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Abstract

The problem of mapping underground cavities from surface seismic measurements is investigated

within the framework of a regularized boundary integral equation (BIE) method. With the ground

modeled as a uniform elastic half-space, the inverse analysis of elastic waves scattered by a three-

dimensional void is formulated as a task of minimizing the misfit between experimental observations

and theoretical predictions for an assumed void geometry. For an accurate treatment of the gradient

search technique employed to solve the inverse problem, sensitivities of the predictive BIE model with

respect to cavity parameters are evaluated semi-analytically using an adjoint problem approach and

a continuum kinematics description. Several key features of the formulation, including the rigorous

treatment of the radiation condition for semi-infinite solids, modeling of an illuminating seismic wave

field, and treatment of the prior information, are highlighted. A set of numerical examples with

spherical and ellipsoidal cavity geometries is included to illustrate the performance of the method. It

is shown that the featured adjoint problem approach reduces the computational requirements by an

order of magnitude relative to conventional finite difference estimates, thus rendering the 3D elastic-

wave imaging of solids tractable for engineering applications.
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1 Introduction

Remote sensing of cavities embedded in a semi-infinite solid via elastic waves is a topic of

considerable interest in mechanics and engineering owing to its relevance to a number of applications

ranging from nondestructive material testing to medical diagnosis, oil prospecting and underground

object detection. In the context of seismic exploration, a comprehensive three-dimensional mapping

of subterranean structures is typically associated with the interpretation of a large number (often

thousands) of motion measurements via finite-difference elastodynamic models which are inherently

based on domain discretization (e.g. Plessix et al., 1999). In contrast, this investigation is concerned

with problems where detailed mapping of underground openings (such as defense facilities) is

required and only a few measurements can be made, usually on the ground surface. In such

instances, the boundary integral equation (BIE) formulations, which provide a direct mathematical

link between the observed waveforms and the geometry of a hidden object, can be used to effectively

compensate for the limited field data (see Colton and Kress, 1983, for acoustic problems).

The problem of inverse scattering (Bui, 1994), of interest in this study, has been the subject of

extensive mathematical research; among numerous reviews on the topic, on may mention Colton and

Kress (1992), Colton et al. (2000), and Pike and Sabatier (2002) as examples spanning the past

decade. In the context of impenetrable scatterers (such as voids examined herein), various numerical

solution procedures, often based on the BIE method, have been proposed for the problem. Most

existing treatments of this type, however, are limited to the inversion of electromagnetic or acoustic

far-field waveforms in infinite media (e.g. Bonnet, 1995a). Few exceptions dealing with the inverse

scattering of elastic waves include crack identification in infinite elastic solids by Kress (1996) (2D

treatment in the frequency domain) and Nishimura (1997) (3D analysis in the time domain). Aimed

at bridging such gap between the elastic wave scattering theory and its applications, the focus of this

investigation is the development of an analytical and computational framework for the identification

of cavities via an elastodynamic BIE method, for the more complex and realistic case involving

three-dimensional elastic wave propagation in a semi-infinite solid. By means of a well-defined

incident seismic field and a set of surface motion sensors used to monitor elastic waves scattered by

the cavity, the inverse problem is reduced to the minimization of a cost function representing the

misfit between the field observations and their predictions for an assumed void location. For a

precise treatment of the featured body and surface wave fields, the predictive model used in this

study (Pak and Guzina, 1999) is based on the fundamental solution for a uniform elastic half-space.

In the pursuit of the gradient search technique employed by the inverse solution, necessary

derivatives of the cost function are evaluated via an adjoint problem approach which, besides the

matter of elegance, offers a superior computational performance relative to finite-difference

sensitivity estimates. This is accomplished by revisiting the semi-analytical treatment proposed for
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infinite media in Bonnet (1995a). To establish a rigorous foundation for the imaging problem,

included is an explicit treatment of the radiation condition for semi-infinite solids; a topic that has,

despite its central role in the application of BIE methods to forward and inverse scattering problems

involving unbounded media, eluded previous studies. A numerical example where an ellipsoidal

cavity is identified from synthetically-generated, noise-polluted field measurements is included to

illustrate the proposed method.

