2 � 2ðdi1�ee1 � di2�ee2Þ�eej	

�
; ð10Þ

where �rr ¼ r� y2e2, �rr ¼ j�rrj and �ee ¼ �rr. When y2 ¼ 0, i.e. y 2 S, the nonsingular factor is therefore given
by:

Vijðe; r; yÞ ¼
kþ

2p
½dij
�

� 2eiej	 þ
kþ � k�

kþ þ k�
½di1dj1 � di2dj2 � 2ðdi1�ee1�eej � di2�ee2Þ�eej	

�
: ð11Þ

To facilitate generalizations (e.g. to anisotropic media and elasticity), the nonsingular factor is assumed

in this paper to fulfill the requirement

o

or
Vijðe; r; yÞ

����
r¼0

¼ 0: ð12Þ

Let wðyÞ be a function defined on C. Before taking the limit for e ! 0, we can use wðyÞ to weigh the
former integral identities (1) and (4) as typically done in the Galerkin BEM. For the hypersingular identity

(4) we have

Z
C

wðyÞ
Z

C�eeþse
½V ðy; xÞuðxÞ

�
� W ðy; xÞqðxÞ	dsx

�
dsy ¼ 0; ð13Þ

or

Z
C

wðyÞ
Z

C�ee
½V ðy; xÞuðxÞ

�
� W ðy; xÞqðxÞ	dsx þ

Z
se

½V ðy; xÞuðxÞ � W ðy; xÞqðxÞ	dsx
�
dsy ¼ 0: ð14Þ

This kind of weighted hypersingular integral identities are useful, for instance, in the symmetric Galerkin

BEM [3]. As it will be shown, the algorithm will be developed consistently with the assumption that the

external integration precedes the limiting process.

4



As customary, the density function u is assumed to be Cð1;aÞ at y, that is:

uðxÞ ¼ uðyÞ þ $uðyÞ � ðx� yÞ þOðr1þaÞ; $uðxÞ ¼ $uðyÞ þOðraÞ; ða > 0Þ: ð15Þ

Through the usual addition and subtraction of the above expansions in the integral on se and rearranging
terms in the integral identity (14) we obtain

0 ¼
Z

C
wðyÞ

Z
C�ee

½V ðy; xÞuðxÞ
�

� W ðy; xÞqðxÞ	dsx þ uðyÞ
Z
se

V ðy; xÞdsx

þ $uðyÞ �
Z
se

fðx
�

� yÞV ðy; xÞ � nðxÞW ðy;xÞgdsx
�

þ
Z
se

V ðy; xÞ½uðxÞ � uðyÞ � $uðyÞ � ðx� yÞ	dsx

�
Z
se

W ðy; xÞ½$uðxÞ � $uðyÞ	 � nðxÞdsx
�
dsy ; ð16Þ

which is more suitable for the subsequent direct evaluation of singular integrals and for the computation of

free terms.

We seek the limiting form of the weighted equation (16) as e ! 0. In principle any shape may be used for

ve, since the overall result will not depend on this shape. Like for the direct approach in collocation BEM,
selecting a circular shape is found to facilitate the analysis and is therefore assumed in the remainder of this

paper.

The last two integrals on se in Eq. (16) are OðeaÞ by virtue of assumption (15) and thus vanish in the limit
for e ! 0. As it will be shown in Section 6, the first integral on se in Eq. (16) gives rise to an unbounded
Oðe�1Þ term and, when integrated in the Galerkin BEM, a (somewhat unexpected) bounded free term. The
second integral on se in (16) yields a bounded free term cðyÞ in the limit for e ! 0:

cðyÞ ¼ lim
e!0

Z
se

fðx� yÞV ðy; xÞ � nðxÞW ðy; xÞgdsx; ð17Þ

which occurs also in the direct approach for the collocation BEM in the hypersingular case, see e.g. [24].
The evaluation of cðyÞ is also addressed in Section 6.
Taking into account the above remarks in (16), the direct Galerkin BEM formulation with hypersingular

kernels (like required in the SGBEM) is sought as the limiting form as e ! 0 of the weighted identity

0 ¼
Z

C
wðyÞ $uðyÞ � cðyÞ

�
þ uðyÞ

Z
se

V ðy; xÞdsx þ
Z

C�ee
fV ðy; xÞuðxÞ � W ðy; xÞqðxÞgdsx

�
dsy þOðeÞ;

ð18Þ
where OðeÞ accounts for all vanishing contributions. It should be noted that within curly braces we have
precisely the hypersingular boundary integral equation as obtained for the collocation BEM in [23–25],

although now the limiting process will wait till after the outer integration is performed. Moreover, the C1;a

smoothness assumption for u, a standard requirement for the hypersingular collocation BEM, is invoked
here mainly to dispose easily of some of the integrals over se. Indeed, as a result of the analysis conducted in
the following sections, the limiting form as e ! 0 of the weighted identity (18) will appear to require only

the weaker C0;a smoothness assumption for u, which is consistent with other published treatments of the
SGBEM.

Up to this point everything is pretty classical. New ideas are introduced in the next sections, towards the

goal of developing a technique for the direct evaluation of all singular double integrals (Sections 3–5), along

with further treatment of the free terms (Section 6).
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3. Double integration: preliminary definitions

Let the boundary C be modeled by (curvilinear) boundary elements and let y 2 E and x 2 E0, with E and
E0 being two such boundary elements. Obviously, this implies that C is smooth within each element.
In the Galerkin BEM (regardless of its symmetry) we have to deal with double integrals on Cartesian

products E � E0 of elements. Typically, the weight function w has limited support and E belongs to it. If the
two elements are disjoint, that is, do not share a common endpoint, the double integrationZ

E

Z
E0
f� � �gdsx dsy ð19Þ

is performed using ordinary means since the integrand is continuous. On the other hand, singularities in the

integrand function arise either when the two elements share one common endpoint (i.e., they are adjacent),

or when they are coincident (i.e., E ¼ E0). In these cases, according to the starting identity (18), the ap-

propriate setting isZ
E

Z
E0ðy;eÞ

f� � �gdsx dsy ; ð20Þ

where

E0ðy; eÞ ¼ fx 2 E0 : jx� yjP e; with y 2 Eg ¼ E0 n eeðyÞ: ð21Þ

In fact, one has E0ðy; eÞ ¼ E0 in the disjoint case (19) and for sufficiently small e, which is thus included in
this setting.

Each geometric boundary element is analytically defined by means of (usually polynomial) parametric

equations. A point x of E0 is typically given by

x ¼ xðnÞ ¼
XNe
p¼1

NpðnÞ~xxp; ð22Þ

where n 2 ½�1; 1	 is the parameter (or intrinsic) coordinate, NpðnÞ are cardinal shape functions and ~xx are the
geometric nodes of E0. Of course, the use of cardinal shape function is just a matter of practical conve-

nience. Any set of parametric equations for xðnÞ would fit the purpose.
We will denote by aðnÞ and tðnÞ, respectively, the natural and unit tangent vector to the element E0 at

xðnÞ:

aðnÞ ¼ dx
dn

¼
XNe
p¼1

dNp
dn

ðnÞ~xxp; so that tðnÞ ¼ aðnÞ
jaðnÞj ¼

aðnÞ
aðnÞ ; ð23Þ

and by mðnÞ and nðnÞ the natural and unit normal vectors:

mðnÞ ¼ ðe1 ^ e2Þ ^ aðnÞ; nðnÞ ¼ mðnÞ
jmðnÞj ¼

mðnÞ
aðnÞ : ð24Þ

In terms of components of m and a we have that

m1 ¼ �a2; m2 ¼ a1:

Moreover, it should be noted that aðnÞ ¼ jaðnÞj is the Jacobian. In fact

nðxÞdsx ¼ nðnÞaðnÞdn ¼ mðnÞdn; ð25Þ
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where, for simplicity, we adopted the slightly sloppy notation nðnÞ to mean nðxðnÞÞ. We also define

bðnÞ ¼ da
dn

¼ d
2x

dn2
¼
XNe
p¼1

d2Np
dn2

ðnÞ~xxp: ð26Þ

Similarly to Eq. (22), we have for the singular point y 2 E

y ¼ yðgÞ ¼
XNe
p¼1

NpðgÞ~yyp; ð27Þ

with �16 g6 1. Obviously, ~yyp are the geometric nodes of E. In general, the distance vector r between the
points x and y is therefore given by

r ¼ xðnÞ � yðgÞ ¼
XNe
p¼1

½NpðnÞ~xxp � NpðgÞ~yyp	 ð28Þ

and has modulus r ¼ jrj.

4. Double integration over coincident elements

Let x and y belong to the same boundary element E0 ¼ E. We will consider the integral with hypersingular
kernel (the strongly singular one is just simpler). According to (20) we have

IC ¼
Z
E

Z
Eðy;eÞ

Vijðy; xÞniðyÞnjðxÞwðyÞuðxÞdsx dsy ; ð29Þ

where Eðy; eÞ is defined by (21) with E0 ¼ E. Expression (28) for the distance vector r becomes in this case

r ¼ xðnÞ � yðgÞ ¼
XNe
p¼1

½NpðnÞ � NpðgÞ	~yyp ð30Þ

and ðr ¼ 0Þ () ðx ¼ yÞ () ðn ¼ gÞ. Therefore, in the parameter space we have to integrate over the
square ðg; nÞ 2 ½�1; 1	 � ½�1; 1	 minus a (narrow, non uniform) strip across the n ¼ g diagonal, as shown in
Fig. 2. The strip is the image of E � eeðyÞ.

(1)

(2)

η

ξ

Fig. 2. Coincident case: integration domain and exclusion vanishing strip in the parameter space.
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4.1. Coordinate transformations and expansions

The double integration (29) will be treated by subdividing the square ðg; nÞ 2 ½�1; 1	 � ½�1; 1	 in the
parameter space into two triangular regions, labeled (1) and (2) as shown in Fig. 2. In each region a new

pair of coordinates ðu; vÞ will be introduced according to the following scheme

region ð1Þ: g ¼ u� ð1þ uÞv ¼ gð1Þðu; vÞ;
n ¼ uþ ð1� uÞv ¼ nð1Þðu; vÞ;

�
ð31Þ

region ð2Þ: g ¼ uþ ð1� uÞv ¼ gð2Þðu; vÞ;
n ¼ u� ð1þ uÞv ¼ nð2Þðu; vÞ;

�
ð32Þ

with, in both regions, u 2 ½�1; 1	 and v 2 ½0; 1	. In some cases the notation nðu; vÞ and gðu; vÞ will be used to
refer to (31) and (32).