2 Problem statement

To establish a fundamental framework for the BIE-based identification of underground cavities by

elastic waves, the focus of this study is the inverse scattering problem for an isotropic, homogeneous

elastic half-space housing an internal void. With reference to a Cartesian frame {O; ξ1, ξ2, ξ3}, the

half-space Ω = {(ξ1, ξ2, ξ3)|ξ3 >0} is characterized by the Lamé’s constants λ and µ, mass density ρ,

and is bounded on top by the free surface S = {(ξ1, ξ2, ξ3)|ξ3 =0}. The cavity inside the half-space

occupies a simply connected finite region ΩC ⊂ Ω bounded by a smooth closed surface Γ. For further

reference, let Ω− denote the semi-infinite region surrounding the cavity, i.e. the complement to ΩC in

the half-space so that Ω− = Ω\ (ΩC ∪ Γ), and let n denote the normal to Γ directed towards the

exterior of Ω−. With reference to Fig. 1, the cavity is “illuminated” by a time-harmonic seismic

source f , with the resulting surface motion monitored over a finite set of slightly embedded control

points ξ=xm (m=1, 2, . . . M). To discuss conditions at infinity, an auxiliary surface

ΓR(ξ) = Σ(ξ, R) ∩ Ω is introduced, where Σ(ξ, R) is the sphere of radius R centered at ξ ∈ Ω. The

respective subsets of Ω, Ω− and S which are bounded by ΓR will be denoted as ΩR, Ω−
R and SR, with

an implicit assumption that R is sufficiently large so that ΩC ⊂ ΩR.

2.1 Forward problem

For a systematic treatment of the inverse problem, it is necessary first to introduce the associated

forward problem wherein the response of a semi-infinite solid Ω− due to prescribed seismic loading is

to be determined for a known cavity location and geometry. With the time factor eiωt omitted

henceforth for brevity, the forward solution, herein denoted as the total field u(ξ, ω), can be formally

defined via an elastodynamic state [u, t] which satisfies the field equations

∇·σ + f = −ρ ω2u

σ = C : ε, ξ ∈ Ω
−,

ε = 1
2(∇u + ∇T u),

(1)

subject to the boundary conditions

t ≡ σ ·n = 0, ξ ∈ Γ ∪ S. (2)
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Figure 1: Illumination of an underground cavity by elastic waves

In (1) and (2), f is the time-harmonic body force distribution representing the seismic source; t

stands for the surface traction, and C denotes the isotropic elasticity tensor, i.e.

C = λ I2 ⊗ I2 + 2µ I4, (3)

where In is the nth order identity tensor.

2.2 Inverse problem

With reference to the testing configuration outlined in Fig. 1, the inverse problem of cavity

identification can be set forth as a task of resolving the cavity shape and location by interpreting the

observed response of the excavated half-space Ω− due to prescribed (i.e. known) seismic excitation.

For this class of remote sensing problems, the inverse solution can be formulated by seeking the

minimizer Γ of the cost function

J (Γ;f) = J(u;f) + Ψ(Γ), (4)

where J represents the misfit between experimental observations (uobs) and theoretical, i.e. forward

predictions (u) for an assumed void geometry Γ, and Ψ is a non-negative set function used to include

an a priori information on the shape and location of the cavity. Upon introducing Ωobs⊂ Ω− as a

finite control volume enclosing the entirety of measurement stations, J(u;f) can be written in

general terms as

J(u;f) =

∫

Ωobs

ϕ
(

u(ξ, ω)−uobs(ξ, ω)
)

dΩξ (5)
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where ϕ is a weighted measure of distance between u and uobs.