It should be noted that in both cases if v ¼ 0 we have n ¼ g, that is, more precisely

nðiÞðu; 0Þ ¼ gðiÞðu; 0Þ ¼ u:

Therefore, v ¼ 0 activates the singularity. Another feature of these coordinate transformations is that u and
v vary between fixed values, that is the range of variation of each coordinate does not depend on the other

one. Also useful is the relation

dndg ¼ 2ð1� vÞdudv: ð33Þ
In terms of the new coordinates u and v, the distance vector r defined in (30) becomes

r ¼ rðiÞðu; vÞ ¼ xðnðiÞðu; vÞÞ � yðgðiÞðu; vÞÞ ¼
XNe
p¼1

½NpðnðiÞðu; vÞÞ � NpðgðiÞðu; vÞÞ	~yyp: ð34Þ

We are interested in the Taylor expansion of functions rðiÞðu; vÞ as a function of v and near v ¼ 0. It is a
simple matter to obtain from Eq. (30) the following more explicit expressions for the derivatives of r ap-
pearing in (37)

orðiÞ

ov

����
v¼0

¼ dx

dn
onðiÞ

ov

"
� dy
dg

ogðiÞ

ov

#
v¼0

¼
XNe
p¼1

dNp
du

ðuÞð
�

�1� uÞ � dNp
du

ðuÞð�1� uÞ
�
~yyp

¼ �2
XNe
p¼1

dNp
du

ðuÞ~yyp ¼ �2aðuÞ; ð35Þ

o2rðiÞ

ov2

����
v¼0

¼
XNe
p¼1

d2Np
du2

ðuÞð
�

�1� uÞ2 � d
2Np
du2

ðuÞð�1� uÞ2
�
~yyp ¼ �4u

XNe
p¼1

d2Np
du2

ðuÞ~yyp ¼ �4ubðuÞ; ð36Þ

where, since u ¼ n ¼ g when v ¼ 0, a and b are precisely the functions defined in Eqs. (23) and (26) (with
just u replacing n). The Taylor expansion of rðiÞðu; vÞ readily follows:

rðiÞðu; vÞ ¼ rðiÞðu; 0Þ þ orðiÞ

ov

����
v¼0
vþ 1

2

o2rðiÞ

ov2

����
v¼0
v2 þOðv3Þ ¼ 0� 2aðuÞv� 2ubðuÞv2 þOðv3Þ

¼ �2v½aðuÞ � uvbðuÞ þOðv2Þ	 ¼ vr̂rðiÞðu; vÞ: ð37Þ

The last row defines a continuous function r̂rðiÞ

r̂rðiÞðu; vÞ ¼ �2aðuÞ � 2uvbðuÞ þOðv2Þ ð38Þ
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with the property that r̂rðiÞðu; 0Þ ¼ �2aðuÞ 6¼ 0. Similar definitions (with � or �) will be used throughout the
paper, where the first sign refers to region (1), and the second one to region (2) (Fig. 2).

Similarly, from (38), the distance r ¼ jrj has, the following Taylor expansion

r ¼
ffiffiffiffiffiffiffiffi
r � r

p
¼ 2v aðuÞ

�
� uv

da
du

ðuÞ þOðv2Þ
�
¼ vr̂rðu; vÞ; ð39Þ

where aðuÞ is defined by (23) and da=du ¼ ðaðuÞ � bðuÞÞ=aðuÞ, and having set

r̂rðu; vÞ ¼ ĵrrðu; vÞj ¼ 2aðuÞ 1
�

� uv
aðuÞ

da
du

ðuÞ þOðv2Þ
�
; ð40Þ

while the unit position vector e is such that:

eðiÞðu; vÞ ¼ r̂rðiÞðu; vÞ
r̂rðu; vÞ ¼ tðuÞ þOðvÞ: ð41Þ

The integrand function in Eq. (29), as a function of u and v, becomes

Vijðy; xÞniðyÞnjðxÞwðyÞuðxÞdsx dsy ¼
1

r2
Vijðe; r; yÞmiðgÞmjðnÞwðgÞuðnÞdndg

¼ 1

v2r̂r2ðu; vÞVijðeðiÞðu; vÞ; rðu; vÞ; yðgðiÞðu; vÞÞÞmiðgðiÞðu; vÞÞmj

� ðnðiÞðu; vÞÞwðgðiÞðu; vÞÞuðnðiÞðu; vÞÞ2ð1� vÞdudv

¼ 1

v2
FðnðiÞðu; vÞ; gðiÞðu; vÞÞð1� vÞdudv ¼ 1

v2
F ðiÞðu; vÞdudv: ð42Þ

This expression also defines the nonsingular functions F ðiÞðu; vÞ and Fðn; gÞ (note that F is the same on

regions (1) and (2)). Moreover, wðgÞ means wðyðgÞÞ and uðnÞ means uðxðnÞÞ.
The direct algorithm for the evaluation of hypersingular integrals (see, e.g., [28] for a comprehensive

description for the collocation BEM) relies on a two-term Taylor expansion of F ðu; vÞ around v ¼ 0

F ðu; vÞ ¼ F ðu; 0Þ þ oF
ov

ðu; 0ÞvþOðv2Þ: ð43Þ

Here, one observes from the definition (42) of F ðu; vÞ and Fðn; gÞ that

F ðiÞðu; 0Þ ¼ FðnðiÞðu; 0Þ; gðiÞðu; 0ÞÞ ¼ Fðu; uÞ ¼ 1
2
VijðtðuÞ; 0; yðuÞÞniðuÞnjðuÞwðuÞuðuÞ ð44Þ

and also that

oF ðiÞ

ov
¼ oF

on
onðiÞ

ov
þ oF

og
ogðiÞ

ov

!
ð1� vÞ �FðnðiÞðu; vÞ; gðiÞðu; vÞÞ

¼ oF

on
ð


�1� uÞ þ oF

og
ð�1� uÞ

�
ð1� vÞ �FðnðiÞðu; vÞ; gðiÞðu; vÞÞ;

which means that

oF ð1Þ

ov
þ oF ð2Þ

ov
¼ �2u oF

on


þF

og

�
ð1� vÞ � ½Fðnð1Þ; gð1ÞÞ þFðnð2Þ; gð2ÞÞ	:
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If this expression is evaluated at v ¼ 0, that is at n ¼ g ¼ u, we obtain

oF ð1Þ

ov

�
þ oF ð2Þ

ov

�
v¼0

¼ �2u d
du

ðFðu; uÞÞ � 2Fðu; uÞ ¼ �2 d
du

ðuFðu; uÞÞ ¼ �2 d
du

ðuF ðu; 0ÞÞ; ð45Þ

where the last step is based on (44). This expression will later prove very useful.

Once the expansion of the singular integrand function has been obtained, we have to consider, as usual in
the direct approach, the image in the parameter plane of the exclusion vanishing neighbourhood eeðyÞ (Fig.
1). The boundary of eeðyÞ is defined by the condition

r ¼ jxðnðu; vÞÞ � yðgðu; vÞÞj ¼ e: ð46Þ
This condition, together with expansion (39) for rðu; vÞ, leads, on each triangular subregion (Fig. 2), to

e ¼ rðu; vÞ ¼ vr̂rðu; vÞ ¼ 2vaðuÞ 1
�

� uv
aðuÞ

da
du

ðuÞ þOðv2Þ
�
; ð47Þ

which, upon reversion, defines the function

ve ¼ aðe; uÞ ¼ e
2aðuÞ 1

�
þ u
2a2ðuÞ

da
du

ðuÞe þOðe2Þ
�
: ð48Þ

The function aðe; uÞ provides, for any given values of u and e, the value of v corresponding to the boundary
of the exclusion strip in Fig. 2.

4.2. Double singular integrals in parametric coordinates

According to Eqs. (42) and (48), the hypersingular double integral (29) can now be expressed in terms of

the parametric coordinates u and v

IC ¼
Z
E

Z
Eðy;eÞ

Vijðy; xÞniðyÞnjðxÞwðyÞuðxÞdsx dsy ¼
Z 1

�1

Z 1

aðe;uÞ

1

v2
½F ð1Þðu; vÞ

(
þ F ð2Þðu; vÞ	dv

)
du: ð49Þ

It should be observed that this is an exact restatement of the original integral over E � Eðy; eÞ, with constant e,
in terms of a new pair of parametric coordinates. Of course, care has been taken to preserve the limiting process.

4.3. The direct approach for coincident elements

Following the direct algorithm for the evaluation of hypersingular integrals, the first two terms of ex-

pansion (43) are added and subtracted in (49) thus obtaining

IC ¼ I0 þ I1 þ I2; ð50Þ
having put

I0 ¼
Z 1

�1

Z 1

aðe;uÞ
F ð1Þðu; vÞ
�(

þ F ð2Þðu; vÞ � 2F ðu; 0Þ � oF ð1Þ

ov
ðu; 0Þ


þ oF ð2Þ

ov
ðu; 0Þ

�
v
�
dv
v2

)
du;

I1 ¼
Z 1

�1

oF ð1Þ

ov
ðu; 0Þ


þ oF ð2Þ

ov
ðu; 0Þ

�Z 1

aðe;uÞ

dv
v
du;

I2 ¼
Z 1

�1
2F ðu; 0Þ

Z 1

aðe;uÞ

dv
v2
du

and where F ð1Þðu; 0Þ ¼ F ð2Þðu; 0Þ ¼ F ðu; 0Þ.
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As typical in the direct approach, the first double integral I0 is now regular for e ! 0, while the other
potentially singular integrals I1 and I2 are trivial functions of v and can always be integrated analytically,

yielding

Z 1

aðe;uÞ

dv
v
¼ � ln jaðe; uÞj ¼ ln j2aðuÞj � ln jej þOðeÞ ð51Þ

and

Z 1

aðe;uÞ

dv
v2

¼ 1

aðe; uÞ � 1 ¼
2aðuÞ

e
� u
aðuÞ

da
du

ðuÞ � 1þOðeÞ; ð52Þ

where the final expressions have been obtained simply by inserting expansions (48).