In this investigation, (5) is specialized to the least-squares format with a discrete set of M

observation points by taking

ϕ(u−uobs) =
1

2
(u−uobs)·W ·(u−uobs),

W = W (ξ) =

M
∑

m=1

Wm
ij δ(ξ−xm) ei ⊗ ej , i, j = 1, 2, 3 (6)

where δ stands for the three-dimensional Dirac delta function; ej is the unit vector in the

xj-direction; over-bar symbol denotes the complex conjugation, and Wm
ij are suitable constants

chosen so that they form a Hermitian and positive definite matrix for m = 1, 2, . . . ,M . In (6) and

thereafter, the Einstein summation convention is assumed over the spatial coordinate indices. For

consistency of the ensuing formulation, Wm
ij are assumed to have a physical dimension of force per

length.

Assuming that the prior information about the cavity under consideration can be synthesized in

terms of a closed surface Γp bounding a fixed finite region Ωp
C ⊂ Ω, the penalty function Ψ in (4) can

be compactly formulated in terms of the Hausdorff distance H (Edgar, 1990) between sets Γ and Γp

as

Ψ(Γ) = ϑ H2(Γ,Γp), H(Γ,Γp) = max{h(Γ,Γp), h(Γp,Γ)}, (7)

where ϑ is a scalar weighting parameter reflecting the quality of prior knowledge, and

h(Γ,Γp) = max
ξ∈Γ

min
ζ∈Γp

{

(ξ−ζ)·(ξ−ζ)
}1/2

. (8)

In (8), function h(Γ,Γp) is called the directed Hausdorff distance from Γ to Γp; it locates the point

ξ ∈ Γ that is farthest from its nearest neighbor ζ in Γp, and measures ||ξ − ζ|| for these two points.

In situations where the prior information on the cavity geometry (e.g. size, depth) is associated with

varying degrees of confidence, however, a more refined measure of the misfit between Γ and Γp may

be required. To address the problem, it is useful to invoke the Lebesgue measure in R3 (i.e.
∫

dΩξ)

together with the collection of additive set functions
∫

ξi dΩξ and
∫

ξi ξj dΩξ (i, j = 1, 2, 3). With

such quantities, a resolute alternative to (7) can be introduced via the quadratic form

Ψ(Γ) =
1

2

(

q−qp
)

·G·
(

q−qp
)

, (9)

where G is a symmetric positive definite matrix of weighting coefficients, q = q(Γ), qp = q(Γp), and
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q(Γ) = (q0, q1, · · · , q9), qs(Γ) =
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(10)

synthesizes the information about the volume (s=0), centroid (1≤s≤3), and inertia tensor

(4≤s≤9) of the cavity. For the ensuing developments, the entries of q can be further reduced to

surface integrals

qs(Γ) =
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1
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∫
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∫
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∑
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j 6=s−3

(ξj − qj)
2 dΓξ, s = 4, 5, 6

∫

Γ ξs−6 ns−6

3
∏

j=1

j 6=s−6

(ξj − qj) dΓξ, s = 7, 8, 9

(11)

by virtue of the divergence theorem.

In view of the significant computational effort required to evaluate u for elastodynamic problems,

the cost function (4) can be minimized most effectively within the framework of gradient-based

descent techniques such as the quasi-Newton or conjugate gradient methods (e.g. Luenberger, 1973).

In the sequel, a systematic derivation of the necessary sensitivities of J within the framework of

boundary integral equation techniques will be described in detail.

3 Boundary integral formulation for the primary field

For the computational treatment of (1) and (2), the total displacement field u can be conveniently

decomposed as

u = uF + uS, ξ ∈ Ω−, (12)

where uS denotes the scattered field (uS = 0 in the absence of a cavity), and uF is the free field

defined as the response of a cavity-free half-space Ω due to given body force distribution f . By

virtue of (1), (2) and (12), it can be shown that the scattered field itself represents an elastodynamic

state, i.e. that [uS, tS] satisfies the field equations
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∇·σS = −ρ ω2uS

σS = C : εS, ξ ∈ Ω−,

εS = 1
2(∇uS + ∇T uS),

(13)

and boundary conditions

tS = −tF, ξ ∈ Γ,

tS = 0, ξ ∈ S, (14)

with the free field [uF, tF] assumed to be known beforehand.

To obtain an integral representation of u in terms of the boundary data, it is useful to introduce the

fundamental solution [û, t̂] for a semi-infinite solid Ω, where ûk
i (ξ,x, ω) and t̂ki (ξ,x, ω;n) are the

respective ith components of the displacement and traction vectors at ξ ∈ Ω due to a unit

time-harmonic point force acting at x ∈ Ω in the kth direction (see also Appendix A). For the

ensuing treatment, these Green’s functions can be decomposed into a singular part [[û]1, [̂t]1] and a

residual, i.e. regular component [[û]2, [̂t]2] via

ûk
i (ξ,x, ω) = [ûk

i (ξ,x, ω)]1 + [ûk
i (ξ,x, ω)]2 ≡ ûk

i (ξ,x, 0) + [ûk
i (ξ,x, ω)]2,

t̂ki (ξ,x, ω;n) = [t̂ki (ξ,x, ω;n)]1 + [t̂ki (ξ,x, ω;n)]2 ≡ t̂ki (ξ,x, 0;n) + [t̂ki (ξ,x, ω;n)]2, (15)

where û(ξ,x, 0) and t̂(ξ,x, 0;n) represent the static point-load solution for a void-free elastic

half-space Ω (Guzina and Pak, 2001).

With the foregoing definitions, it can be shown (see Pak and Guzina, 1999) that the scattering

problem (1) and (2) can be reformulated in terms of the regularized (i.e. Cauchy principal

value-free) boundary integral equation

∫

Γ
{ui(y, ω) − ui(ξ, ω)} [t̂ki (ξ,y, ω;n)]1 dΓξ

−

∫

Γ
ui(ξ, ω) [t̂ki (ξ,y, ω;n)]2 dΓξ + uF

k(y, ω) = uk(y, ω), y ∈ Γ, (16)

with the effects of seismic excitation, f , synthesized via the free-field term

uF

k(y, ω) =

∫

Ω−

fi(ξ) ûk
i (ξ,x, ω) dΓξ, (17)

given in terms of the half-space fundamental solution. It is important to observe that (16) rests on

the a priori assumption that the scattered field satisfies the generalized radiation condition

lim
R→∞

∫

ΓR

{

uS

i (ξ, ω) t̂ki (ξ,x, ω;n′) − tSi (ξ, ω;n′) ûk
i (ξ,x, ω)

}

dΓξ = 0, x ∈ Ω−
R, (18)
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where n′ is the unit normal to ΓR directed towards the exterior of Ω−
R as indicated in Fig. 1.

Although the far-field requirements of type (18) are implicit to most boundary integral analyses of

elastodynamic problems involving semi-infinite domains, they have so far eluded an in-depth

scrutiny. For a rigorous pursuit of the forward scattering problem and the associated imaging task,

an explicit proof of (18) is the focus of the following section.

3.1 Generalized radiation condition

In dealing with the radiation condition for unbounded elastic media, a useful point of departure is

the Graffi’s reciprocal theorem in elastodynamics (Wheeler and Sternberg, 1968). With reference to

an arbitrary finite domain D bounded by surface ∂D with outward normal n′, Graffi’s theorem can

be formally stated as

∫

∂D

{

ui(ξ, ω) t̃i(ξ, ω;n′) − ti(ξ, ω;n′) ũi(ξ, ω)
}

dS =

∫

D

{

f̃i(ξ, ω)ui(ξ, ω) − ũi(ξ, ω)fi(ξ, ω)
}

dV, (19)

where [u, t] and [ũ, t̃] are two arbitrary elastodynamic states on D associated with time-harmonic

body force fields f and f̃ , respectively. Upon specifying D = ΩR, f =δ(ξ − x)ej , and

f̃ =δ(ξ − y)ek where x,y ∈ ΩR and ej is the unit vector in the xj-direction, (19) can be reduced to