For the treatment of I0 and I1 we can take advantage of expression (45) for the sum of the first derivatives
of F . Hence we have for I0

I0 ¼
Z 1

0

Z 1

�1
F ð1Þðu; vÞ
��

þ F ð2Þðu; vÞ � 2F ðu; 0Þ þ 2 d
du

ðuF ðu; 0ÞÞv
�
du
�
dv
v2

þOðeÞ

¼
Z 1

0

Z 1

�1
½F ð1Þðu; vÞ

�
þ F ð2Þðu; vÞ � 2F ðu; 0Þ	duþ 2½F ð1; 0Þ þ F ð �1; 0Þ	v

�
dv
v2

þOðeÞ: ð53Þ

Similarly, for I1 (using Eq. (51))

I1 ¼ �2
Z 1

�1

d

du
ðuF ðu; 0ÞÞ

Z 1

aðe;uÞ

dv
v

( )
du ¼ 2

Z 1

�1

d

du
ðuF ðu; 0ÞÞ

� �
½ln jej � ln j2aðuÞj	duþOðeÞ

¼ 2fln e½F ð1; 0Þ þ F ð�1; 0Þ	 � F ð1; 0Þ lnð2að1ÞÞ � F ð�1; 0Þ lnð2að�1ÞÞg

þ 2
Z 1

�1
uF ðu; 0Þ 1

aðuÞ
da
du

ðuÞ
� �

duþOðeÞ: ð54Þ

As we can see, the final expressions in (53) and (54) do not require the explicit knowledge of the derivatives

of F , but just of F itself. This confirms what was anticipated in the comments to Eq. (45).
For I2 the treatment is even simpler

I2 ¼ 2
Z 1

�1
F ðu; 0Þ

Z 1

aðe;uÞ

dv
v2

( )
du ¼ 2

Z 1

�1
F ðu; 0Þ 2aðuÞ

e

�
� u
aðuÞ

da
du

ðuÞ � 1
�
duþOðeÞ: ð55Þ

Combining Eqs. (54) and (55) yields:

I1 þ I2 ¼
1

e

Z 1

�1
4F ðu; 0ÞaðuÞduþ 2 ln e½F ð1; 0Þ þ F ð�1; 0Þ	

� 2
Z 1

�1
F ðu; 0Þdu� 2F ð1; 0Þ lnð2að1ÞÞ � 2F ð�1; 0Þ lnð2að�1ÞÞ þOðeÞ: ð56Þ

It should be noted that in Eq. (56) there are an Oðln eÞ term and an Oðe�1Þ term. Their cancellation will be
discussed in Sections 5.3 and 6.2.
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5. Double integration over consecutive elements

Let E and E0 be two consecutive boundary elements, i.e. two elements having a common endpoint, with

y 2 E and x 2 E0. The singularity occurs when x ¼ y, which may happen either when ðg; nÞ ¼ ð�1; 1Þ or
when ðg; nÞ ¼ ð1;�1Þ, depending on the relative position of E and E0. Of course, there is no singularity in

the common endpoint if wu ¼ 0. To address conveniently the two cases ðg; nÞ ¼ ð1;�1Þ (adjacent elements)
and ðg; nÞ ¼ ð�1; 1Þ (transposed adjacent elements), let E00, E, E0 denote three consecutive elements (Fig. 3).

We then consider the adjacent and transposed integrals IA and IT:

IA ¼
Z
E

Z
E0ðy;eÞ

Vijðy; xÞniðyÞn0jðxÞwðyÞu0ðxÞdsx dsy ; ð57Þ

IT ¼
Z
E

Z
E00 ðy;eÞ

Vijðy; xÞniðyÞn00j ðxÞwðyÞu00ðxÞdsx dsy ; ð58Þ

where E0ðy; eÞ and E00ðy; eÞ are defined according to (21), i.e.
E0ðy; eÞ ¼ fx 2 E0 : jx� yjP e; with y 2 Eg ð210 Þ

and similarly for E00. Scalar or vector functions defined on E0, E00 will be tagged with the corresponding

superscript, e.g. a00ðnÞ for the natural tangent on E00.

The distance vector r is given by expression (28) and ðr ¼ 0Þ () ðx ¼ yÞ () ðng ¼ �1Þ. Therefore, in
the parameter space we have to integrate over the image of E � E0ðy; eÞ, which is the square ðg; nÞ 2
½�1; 1	 � ½�1; 1	 minus a small vanishing region around vertex ðg; nÞ ¼ ð1;�1Þ (or vertex ð�1; 1Þ for E�
E00ðy; eÞ).
The double adjacent integration (57) and (58) will be treated by subdividing again the square ðg; nÞ 2

½�1; 1	 � ½�1; 1	 into two triangular regions, labeled (1) and (2) as shown in Fig. 2. Moreover, the mappings
ðg; nÞ $ ðu; vÞ defined in (31) and (32) can be used in this case as well.

5.1. Singularity at (g,n)¼ (1,�1) (adjacent elements)

We first deal with the integral (57), that is, with the singularity occurring at the point ðg; nÞ ¼ ð1;�1Þ
(Fig. 4):

IA ¼ I ð1ÞA þ I ð2ÞA : ð59Þ
In this case the integration over region (1) is nonsingular and we will consider in detail only the integral I ð2ÞA
over the triangular region (2).

ϕ

ϕ ϕ
ψ

E
E

E

Fig. 3. Density and weight functions.
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If the mappings defined in (32) were directly employed, the singularity would occur at v ¼ 1. Therefore, it
is merely a matter of convenience to shift and reverse the v coordinate in (32) so that the singular point is
defined by v ¼ 0:

g ¼ ðu� 1Þvþ 1 ¼ gAðu; vÞ
n ¼ ðuþ 1Þv� 1 ¼ nAðu; vÞ

�
with �16 u6 1; 06 v6 1; ð60Þ

thus obtaining

dndg ¼ 2vdudv: ð61Þ
This coordinate transformation also lowers the order of singularity at v ¼ 0 (thus, e.g., regularizing com-
pletely the integral when a strongly singular kernel has to be integrated).

As in the coincident case, it is useful to introduce the Taylor expansion of rAðu; vÞ ¼ xðnAðu; vÞÞ�
yðgAðu; vÞÞ as a function of v and near v ¼ 0

r ¼ rAðu; vÞ ¼ rAðu; 0Þ þ
orA
ov

����
v¼0
vþOðv2Þ ¼ 0þ ½ðuþ 1Þa0 � ðu� 1Þa	vþOðv2Þ

¼ v½ðuþ 1Þa0 � ðu� 1ÞaþOðvÞ	 ¼ vr̂rAðu; vÞ: ð62Þ

For brevity, a and a0 (without the argument n or g) denote the natural tangents associated with E and E0 at

their common endpoint z0, and similar notations will be used for other quantities as well (see Fig. 4).
Notice, importantly, that definition (62) of r̂rAðu; vÞ implies that r̂rAðu; 0Þ is never equal to zero. In fact, it is

convenient to put r̂rAðu; 0Þ in the form:

r̂rAðu; 0Þ ¼ sAðuÞeAðuÞ; ð63Þ

where sAðuÞ is the norm of r̂rAðu; 0Þ:

sAðuÞ ¼ ĵrrAðu; 0Þj ¼ aa0½v0ð1þ uÞ2 þ 2ð1� u2Þ cos b0 þ v0�1ð1� uÞ2	1=2 ð64Þ

(having put b0 ¼ ða; a0Þ and v0 ¼ ja0j=jaj ¼ a0=a) and eAðuÞ ¼ r̂rAðu; 0Þ=sAðuÞ is a unit vector. Moreover,
putting r̂rAðu; vÞ ¼ ĵrrAðu; vÞj, the distance r ¼ jrj has the expansion

r ¼ vr̂rAðu; vÞ ¼ vsAðuÞ þOðv2Þ: ð65Þ

’β

x(ξ)
y(η)

a

m’m

1

η=1

ξ=1

a’
E

E’
ξ=−1

η=−

Fig. 4. Integration over adjacent elements E and E0.
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The integrand function in (57) as a function of u and v becomes

Vijðy; xÞniðyÞn0jðxÞwðyÞu0ðxÞdsx dsy ¼
1

r2
Vijðe; r; yðgÞÞmiðgÞm0

jðnÞwðgÞu0ðnÞdndg

¼ 1

v2r̂r2Aðu; vÞ
VijðeAðu; vÞ; rAðu; vÞ; yðgAðu; vÞÞÞmiðgAðu; vÞÞ

� m0
jðnAðu; vÞÞwðgAðu; vÞÞu0ðnAðu; vÞÞ2vdudv

¼ 1
v
QAðu; vÞdudv; ð66Þ

which defines the nonsingular function QAðu; vÞ. Here a first-order Taylor expansion of QAðu; vÞ around
v ¼ 0 is sufficient

QAðu; vÞ ¼ QAðu; 0Þ þOðvÞ; ð67Þ
where the term QAðu; 0Þ is easily found to be

QAðu; 0Þ ¼
2

s2AðuÞ
VijðeAðuÞ; 0; z0Þmið�1Þm0

jð1Þwð�1Þu0ð1Þ: ð68Þ

It is worth noting that, whenever wð1Þu0ð�1Þ ¼ 0, we have QAðu; 0Þ ¼ 0 and the integral is not singular.
The integration region E � E0ðe; yÞ is characterized by the condition rP e which, together with expansion

(65), becomes

vP vAðu; eÞ with vAðu; eÞ ¼
e

sAðuÞ
þOðe2Þ: ð69Þ

According to Eqs. (66) and (69), the integral (57) over adjacent elements becomes

IA ¼ I ð1ÞA þ I ð2ÞA ¼ I ð1ÞA þ
Z 1

�1

Z 1

e=sAðuÞ

1

v
QAðu; vÞdv

( )
duþOðeÞ: ð70Þ

Following the direct approach, the first term of expansion (67) is added and subtracted in (70), leading to:

I ð2ÞA ¼
Z 1

�1

Z 1

e=ð2sAðuÞÞ

1

v
½QAðu; vÞ � QAðu; 0Þ	dvduþ

Z 1

�1
QAðu; 0Þdu

Z 1

e=sAðuÞ

dv
v
þOðeÞ; ð71Þ

with QAðu; 0Þ given by (68). The first integral is nonsingular, while the second integral is singular but trivial
in v: Z 1

e=sAðuÞ

dv
v
¼ ln jsAðuÞj � ln jej:

This result, inserted in Eq. (71), provides the following expression for the adjacent double integral

I ð2ÞA ¼
Z 1

�1

Z 1

0

1

v
½QAðu; vÞ � QAðu; 0Þ	dvduþ

Z 1

�1
QAðu; 0Þ ln jsAðuÞjdu� ln jej

Z 1

�1
QAðu; 0ÞduþOðeÞ:

ð72Þ

5.2. Singularity at (g,n)¼ (1,�1) (transposed adjacent elements)

We now deal with the integral (58), that is, with the singularity occurring at the point ðg; nÞ ¼ ð�1; 1Þ. In
this case the integration over region (2) is nonsingular and only the integral I ð1ÞT over region (1) is considered

in some detail, following essentially the same steps as in Section 5.1. The coordinates defined in (31) are
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used, with translation and reversion of the v coordinate in region (1) to have the singularity at v ¼ 0 (instead
of v ¼ 1):

g ¼ ðuþ 1Þv� 1 ¼ gTðu; vÞ
n ¼ ðu� 1Þvþ 1 ¼ nTðu; vÞ

�
with u 2 ½�1; 1	 and v 2 ½0; 1	; ð73Þ

thus obtaining

dndg ¼ 2vdudv: ð74Þ

These coordinate transformations are those in (60) with g and n switched:

gTðu; vÞ ¼ nAðu; vÞ nTðu; vÞ ¼ gAðu; vÞ: ð75Þ

As before, the Taylor expansion of rTðu; vÞ ¼ xðnTðu; vÞÞ � yðgTðu; vÞÞ as a function of v and near v ¼ 0 is
needed:

r ¼ rTðu; vÞ ¼ rTðu; 0Þ þ
orT
ov

����
v¼0
vþOðv2Þ ¼ 0� ½�ðu� 1Þa00 þ ðuþ 1Þa	vþOðv2Þ

¼ �v½ð1� uÞa00 þ ð1þ uÞaþOðvÞ	 ¼ �vr̂rTðu; vÞ; ð76Þ

where a00 and a are the natural tangent vectors (23) to the elements E00 and E at their shared endpoint z00.
Again, r̂rTðu; 0Þ 6¼ 0 and it is convenient to put r̂rTðu; 0Þ in the form:

r̂rTðu; 0Þ ¼ sTðuÞeTðuÞ; ð77Þ
where sTðuÞ is the norm of r̂rTðu; 0Þ and eTðuÞ ¼ r̂rTðu; 0Þ=sTðuÞ is a unit vector. Moreover, the distance
rT ¼ jrTj has the expansion

rT ¼ vr̂rTðu; vÞ ¼ vsTðuÞ þOðv2Þ:
The integrand function in (58) as a function of u and v becomes

Vijðy; xÞniðyÞn00j ðxÞwðyÞu00ðxÞdsx dsy ¼
1

r2
Vijðe; r; yðgÞÞmiðgÞm00

j ðnÞwðgÞu00ðnÞdndg

¼ 1

v2r̂r2Tðu; vÞ
VijðeTðu; vÞ; rTðu; vÞ; yðgTðu; vÞÞÞmiðgTðu; vÞÞ

� m00
j ðnTðu; vÞÞwðgTðu; vÞÞu00ðnTðu; vÞÞ2vdudv

¼ 1
v
QTðu; vÞdudv: ð78Þ

The integration region is again characterized by Eq. (69). Accordingly, the singular integral (58) can be
rewritten in the following form

IT ¼ I ð1ÞT þ I ð2ÞT ¼
Z 1

�1

Z 1

e=sTðuÞ

1

v
QTðu; vÞdv

( )
duþ I ð2ÞT þOðeÞ: ð79Þ

The first-order term in the Taylor expansion of QTðu; vÞ around v ¼ 0 is

QTðu; 0Þ ¼
2

s2TðuÞ
VijðeTðuÞ; 0; z00Þmið�1Þm00

j ð1Þwð�1Þu00ð1Þ: ð80Þ
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Upon application of the direct method we obtain the following expression for the (transposed) adjacent

double integral

I ð1ÞT ¼
Z 1

�1

Z 1

0

1

v
½QTðu; vÞ

�
� QTðu; 0Þ	dvþ QTðu; 0Þ ln jsTðuÞj

�
du� ln jej

Z 1

�1
QTðu; 0ÞduþOðeÞ: ð81Þ

If wuT ¼ 0, QTðu; 0Þ ¼ 0 and the integral is not singular.

5.3. Cancellation of ln jej terms

From Eqs. (56), (72) and (81) we see that, for any given weight function w on E, the coincident, adjacent
and transposed-adjacent types of integration all give rise to ln jej terms, whose magnitude depend only on
the element geometry and density values at element E endpoints (Fig. 3). Adding all these contributions for
the case of w defined on E yields

ln jejwð1Þ Vijðtð1Þ; 0; z0Þnið1Þnjð1Þuð1Þ
�

�
Z 1

�1

2

s2AðuÞ
VijðeAðuÞ; 0; z0Þmið1Þm0

jð �1Þu0ð �1Þdu
�

þ ln jejwð�1Þ Vijðtð
�

� 1Þ; 0; z00Þnið� 1Þnjð� 1Þuð� 1Þ

�
Z 1

�1

2

s2TðuÞ
VijðeTðuÞ; 0; z00Þmið� 1Þm00

j ð1Þu00ð1Þdu
�
: ð82Þ

Each term within curly braces in Eq. (82) is zero provided the hypersingular kernels satisfy the following

conditions (which constitute indeed some of their properties)

Vijðtð1Þ; 0; z0Þnið1Þnjð1Þ ¼
Z 1

�1

2

s2AðuÞ
VijðeAðuÞ; 0; z0Þmið1Þm0

jð�1Þdu; ð83Þ

Vijðtð�1Þ; 0; z00Þnið�1Þnjð�1Þ ¼
Z 1

�1

2

s2TðuÞ
VijðeTðuÞ; 0; z00Þmið�1Þm00

j ð1Þdu ð84Þ

and in the algorithm the density function u is C0 (continuous) across elements, i.e. u00ð1Þ ¼ uð�1Þ and
uð1Þ ¼ u0ð�1Þ. It is worth remarking that the C1;a smoothness required at u at y (cf. Eq. (15)) has no
relevance here since y is never an endpoint for E. Therefore, u must be C1;a strictly inside each boundary
element (where it is usually C1) and C0 at both endpoints.
For collocation BEM, an in-depth discussion of these cancellations conditions can be found in [30].

6. Evaluation of free terms due to the hypersingularity

Let us go back to the starting identity (18) for the Galerkin BEM. The following free termZ
C

wðyÞuðyÞ
Z
se

V ðy; xÞdsx
� �

dsy ð85Þ

appeared in Eq. (18) and needs further treatment to obtain its explicit expression. Once the boundary C has
been subdivided into boundary elements, one is led to compute the limiting form of the element-wise

versions of (85)
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H ¼
Z
E

wðyÞuðyÞ
Z
se

V ðy; xÞdsx
� �

dsy : ð86Þ

Note that both w and u are defined on E.
It will prove useful to describe points x 2 se by their polar coordinates ðe;xÞ relative to the orthonormal

frame tðgÞ, nðgÞ:
x� yðgÞ ¼ eeðx; gÞ; eðx; gÞ ¼ tðgÞ cosx þ nðgÞ sinx; ð87Þ

so that

dsx ¼ edx; nðxÞ ¼ �eðx; gÞ: ð88Þ
In particular, let x ¼ h�ðg; eÞ denote the polar angles defining the two intersection points x�ðg; eÞ of se with
C (Fig. 5), i.e.:

x�ðg; eÞ ¼ yðgÞ þ eeðh�ðg; eÞ; gÞ:
Introducing (87) and the representation (3) and (7) of the kernel and taking (88) into account, the free term

(86) becomes:

H ¼ 1
e

Z 1

�1
wðgÞuðgÞmiðgÞ½Hiðhþ; e; gÞ �Hiðh�; e; gÞ	dg ð89Þ

having put

Hiðx; e; gÞ ¼ �
Z x

0

Vijðeðx0; gÞ; e; yðgÞÞejðx0; gÞdx0: ð90Þ

In this section, we use notations E�, E, Eþ instead of E00, E, E0 and corresponding superscripts for quantities

associated to an element, both to emphasize that we are here integrating over the single element E instead of
over a product of elements and to deal at once with both endpoint contributions.

For a fixed e > 0, the point xþðg; eÞ belongs to either E or Eþ, depending on how close y is to the endpoint
zþ of E (Figs. 5 and 7); likewise, x�ðg; eÞ belongs to either E or E�. It is therefore convenient to put (Fig. 6)

D�
e ¼ f�16 g6 1 : jyðgÞ � z�j6 eg; E�

e ¼ ½�1; 1	 n D�
e ;

xε
−

εs
’’ _

z =z

z =z’ +

εs

y(η)

(ω,η)e

xε
+ xε

+

E
ε

xε
−

ε

y

n

t

ω

x

Fig. 5. Free term evaluation: coincident case.
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and split the integral (89) into contributions of coincident type H�
c ðeÞ and of adjacent type H�

a ðeÞ:

HðeÞ ¼ Hþ
c ðeÞ � H�

c ðeÞ þ Hþ
a ðeÞ � H�

a ðeÞ ð91Þ

with

H�
c ðeÞ ¼

1

e

Z
E�e

wðgÞuðgÞmiðgÞHiðh�ðg; eÞ; e; gÞdg; ð92Þ

H�
a ðeÞ ¼

1

e

Z
D�

e

wðgÞuðgÞmiðgÞHiðh�ðg; eÞ; e; gÞdg: ð93Þ

The integrals in (92) and (93) depend on e. However, on using the coordinates ðu; vÞ introduced in Sections 4
and 5, H�

c ðeÞ and H�
a ðeÞ, respectively, can be reformulated as integrals over a fixed interval u 2 ½�1; 1	. This

treatment, which provides a convenient way to evaluate the hypersingular free term, is now going to be

presented in some detail.