∫

ΓR

{

ûj
i (ξ,x, ω) t̂ki (ξ,y, ω;n′) − t̂ji (ξ,x, ω;n′) ûk

i (ξ,y, ω)
}

dΓξ =

ûj
k(y,x, ω) − ûk

j (x,y, ω), x,y ∈ ΩR, j, k ∈ {1, 2, 3} (20)

in terms of the fundamental solution [û, t̂] for a void-free elastic half-space Ω. Owing to the intrinsic

symmetry of the displacement Green’s function: ûj
k(y,x, ω)= ûk

j (x,y, ω) as shown in Appendix A,

the right-hand side of (20) vanishes so that

Zjk(x,y;R) ≡

∫

ΓR

{

ûj
i (ξ,x, ω) t̂ki (ξ,y, ω;n′) − t̂ji (ξ,x, ω) ûk

i (ξ,y, ω;n′)
}

dΓξ = 0, x,y ∈ ΩR, (21)

for any pair x,y ∈ Ω and R sufficiently large so that both x and y are contained within ΩR. It is

important to observe that taking the limit of Zjk(x,y;R) as R → ∞ constitutes an explicit proof

that the fundamental solution itself satisfies the generalized radiation condition.

To demonstrate the validity of (18) on the basis of (21), it is instructive to represent the scattered

field uS induced by the Neumann boundary conditions (14a) via a single-layer potential (e.g.

Kupradze, 1965)

uS

i (x, ω) =

∫

Γ
gj(ζ, ω) ûi

j(ζ,x, ω) dΓζ , x ∈ Ω−, (22)

where g denotes an appropriate surface density over Γ. On employing (22) and interchanging the

order of integration, one finds that
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∫

ΓR

{

uS

i (ξ, ω) t̂ki (ξ,x, ω;n′) − tSi (ξ, ω;n′,Γ) ûk
i (ξ,x, ω)

}

dΓξ =

∫

Γ
gj(ζ, ω) Zjk(ζ,x;R) dΓζ = 0, x ∈ Ω−

R, (23)

with the latter integral vanishing by virtue of (21) and the postulate that R is sufficiently large so

that ΩR contains the cavity, i.e. that

x ∈ Ω−
R

ζ ∈ Γ

}

=⇒ x, ζ ∈ ΩR. (24)

Upon taking the limit of (23) as R → ∞, the proof of (18) immediately follows.

In a similar fashion, it can be shown that any elastodynamic field [ũ, t̃] in Ω− which admits the

integral representation

ũi(x, ω) =

∫

Γ
g̃j(ζ, ω) ûi

j(ζ,x, ω) dΓζ +

∫

Ωb

f̃j(ζ, ω)ûi
j(ζ,x, ω) dΩζ , x ∈ Ω−, (25)

in terms of a single-layer potential with density g̃ and a volumetric potential with density f̃ also

satisfies the generalized radiation condition, provided that the body force distribution f̃ is confined

to a finite region Ωb ⊂ Ω−. Finally, it should be noted that the following identity

lim
R→∞

∫

ΓR

{

ti(ξ, ω;n′) ũi(ξ, ω) − ui(ξ, ω) t̃i(ξ, ω;n′)
}

dΓξ = 0, x ∈ Ω−
R, (26)

is valid for any two elastodynamic states [u, t] and [ũ, t̃] which independently satisfy the generalized

radiation condition (18).

4 Differentiation with respect to shape perturbations

To investigate the effect of cavity perturbations on the cost function J , the shape Ω− is assumed to

depend on a pseudo-time parameter τ through an Eulerian-type continuum kinematics description.

The reference, i.e. unperturbed configuration Ω− is conventionally associated with τ = 0, so that the

featured domain evolution can be stated as

ξ ∈ Ω− =⇒ ξτ = Φ(ξ, τ) ∈ Ω−(τ), τ ≥ 0, Φ(ξ, 0) = ξ, (27)

where ξτ describes the “current” place of the material element dM that occupied position ξ in the

reference configuration. It should be noted that the choice of the geometric transformation Φ (with a

strictly positive Jacobian) for a specific problem is non-unique, i.e. that a given domain evolution

considered as a whole admits infinitely many different representations of type (27). In the ensuing

exposition, all pseudo-time derivatives d(·)/dτ will be implicitly taken at τ = 0, i.e. the first-order

effect of infinitesimal perturbations of Ω− ≡ Ω−(0) will be considered.
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4.1 Scalar and vector fields

Differentiation of field variables and integrals with respect to domain perturbation is a

well-documented subject, see, e.g. Petryk and Mróz (1986) and Sokolowski and Zolesio (1992). In

what follows, several basic concepts and results which are relevant to the study are summarized. To

this end, it is instructive to introduce the initial transformation velocity

θ(ξ) =
∂Φ

∂τ

∣

∣

∣

∣

τ=0

. (28)

Considering the inherently Eulerian description f(ξ, τ) of a field quantity f in a geometrical

transformation, it is natural to define df/dτ as its material (i.e. substantial) derivative at τ = 0 so

that

df

dτ
≡

⋆
f = lim

τ→0

1

τ

{

f(ξτ, τ) − f(ξ, 0)
}

= f ′ + ∇f ·θ (29)

where f ′ = ∂f/∂τ stands for the local rate of change, i.e. partial “time” derivative with ξ kept fixed,

and ∇ implies differentiation with respect to Eulerian coordinates ξ. Similarly, the material

derivative of the gradient of f is given by

(∇f)⋆ = ∇
⋆
f −∇f ·∇θ. (30)

4.2 Volume and surface integrals

With reference to the continuity equation (e.g. Malvern, 1969)

⋆
dV = (∇·θ) dV, (31)

describing the volume evolution of a given material element dM under geometric

transformation (27), the material derivative of a generic volume integral

IV (f,D; τ) =

∫

D(τ)
f(ξ, τ) dV,

can be expressed via either of the following two statements

dIV

dτ
≡

⋆
IV =

∫

D

{
⋆
f + f ∇·θ

}

dV

=

∫

D
f ′ dV +

∫

∂D
f θn dS, (32)

of the classical Reynolds formula where θn = θ ·n.
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To formulate the counterpart of (32) for surface integrals, one must allow for kernels which may be

undefined outside of a given material surface S(τ). To this end, it is useful to introduce the concepts

of surface gradient (∇S) and surface divergence (∇S ·) via

∇Sf = ∇f − (∇f ·n) n = (f,i − ni f,n) ei ≡ (Di f) ei,

∇S ·u = ∇·u − (∇u·n)·n = Di ui, (33)

which characterize the tangential variation of the respective fields along S. With such definitions,

material derivatives of the unit normal n and the differential element dS on a moving surface S(τ)

can be written as (e.g. Petryk and Mróz, 1986)

⋆
dS = (∇S ·θ) dS = Di θi dS,

⋆
n = −n·∇Sθ = −nj Di θj ei. (34)

By virtue of (34a), the material derivative of a generic surface integral

IS(f, S; τ) =

∫

S(τ)
f(ξ, τ) dS,

can be shown to permit the representation

dIS

dτ
≡

⋆
IS =

∫

S

{⋆
f + f ∇S ·θ

}

dS, (35)

in terms of the initial transformation velocity. Upon combining eqs. (34), one may also find that

(ni dS)⋆ = (niDj − njDi) θj dS ≡ Dij θj dS, (36)

which results in the following two variants of (35) involving products of n and scalar or vector fields:

d

dτ

∫

S
f ni dS =

∫

S

{⋆
f ni + fDijθj

}

dS,

d

dτ

∫

S
ui ni dS =

∫

S

{

u′
i ni + Dij(ui θj) + θn ui,i

}

dS. (37)

As shown in Bonnet (1995a), the operator Dij in (36) and (37) is a tangential differential operator

which, by virtue of the Stokes’ theorem, satisfies the identity

∫

S
Dij f dS = −

∫

∂S
eijk (elmk f),m nl dS = 0, (38)

for any closed surface S where eijk denotes the permutation symbol. On the basis of (37b) and (38),

the equality

d

dτ

∫

S
u·n dS =

∫

S
(u′ ·n + θn∇·u) dS, (39)
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immediately follows. As a consequence, upon setting u = w ·σ where w and σ denote arbitrary

elastodynamic displacement and stress fields, respectively, one has

d

dτ

∫

S
w ·t dS =

∫

S

{

w′ ·t + w ·(σ′ ·n) + θn ∇·(w ·σ)
}

dS,

=

∫

S

{

w′ ·t + w ·(σ′ ·n) + θn (σ :∇w + (∇·σ)·w)
}

dS, (40)

where t = σ ·n stands for the surface traction.