6.1. Contributions of coincident type

The contributions of coincident type, namely H�
c ðeÞ, are expected to be of order Oð1=eÞ for vanishingly

small e. Thus, two-term expansions about e ¼ 0 are needed in order to evaluate both the unbounded Oð1=eÞ
and the bounded Oð1Þ contributions to H�

c ðeÞ.
The integral H�

c ðeÞ defined by (92) involves yðgÞ and, through the angle h�, x�
e ðyðgÞÞ. The coordinates

ðu; vÞ defined in Section 4 for the coincident double integration are again used. In particular, the position
vector r� ¼ x�ðg; eÞ � yðgÞ is still expressed in terms of ðu; vÞ by (37), where, in addition, v, e and u are
linked by (48) in order to satisfy the condition jr�j ¼ e (where the � sign corresponds to that in H�

c ðeÞ).
Eliminating v in (37) by using (48) and taking the Taylor expansion about e ¼ 0 of the resulting expression
of r� yields:

r� ¼ �e tðuÞ
�

þ 1

2a2ðuÞ
da
du

ðuÞtðuÞ


� 1

2a2ðuÞ bðuÞ
�
ue þOðe2Þ

�

¼ �e tðuÞ
�

� u
2a2ðuÞ ðbðuÞ � nðuÞÞnðuÞe þOðe

2Þ
�
: ð94Þ

The coordinate g itself becomes, by virtue of (31) and (48), a function of u and e:

g ¼ g�ðu; vðu; eÞÞ ¼ uþ ð�1� uÞvðu; eÞ ¼ uþ ð�1� uÞ
2aðuÞ e þOðe2Þ � uþ d�ðuÞe þOðe2Þ; ð95Þ

while the differential dg is given by:

z

E

+z
xε

+

+
E

xε
−

−

−
εs

x
εE

Fig. 7. Free term evaluation: adjacent case.
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dg ¼ og�

ou
du ¼ 1

�
þ d

du
d�ðuÞe

�
duþOðe2Þ: ð96Þ

On the other hand, from (87) and the definition of h�, one must have:

r� ¼ eeðh�; gÞ: ð97Þ
Expressions (94) and (97) are found to coincide if hþ and h� are given by:

hþðu; eÞ ¼ �jðuÞe þOðe2Þ; h�ðu; eÞ ¼ �p þ jðuÞe þOðe2Þ ð98Þ
with

jðuÞ ¼ � u
2a2ðuÞ ðbðuÞ � nðuÞÞ:

Using u, spanning the fixed interval ½�1; 1	, as the integration variable, the integral H�
c ðeÞ takes the form:

H�
c ðeÞ ¼

1

e

Z 1

�1
½wumi	ðg�ðu; eÞÞHiðh�ðu; eÞ; e; g�ðu; eÞÞ og

�

ou
du; ð99Þ

which facilitates the investigation of its behaviour about e ¼ 0. Indeed, the factor of 1=e in the expression
(99) of H�

c ðeÞ is bounded and has a bounded derivative w.r.t. e at e ¼ 0. Thus, H�
c ðeÞ admits an expansion of

the form:

H�
c ðeÞ ¼

1

e

Z 1

�1
½wumi	ðg�ðu; 0ÞÞHiðh�ðu; 0Þ; 0; g�ðu; 0ÞÞ og

�

ou
ðu; 0Þ

� �
du

þ
Z 1

�1

o

oe
½wumi	ðg�ðu; eÞÞHiðh�ðu; eÞ; e; g�ðu; eÞÞ og

�

ou

� �����
e¼0
duþOðeÞ: ð100Þ

For e ¼ 0, one has g� ¼ u, og�=ou ¼ 1, hþ ¼ 0, h� ¼ �p. Hence:

½wumi	ðg�ðu; 0ÞÞHiðh�ðu; 0Þ; 0; g�ðu; 0ÞÞ og
�

ou
ðu; 0Þ ¼ ½wumi	ðuÞHiðh�; 0; uÞ: ð101Þ

Moreover, for e ¼ 0, one also has
o

oe
Hiðh�ðu; eÞ; e; g�ðu; eÞÞ

����
e¼0

¼ 0

by virtue of (12), and

o

oe
og�

ou
¼ d

du
d�ðuÞ; oh�

oe
¼ �jðuÞ; eðh�; gÞ ¼ �tðuÞ; oHi

ox
ðh�; 0; uÞ ¼ �Vijð�tðuÞ; 0; yðuÞÞtjðuÞ;

where d�ðuÞ and jðuÞ are defined by (95) and (98), respectively; the last equality results directly from the

definition (90) of H. Using these equalities, one has:

o

oe
½wumi	ðg�ðu; eÞÞHiðh�ðu; eÞ; e; g�ðu; eÞÞ og

�

ou

� �����
e¼0

¼ ½wumi	ðuÞ
oh�

oe
ðu; eÞ oHi

ox
ðh�; 0; uÞ þ o

og
f½wumi	ðgÞHiðh�; 0; gÞg

����
g¼u

d�ðuÞ

þ ½wumi	ðuÞHiðh�; 0; uÞ d
du

d�ðuÞ

¼ �½wujmitj	ðuÞVijð�tðuÞ; 0; yðuÞÞ þ o

ou
f½wud�mi	ðuÞHiðh�; 0; uÞg: ð102Þ
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Substituting Eqs. (101) and (102) into (100), using dþð1Þ ¼ d�ð�1Þ ¼ 0 and dþð�1Þ ¼ 1=a�, d�ð1Þ ¼
�1=aþ, one then obtains the desired expansion for the coincident contribution to the free term:

Hþ
c ðeÞ � H�

c ðeÞ ¼
1

e

Z 1

�1
½wumi	ðuÞ½Hið0; 0; uÞ �Hið�p; 0; uÞ	du

þ ½wuni	ð1ÞHið�p; 0; 1Þ � ½wuni	ð�1ÞHið0; 0;�1Þ þ ĤH þOðeÞ ð103Þ

with

ĤH ¼ �
Z 1

�1
½wujmitj	ðuÞ½VijðtðuÞ; 0; yðuÞÞ �Vijð�tðuÞ; 0; yðuÞÞ	du: ð104Þ

The first line in this formula is the weighted form of the unbounded free term which occurs in the direct

approach for the collocation hypersingular BEM [23]. The finite term appearing in the last line, on the other

hand, is specific to the Galerkin formulation and cannot arise in (and be expected from the knowledge of)

the collocation hypersingular BEM. Besides, Eq. (98) relies on the curvature being continuous inside the

element E, so that the additional free term occurring in the collocation hypersingular BEM [25] does not

arise here. The term ĤH in practice vanishes except in quite special situations, e.g. a boundary element on an
interface.

6.2. Cancellation of 1=e terms

The Oðe�1Þ term in Eq. (103) must cancel exactly the corresponding unbounded term in Eq. (56), which
comes from the double integration for the coincident case, for any choice of the density and weight

functions. The fundamental solution is therefore required to verify (see also Eq. (44)):

2VijðtðuÞ; 0; yðuÞÞniðuÞnjðuÞ þHið0; 0; uÞniðuÞ �Hið�p; 0; uÞniðuÞ ¼ 0ð�16 u6 1Þ: ð105Þ
It is worth noting that this cancellation does not put any interelement continuity requirement on u.

6.3. Contributions of adjacent type

These contributions H�
a ðeÞ, defined by (93), are associated with the right and left endpoints of E, as the +

or ) superscript (respectively) indicates. Again we found convenient to introduce the coordinates ðu; vÞ
defined in Sections 5.1 and 5.2 for the double integration over adjacent elements. Thus, we have

g ¼ g�ðu; vÞ ¼ ðu� 1Þv� 1
together with, again, the condition jr� ¼ ej which, from (60) and (73), makes g to depend on e and u, so as
to obtain:

g ¼ g�ðe; uÞ ¼ �1þ ðu� 1Þ e
s�ðuÞ þOðe

2Þ: ð106Þ

Similarly, one obtains

r�ðe; uÞ ¼ e
s�ðuÞ ½ðu� 1Þa

� þ ð�1� uÞa	 þOðe2Þ ð107Þ

¼ eeðh�ðuÞÞ þOðe2Þ; ð108Þ

where a and a� are the natural tangent vectors of E and the neighbouring elements E� at the junction point

z� between E and E�, and

s�ðuÞ ¼ jðu� 1Þa� þ ð�1� uÞaj:
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Eq. (107) defines the functions h�ðuÞ, which are such that:

h�ðg; eÞ ¼ h�ðuÞ þOðeÞ: ð109Þ

If b� ¼ 0, i.e. if the unit tangent is continuous between elements E and E�, the functions h�ðuÞ are constant:
hþðuÞ ¼ 0 and h�ðuÞ ¼ p. Otherwise, using (107) and (108), one can also express u and s�ðuÞ in terms of h�

through:

u ¼ u�ðh�Þ ¼ � a sin h� þ a� sinðh� � b�Þ
a sin h� � a� sinðh� � b�Þ

; ð110Þ

s�ðuÞ ¼ ~ss�ðh�Þ ¼ 2aa� sin b�

a sin h� � a� sinðh� � b�Þ
: ð111Þ

For u to span the interval ½�1; 1	, one has h� 2 ½h�
1 ; h

�
2 	, with hþ

1 ¼ 0, hþ
2 ¼ bþ, h�

1 ¼ p � b�, h�
2 ¼ p.

Now, the integration for H�
a ðeÞ can be carried out with respect to u and with u 2 ½�1; 1	, that is, with u

spanning between fixed values. The differential dg has the following expansion in e:

dg ¼ og�

ou
du ¼ e

d

du
u� 1
s�ðuÞ

 �
duþOðe2Þ: ð112Þ

Since this differential is OðeÞ, only the leading term of the expansion of the integrand function in (93) is

sought. Thus:

H�
a ðeÞ ¼ ½wumi	ð�1Þ

Z 1

�1
Hiðh�ðuÞ; 0;�1Þdg�ðuÞ þOðeÞ: ð113Þ

If b� ¼ 0, a simple calculation of the integral (113) using (112), hþðuÞ ¼ 0, h�ðuÞ ¼ �p and sþð�1Þ ¼
s�ð1Þ ¼ 2a yields the result:

H�
a ðeÞ ¼ Hiðh�; 0;�1Þ½wuni	ð�1Þ þOðeÞ: ð114Þ

If b� 6¼ 0, it is natural to introduce the change of variables u ¼ uðhÞ as defined by (110) in (113) (note that h
also span fixed intervals). In particular, applying (110) and (111) to (112), one finds that:

dg� ¼ � cosðh � b�Þ
a sin b� dh ð115Þ

and (93) becomes:

H�
a ðeÞ ¼ �½wuni	ð�1Þ

Z h�2

h�1

Hiðh; 0;�1Þ
cosðh � b�Þ
sin b� dh þOðeÞ: ð116Þ

Although this formula is, strictly speaking, valid only if b� 6¼ 0, its limiting value for b� ¼ 0 is easily shown
via a Taylor expansion to be indeed (114).

6.4. Hypersingular free term final expression

The final formula for the element-wise free term (86) is obtained by substituting (103) and (116), in the

limit e ! 0 and dropping the Oð1=eÞ term, into (91):

H ¼ Hþ þ H� þ ĤH ; ð117Þ
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where ĤH is defined by (104) and with

Hþ ¼ Hið
(

�p; 0; 1Þ þ
Z b0

0

Hiðh; 0; 1Þ
cosðh � b0Þ
sin b0 dh

)
½wuni	ð1Þ; ð118Þ

H� ¼ � Hið0; 0;
(

� 1Þ þ
Z b00

0

Hiðp � h; 0;� 1Þ cosðh � b00Þ
sin b00 dh

)
½wuni	ð�1Þ; ð119Þ

using again the notations b0, b00 instead of bþ, b�. The change of variable h ! p � h has been used in H�
a

defined by (116). The finite free term (117) is specific to Galerkin BEM and apparently had never been

detected before.

The free terms Hþ, H� are of coincident type in that they involve only u and w on E, but also of adjacent
type in that they depend on the angles b0, b00 with neighbouring elements. It is useful to note that, as a
consequence of (114), Hþ þ H� ¼ 0 if the tangent has interelement continuity. Since u must have inter-

element continuity (see Section 5.3), it is in practice more natural to treat Hþ, H� as adjacent terms. If we

think of u as a continuous shape function, we see that it ought to be either uð�1Þ ¼ 0 or uð1Þ ¼ 0, which
simplify the expression for the free term H . Moreover, if the support of a continuous weight function w
spans two boundary elements, we see that each side contributes a free term.

A short comment on the finite free terms just obtained is in order as they may look a bit unusual. They

have never been detected before because in no other paper a limit process based on the vanishing neigh-

bourhood approach has been used in conjunction with SGBEM. All formulations of SGBEM based on
regularization of the kernels before performing the limit, like in [4–9], do not provide free terms at all (and

this is indeed one of their advantages). The same is true for the limit to the boundary method [10–12]. On

the other hand, techniques based on the finite part idea [13–15] completely overlook the free term evalu-

ation, as the �bump� associated to the vanishing neighbourhood is never taken into account.
The direct approach for the evaluation of singular integrals, here pursued and extended to SGBEM, is

strongly based on a careful analysis of the limiting process, as the neighbourhood and the �bump�
around the singularity vanish, and free terms are therefore an essential part. It should also be considered

that in the present paper the double integrations have been always dealt with as a whole, thus fully
exploiting the features of the Galerkin BEM, and this aspect also affects the nature and the value of the

free terms.

6.5. Evaluation of the free term c(y)

Using the formalism introduced in this section, the free term cðyÞ defined by (17) becomes:

cðyÞ ¼
Z 0

�p
fVðeðx; gÞ; 0; yÞeðx; gÞ �Wðeðx; gÞ; 0; yÞnðxÞgdx;

where Wðe; r; yÞ ¼ rW ðy; xÞ is the singular part of the strongly singular kernel W ðy; xÞ. Note that the in-
tegration bounds mean that C is smooth at y. This is the only case needed in connection with the weighted
identity (18) as long as the irregular points on C are isolated (e.g. a finite number of corners). Since cðyÞ are
regular functions, the evaluation of the integralZ

C
wðyÞ$uðyÞ � cðyÞdsy

in the identity (18) is a trivial task.
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7. The direct algorithm

Summing up the analysis of Sections 4 and 6, the final formula for the coincident double integration over

the element E stems from Eqs. (50), (53), (56) and (117) and reads:

IC ¼
Z 1

0

Z 1

�1
½F ð1Þðu; vÞ

�
þ F ð2Þðu; vÞ � 2F ðu; 0Þ	duþ 2½F ð1; 0Þ þ F ð � 1; 0Þ	v

�
dv
v2

� 2
Z 1

�1
F ðu; 0Þduþ ĤH ;

ð120Þ
where F ð1;2Þðu; vÞ and F ðu; 0Þ are defined by (42) and (44), respectively, and ĤH is defined by (104). Expression
(120) may be indicated, using a short algorithm-like notation, as

IC ¼ CðE;w;uÞ: ð121Þ
In the same fashion, the analysis of Sections 5 and 6 leads to the final formula for the adjacent double

integration over the pair ðE;E0Þ of elements joined by the common node z0, which stems from Eqs. (72) and
(117) and reads:

IA ¼ I ð1ÞA þ
Z 1

�1

Z 1

0

1

v
½QAðu; vÞ � QAðu; 0Þ	dvduþ

Z 1

�1
QAðu; 0Þ ln sAðuÞduþ Hþ � 2F ð1; 0Þ lnð2aþÞ;

ð122Þ
where I ð1ÞA is the nonsingular integral over region 1 (see Section 5.1), sAðuÞ and QAðu; vÞ are defined by (63)
and (66), respectively, while Hþ is given by (118). Expression (122), in a short notation similar to (121), may

be indicated as

IA ¼ AðfE;wg; fE0;u0gÞ: ð123Þ
Likewise, the final formula for the transposed adjacent double integration over the pair ðE00;EÞ is:

IT ¼ I ð2ÞT þ
Z 1

�1

Z 1

0

1

v
½QTðu; vÞ � QTðu; 0Þ	dvduþ

Z 1

�1
QTðu; 0Þ ln sTðuÞduþ H� � 2F ð�1; 0Þ lnð2a�Þ;

ð124Þ
where I ð2ÞT is the nonsingular integral over region 2 (see Section 5.2) while sTðuÞ, QTðu; vÞ and H� are defined

by (77), (78) and (119), respectively. Similarly to (121) and (123), this result may be indicated as

IT ¼ TðfE;wg; fE00;u00gÞ: ð125Þ

Note that the nonintegral endpoint contributions to the coincident double integration in (56) have ulti-

mately been considered as adjacent terms (and therefore appear in (122) and (124)), because having all

element endpoint data (Jacobians, tangents and so on) used in the same program segment is simpler and

computationally more efficient.

8. Symmetry considerations

In the symmetric Galerkin BEM, the unknown and weight functions u and w are assumed to belong to
the same function space; this implies here that w has, like u, interelement continuity. It is then useful to
consider the effect of switching the roles of w and u in the integration formulas.
First, from (31), (32), (42), (44) and (104), it is easy to see that

F 1ðu; v;u;wÞ ¼ F 2ðu; v;w;uÞ; F ðu; 0;u;wÞ ¼ F ðu; 0;w;uÞ;
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ĤHðw;uÞ ¼ ĤHðu;wÞ;

using obvious notations to emphasize the dependence in w and u. It follows that, with the notation (121),
we have

CðE;w;uÞ ¼ CðE;u;wÞ; ð126Þ

i.e. the coincident double integration procedure is symmetric.

Next, consider the formulasAð�; �Þ andTð�; �Þ applied to the same consecutive pair of boundary elements

E;E0 (instead of the pair E00, E for formula Tð�; �Þ). The functions sAðuÞ and sTðuÞ defined by (63) and (77)
are readily found to be equal, and so are the vector functions rAðuÞ and rTðuÞ defined by (62) and (76) by
virtue of (75). One then finds that

QAðu; v;u;wÞ ¼ QTðu; v;w;uÞ:

This in turn implies that the integral terms of Eq. (124) with the roles of w and u switched are equal to the
corresponding integral terms of Eq. (122). On the other hand, the nonintegral terms in (122) are clearly

symmetric in w and u, as are those of (124). These two contributions have the form BAwðz0Þuðz0Þ and
BTwðz0Þuðz0Þ, where z0 is the common endpoint of E and E0, and are not necessarily equal (i.e. BA 6¼ BT).
However, the final Galerkin BEM system comes from summing all double element integrals, which implies

that only the value of BA þ BT matters in the end. Therefore, one can freely replace IA and IT defined by
(122) and (124) by:

~IIA ¼ I ð1ÞA þ
Z 1

�1

Z 1

0

1

v
½QAðu; vÞ � QAðu; 0Þ	dvduþ DAwðzÞuðzÞ; ð127Þ

~IIT ¼ I ð2ÞT þ
Z 1

�1

Z 1

0

1

v
½QTðu; vÞ � QTðu; 0Þ	dvduþ DTwðzÞuðzÞ ð128Þ

with

DAwðzÞuðzÞ ¼
Z 1

�1
QAðu; 0Þ ln sAðuÞduþ 1

2
ðHþðEÞ þ H�ðE0ÞÞ � F ð1; 0Þ lnð2aÞ � F 0ð�1; 0Þ lnð2a0Þ;

ð129Þ

DTwðzÞuðzÞ ¼
Z 1

�1
QTðu; 0Þ ln sTðuÞduþ 1

2
ðHþðEÞ þ H�ðE0ÞÞ � F ð1; 0Þ lnð2aÞ � F 0ð�1; 0Þ lnð2a0Þ;

ð130Þ
where a and a0 denote the Jacobians of E and E0 at the shared endpoint z. Besides, from (118) and (119), one
has:

HþðEÞ þ H�ðE0Þ ¼ H0
ið�p; 0; 1Þn0i �Hið0; 0; 1Þni � ½wu	ð1Þ

�
Z b0

0

fHiðh; 0; 1Þni þHiðp � h; 0; 1Þn0ig
cosðh � b0Þ
sin b0 dh: ð131Þ

This time, with the notations (123) and (125), we have:

~AAðfE;wg; fE0;u0gÞ ¼ ~TTðfE0;u0g; fE;wgÞ: ð132Þ
This observation has two important consequences. Firstly, it makes possible to code just one of the two

procedures. Secondly, the formulas proposed for the adjacent cases are, like in (126), symmetry pre-
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serving even when affected by numerical integration errors. This feature may not be enjoyed by other

regularization techniques (that is by all those methods that keep the distinction between inner and outer

integration).

9. Explicit expression of the free term

In this section, explicit formulas are provided for the free term (129) established for the symmetric
Galerkin BEM, as well as other quantities involved in the direct integration algorithm, for three cases:

potential problems for isotropic and anisotropic media (Sections 9.1 and 9.2) and isotropic elasticity

(Section 9.3).

9.1. Isotropic potential problems

The free-plane fundamental solution for the Laplace equation r2u ¼ 0 is given by:

Gðy; xÞ ¼ � 1

2p
ln r;

T ðy; xÞ ¼ � 1

2p
ðxj � yjÞnjðxÞ

r2
¼ W ðx; yÞ;

Vijðy; xÞ ¼
1

2p
dij
r2


� 2ðxi � yiÞðxj � yjÞ

r4

�
:

ð133Þ

The singular part Vij of Vij is given by (9), repeated for convenience:

Vijðe; r; yÞ ¼
1

2p
ðdij � 2eiejÞ: ð90 Þ

Explicit expressions can then readily be obtained for various related quantities involved in (120), (122) and

(124). From (44), one finds that:

F ðu; 0Þ ¼ 1

4p
wðuÞuðuÞ; ð134Þ

while the function Hiðx; e; gÞ defined by (90) is given by:

Hiðx; e; gÞ ¼ 1

2p
½sinxtiðgÞ þ ð1� cosxÞniðgÞ	: ð135Þ

Finally, since Vij is symmetric in ði; jÞ, with reference to (104), one has ĤH ¼ 0.
Using (134) and (135), condition (104) for the cancellation of Oðe�1Þ terms is readily verified. Besides, the

practical evaluation of the free term (129) and the verification of condition (83) for the cancellation of

Oðln jejÞ terms are facilitated by the introduction of the polar angle x through:

eAðuÞ ¼ cosxt þ sinxn � eAðxÞ ð06x6 b0Þ: ð136Þ
Elementary calculations then yield:

du
s2AðuÞ

¼ 1

2aa0 sin b0 dx; ð137Þ

sAðuÞ ¼
2aa0 sin b0

a sinx � a0 sinðx � b0Þ � ~ssAðxÞ ð138Þ
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and QAðu; 0Þ defined by (68) becomes:

QAðu; 0Þdu ¼
1

2p
cosð2x � b0Þ

sin b0 wu0 dx: ð139Þ

Using these definitions, condition (83) for the cancellation of Oðln jejÞ terms takes the form:

1

2p
¼ 1

2p

Z b0

0

cosð2x � b0Þ
sin b0 dx

and is readily checked via a direct calculation, while the free term (129) becomes:

DA ¼ 1

2p

Z b0

0

cosð2x � b0Þ
sin b0 ln j~ssAðxÞj

(
� cosx cosðx � b0Þ

sin b0

)
dx þ 1

4p
ð2� ln 4aa0Þ:

Upon performing an analytical integration, one finds (having put v ¼ a0=a):

DA ¼ 1

4p
2

"
þ ð1� v2Þ ln v � 2vb0 sin b0

1þ v2 � 2v cos b0

#
: ð140Þ

9.2. 2-D anisotropic potential problems

The medium is now assumed to have anisotropic constitutive properties, characterized by a positive

definite second-order tensor K with coefficients k1; k2 > 0 and orthogonal unit vectors w1;w2 such that:

K ¼ k1w1 � w1 þ k2w2 � w2:

The flux q associated to the potential u is now given by:

q ¼ ðK � $uÞ � n ¼ kiju;jni:

In that case, the free plane fundamental solution Gðy; xÞ solves $ � ðK � $uÞ þ dðx� yÞ ¼ 0 and is given by:

Gðy; xÞ ¼ � 1

4pD
lnR2;

T ðy; xÞ ¼ � 1

2pD
rjnjðxÞ
R2

¼ W ðx; yÞ;

Vijðy; xÞ ¼
1

2pD
1

R2
Kij

�
� 2rirj

R4

�
;

ð141Þ

where D ¼ ðk1k2Þ1=2 and R is defined in terms of the position vector r by:
R2 ¼ r � K�1 � r: ð142Þ

The singular factor of the hypersingular kernel V ðy; xÞ is thus given by:

Vijðe; r; yÞ ¼
1

2pD
1

ðe � K�1 � eÞ
Kij

"
� 2eiej
ðe � K�1 � eÞ2

#
: ð143Þ

Explicit expressions can then readily be obtained for various related quantities. From (44), one finds that:

F ðu; 0Þ ¼ 1

4pD
n � K � n
e � K�1 � e

wðuÞuðuÞ; ð144Þ

while the function Hiðx; gÞ defined by (90) is readily found to be given by:
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Hiðx; e; gÞ ¼ 1

2pD
ðK � dÞi
e � K�1 � e

�
þ ðK � nÞi
t � K�1 � t

�
; ð145Þ

where d1 ¼ e2 and d2 ¼ �e1. Using (144) and (145), condition (105) for the cancellation of Oðe�1Þ terms is
readily verified. Besides, utilizing again (136)–(138), QAðu; 0Þ defined by (68) takes the form:

QAðu; 0Þdu ¼
1

2pD sin b0
n � K � n0

e � K�1 � e

"
� 2 sinx sinðx � b0Þ

ðe � K�1 � eÞ2

#
dx

and condition (83) for the cancellation of Oðln jejÞ terms can again be checked via a direct analytic cal-
culation. The free term (129) can also be calculated explicitly by analytic integration, and is given by:

DA ¼ D
16p

j þ j�1

D
ð1

�
� v2Þ þ j � j�1

D
ðv2 cos 2ðc � b0Þ � cos 2cÞ

�
ln v2

Dðb0Þ
Dð0Þ

 !

� D
2p

v sin b0

D
½tan�1 ðj tanðb0 � cÞ þ tan�1 ðj tan cÞÞ	 þ D

2p
; ð146Þ

where j ¼ ðk1=k2Þ1=2, c ¼ ðt;w1Þ, DðhÞ ¼ j�1 cos2 ðh � cÞ þ j sin2 ðh � cÞ and D is given by (having again put
v ¼ a0=a):

D ¼ Dð0Þ � 2vDðb0=2Þ þ v2Dðb0Þ þ ðj þ j�1Þð1� cos b0Þ: ð147Þ

9.3. 2-D isotropic elasticity

The counterpart of the starting identity (18) for plane elasticity is:

0 ¼
Z

C
vkðyÞ u‘ðyÞ

Z
se

Vk‘ðy; xÞdsx
�

þ
Z
se

½u‘;mðyÞðxm � ymÞVk‘ðy; xÞ � r‘mðyÞnmðxÞWk‘ðy; xÞ	dsx

þ
Z

C�ee
fVk‘ðy; xÞu‘ðxÞ � Wk‘ðy; xÞp‘ðxÞgdsx

�
dsy þOðeÞ; ð148Þ

where u and r and p are displacements, stresses and tractions, respectively, and the kernels Vk‘ðy; xÞ and
Wk‘ðy; xÞ (which are hypersingular and strongly singular, respectively) derive from the elastostatic funda-

mental solution. Eq. (148) is, in weighted-residual form with a trial displacement v, the integral statement
used as a starting point to obtain traction BIEs.

In particular, for 2D plane strain and isotropic elasticity, the hypersingular kernel Vk‘ðy; xÞ is given by:

Vk‘ðy; xÞ ¼ Vk‘ijðy; xÞniðyÞnjðxÞ ¼
1

r2
Vk‘ijðy; xÞniðyÞnjðxÞ; ð149Þ

Vk‘ijðy; xÞ ¼ A½2ð1� 2mÞ½dijdk‘ þ djkdi‘ þ 2dikeje‘ þ 2dj‘eiek	
þ 4m½dijeke‘ þ dk‘eiej þ di‘ejek þ djkeie‘	 þ ð8m � 2Þdikdj‘ � 16eiejeke‘	; ð150Þ

where A ¼ l=ð4pð1� mÞÞ. Explicit expressions are then readily obtained for related quantities. From (44),

one finds that:

F ðu; 0Þ ¼ AuiðuÞviðuÞ; ð151Þ
while the function Hijkðx; e; gÞ defined by (90) is given by:

Hk‘iðx; e; gÞ ¼ 2A½dk‘di þ d‘idk þ dkid‘ � 2dkd‘di	; ð152Þ
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where, once again, d1 ¼ e2 and d2 ¼ �e1. Using (151) and (152), condition (105) for the cancellation of
Oðe�1Þ terms is readily verified. Besides, utilizing again (136)–(138), QA;k‘ðu; 0Þ defined by (68) takes the
form:

QA;k‘ðu; 0Þdu ¼ ½½2 cosð4x � b0Þ � cosð2x � b0Þ � cosð2x þ b0Þ	ðtkt‘ � nkn‘Þ
þ ½2 sinð4x � b0Þ � sinð2x � b0Þ � sinð2x þ b0Þ	ðtkn‘ þ nkt‘Þ

þ 2 cosð2x � b0Þdk‘	
Adx
sin b0 :

Using these definitions, condition (83) for the cancellation of Oðln jejÞ terms is once again readily checked
via a direct calculation. The free term (129), also explicitly calculable by analytic integration, is given by:

DA;k‘ ¼ A 2

"(
þ 1� v2

N
ln v � 2v sin b0

N
b0

#
dk‘ þ

1� v2

N

"
� 2v sin

2 b0

N
ðtkt0‘ � nkn0‘Þ ln v

þ 2v sin2 b0

N
b0 � sin b0

!
ðtkn0‘ þ nkt0‘Þ

#
� 2v sin b0

N
2v � ð1þ v2Þ cos b0

N
ln vðtkn0‘

"
þ nkt0‘Þ

þ 2v � ð1þ v2Þ cos b0

N
b0 þ sin b0

!
ðtkt0‘ � nkn0‘Þ

#)
ð153Þ

having put N ¼ 1þ v2 � 2v cos b0.

10. Numerical tests

A MATLAB program has been written to test the present direct integration method, that is, Eqs. (120),

(127) and (128). To demonstrate its accuracy, we present a comparison between numerical and exact
(analytical) values of double hypersingular integrals of the form

I ¼ lim
e!0

Z
E1þE2

Z
E1þE2�ee

V ðy; xÞu1ðyÞu2ðxÞdsx dsy
� �

; ð154Þ

where V ðy; xÞ ¼ Vijðy; xÞniðyÞnjðxÞ with Vijðy;xÞ defined by (133), E1, E2 are straight boundary elements
meeting at their common endpoint with an angle b (Fig. 8), and u1 and u2 are taken as the same piecewise
linear �hat function� in s

ðu1;u2ÞðsÞ ¼
1þ s
2

ðon E1Þ and ðu1;u2ÞðsÞ ¼
1� s
2

ðon E2Þ;

where s is a curvilinear abscissa ranging from )1 to 1 on both elements.

Fig. 8. Adjacent straight boundary elements E1, E2 and the �hat function�.
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Integral I in (154) is scale-independent (this stems from the fact that the kernel V ðy; xÞ is homogeneous of
degree )2 with respect to the position vector x� y, and hence depends only on b and the element length
ratio v ¼ jE1j=jE2j). The exact value of (154) (in the limiting case as e ! 0), including the free term, is found

to be

I ¼ 1

4p

�
� ½2þ ðv þ v�1Þ cos b	 lnð2 cos b þ v þ v�1Þ þ ðv � v�1Þ cos b ln v

þ 2 sin b ðv
�

þ v�1Þ tan�1 ðcot bÞ � v tan�1 cot b


þ v�1

sin b

�
� v�1 tan�1 cot b


þ v
sin b

���
ð155Þ

Each straight element Ek has been represented as a three-node quadratic element as in Eq. (22), with the
inner node located at s ¼ dk. Therefore, only when dk ¼ 0 we have the classical element with constant
Jacobian, that is with a linear mapping s ¼ sðnÞ. Any other value of dk, although maintaining the element
straight, does introduce a distortion in the mapping s ¼ sðnÞ, making the numerical evaluation more dif-
ficult. The distortion parameters dk may vary in the range [)0.5, 0.5]; with the extreme values we have the
well known quarter-point element, often used in crack problems.

Since we wish the analytical value of the integral I not to be affected by the distortion parameters dk, we
have to represent the functions u1ðsðnÞÞ ¼ u1ðnÞ and u2ðsðnÞÞ ¼ u2ðnÞ as quadratic functions in n with
nodal values

0;
1� d1
2

; 1

� �
on E1 and 1;

1þ d2
2

; 0

� �
on E2:

Although it may seem a simple test, it is in fact quite demanding when dk 6¼ 0 and b 6¼ 0, and could very well
be considered like a benchmark to test methods for the evaluation of hypersingular integrals in the sym-

metric Galerkin BEM. Indeed, straight elements, when represented by means of nonlinear mappings, are as

general as curved elements if the computation is performed in terms of the parametric coordinates, while

exact values are available for comparison.

In particular we present here numerical results for v ¼ 1, that is elements of the same length, and
v ¼ 0:25, which is beyond what is generally recommended in a well designed mesh. In both cases, the corner
angle b is taken equal to 0, p=4, p=2 and 3p=4, that is from smooth boundary up to an acute angle (usually
avoided in applications). Moreover, to test the sensitivity of the proposed technique to the element dis-

tortion, we also consider the undistorted case ðd1 ¼ d2 ¼ 0Þ, the case in which E1 is a quarter node element
and E2 is as before ðd1 ¼ 0:5; d2 ¼ 0Þ, and the case in which both elements are quarter point ðd1 ¼ 0:5; d2 ¼
�0:5Þ and hence exhibit the maximum degree of distortion.

The analytical values of the integral I , computed by means of Eq. (155), are as shown in Table 1. Of
course the distortions do not affect the exact values.

The relative errors for the case v ¼ 1, i.e. two elements of equal length, are given in Table 2. All integrals
have been computed using Gauss formulas with nG points for one-dimensional integrals and nG � nG points
for double ones. We see from Table 2 that even a severe distortion of the elements does not have much

influence on the accuracy of the results. On the other hand, the higher the angle b, the more demanding is
the numerical computation.

Table 1

Exact values of the integral I for several values of the element length ratio v and of the corner angle b

v b ¼ 0� b ¼ 45� b ¼ 90� b ¼ 135�
0 )5.545177444479 )5.303194641153 )4.527887014709 )3.018883618685
0.25 )6.255030294227 )6.072331681256 )5.516576102721 )4.583045906354
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The relative errors for the case v ¼ 0:25 are provided in Table 3 for the same values of the corner angle
and of the distortion parameters. Table 3 is quite similar to Table 2, thus showing that the algorithm can

cope very well with adjacent elements of very different length.

To further validate the present direct approach to SGBEM, and in particular to emphasize the con-

sistency and correctness of the overall SGBEM formulation, a sample two-dimensional potential problem

is finally considered. Let X be the bounded region enclosed in the ellipse of equation x21 þ ðx2=aÞ2 � 1 ¼ 0.
The function u ¼ x3 � 3xy2 solves the Laplace equation r2u ¼ 0 and is associated with the normal
derivative

q ¼ ou
on

¼ 3x1½ðx
2
1 � x22Þa2 � 2x22	

ðx21a4 þ x22Þ
1=2

ðx1; x2Þ 2 oX

Table 3

Relative errors in the case v ¼ 0:25
nG b ¼ 0� b ¼ 45� b ¼ 90� b ¼ 135�

d1 ¼ d2 ¼ 0 4 )1.3E)03 4.0E)03 )4.5E)02 )9.1E)01
8 )4.0E)07 )2.3E)06 )4.1E)04 )6.5E)02
12 )9.1E)11 )1.2E)10 )2.5E)06 7.9E)03
16 )1.1E)12 1.9E)13 )1.0E)08 1.9E)03
20 1.8E)12 1.9E)12 )2.9E)13 1.7E)04

d1 ¼ 0:5, d2 ¼ 0 4 1.0E)05 )2.6E)04 2.7E)02 1.3E+00

8 )2.6E)08 )3.4E)08 )8.3E)05 )1.2E)01
12 )1.4E)09 )1.4E)09 4.3E)08 8.4E)03
16 )1.7E)10 )1.7E)10 1.5E)10 )4.4E)04
20 )3.0E)11 )3.1E)11 )3.6E)11 1.7E)05

d1 ¼ 0:5, d2 ¼ �0:5 4 )5.6E)04 3.2E)03 )9.8E)02 )1.5E+00
8 1.1E)06 5.9E)06 )1.4E)03 )1.5E)02
12 )1.2E)09 )1.5E)08 )1.4E)05 3.5E)02
16 )3.4E)10 )3.5E)10 )9.6E)08 5.5E)03
20 )6.3E)11 )6.5E)11 )6.4E)10 3.4E)04

Table 2

Relative errors in the case v ¼ 1, for several numbers nG of Gauss points
nG b ¼ 0� b ¼ 45� b ¼ 90� b ¼ 135�

d1 ¼ d2 ¼ 0 4 3.5E)06 )5.8E)06 )9.2E)03 )8.4E)01
8 5.9E)12 )2.2E)11 )1.5E)05 )6.7E)02
12 1.5E)13 1.6E)13 )1.9E)08 )3.9E)03
16 )1.2E)12 )1.3E)12 )2.3E)11 )2.0E)04
20 2.0E)12 2.1E)12 2.4E)12 )1.0E)05

d1 ¼ 0:5, d2 ¼ 0 4 3.0E)07 )2.5E)04 2.3E)02 1.7E+00

8 )2.6E)08 )4.1E)08 )3.4E)05 )1.8E)01
12 )1.6E)09 )1.6E)09 )9.6E)08 1.4E)02
16 )1.9E)10 )2.0E)10 3.5E)10 )1.0E)03
20 )3.4E)11 )3.6E)11 )4.4E)11 5.9E)05

d1 ¼ 0:5, d2 ¼ �0:5 4 )5.7E)06 )9.4E)05 )2.6E)02 )1.7E+00
8 )5.4E)08 )5.3E)08 )5.3E)05 )1.5E)01
12 )3.2E)09 )3.3E)09 )8.0E)08 )1.0E)02
16 )3.9E)10 )4.0E)10 )5.7E)10 )5.8E)04
20 )7.1E)11 )7.4E)11 )8.7E)11 )3.0E)05
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The Neumann problem has been solved numerically using the limiting form of the weighted hypersingular

integral equation (13). The relative mean squared errors obtained on the nodal values of / for three mesh
sizes (40, 80 and 160 three-noded boundary elements respectively) and several aspects ratios a of the ellipse
are presented in Table 4.

11. Conclusions

In this paper the direct approach has been extended to the evaluation of double hypersingular integrals

like those arising in the symmetric Galerkin BEM. Double integrals are considered as a whole through the

introduction of suitable coordinate transformations in the two-dimensional space of intrinsic coordinates.

As a result, the proposed procedure preserves the symmetry of the formulation after discretization, even

when the numerical quadratures are affected by some errors.

As typical in the direct method, the limiting process has been expressed in the parametric space and the
free terms have been evaluated analytically. Cancellation of all potentially unbounded terms has been

shown to occur if the density function u is continuous between elements. The analysis has also shown that
somehow new free terms arise.

Numerical tests have shown that the algorithm behaves very well even when adjacent elements have

different length and have nonconstant Jacobians. The effect of the angle between elements has been also

pointed out.
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