5 Shape differentiation using an adjoint solution

As examined earlier, a convenient approach to the nonlinear minimization of (4) with respect to Γ

involves gradient search (e.g. modified Newton) methods which inherently require repeated

evaluation of
⋆
J due to cavity shape perturbations. In view of the well-known computational

drawbacks of the finite-difference estimators, a common practice in the sensitivity analysis of

functionals such as J is to employ an adjoint problem approach (e.g. Choi and Kwak, 1988; Bonnet,

1995a) which, besides the matter of elegance, combines the computational accuracy and efficiency

unmatched by numerical differentiation techniques. In the present context involving unbounded

media, however, a direct application of this method may lead to ambiguities associated with the

conditions at infinity. To resolve the puzzle, a rigorous treatment of the adjoint problem-based

sensitivity formula for unbounded elastic solids with an emphasis on the generalized radiation

condition (18) is the focus of this section.

5.1 Augmented functional

For an effective minimization of J (Γ;f), it is useful to employ the method of Lagrange multipliers

and treat the field equations (1) and boundary conditions (2) satisfied by the primary field u as

constraints. Accordingly, the constraints on u are introduced in the form of a weak statement over

the domain Ω−
R:

AR(Γ,u, ũ;f) =

∫

Ω−
R

(∇·σ + f + ρω2u)·ũ dΩ −

∫

Γ+SR

t·ũ dΓ = 0, (41)

where Ω−
R is centered at the origin and the Lagrange multiplier ũ belongs to a space of test functions

V = {ũ ∈ {H1
loc(Ω

−)}3}. On integrating (41) by parts, it can be shown that

AR(Γ,u, ũ;f) =

∫

Ω−
R

(∇·(C :∇ũ) + ρω2ũ)·u dΩ +

∫

Ω−
R

f ·ũ dΩ

+

∫

ΓR

(ũ·t − u·t̃) dΓ −

∫

Γ+SR

t̃·u dΓ, (42)
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where ΓR and SR are the surfaces bounding Ω−
R as elucidated before, and t̃ = (C :∇ũ)·n. It is

important to observe that the limit of (42) as R tends to infinity represents a weak formulation of (1)

and (2) with ũ used as a weighting field. As a result, under the assumption that

lim
R→∞

∫

ΓR

(ũ·t − u·t̃) dΓ = 0, (43)

which will be demonstrated later, one finds that

A(Γ,u, ũ;f) ≡ lim
R→∞

AR(Γ,u, ũ;f)

=

∫

Ω−

(∇·(C :∇ũ) + ρω2ũ)·u dΩ +

∫

Ω−

f ·ũ dΩ −

∫

Γ+S
t̃·u dΓ = 0. (44)

To obtain the material derivative
⋆
J which accounts for (1) and (2), an augmented functional L is

introduced on the basis of (44) where

L(Γ,u, ũ;f) = J(u;f) + Ψ(Γ) + Re [A(Γ,u, ũ;f)] . (45)

In what follows, it will be assumed without loss of generality that (i) the transformation velocity (28)

vanishes near the observation points xm (m=1, 2, . . . M) which are by definition away from the

cavity; (ii) the free surface of the half-space remains flat in a geometric transformation so that

θ(ξ) = 0, ξ ∈ Ωobs,

θn(ξ) ≡ θ(ξ)·n = 0, ξ ∈ S, (46)

where n is the outward normal to Ω−, and (iii) the prior information Ψ is specified via (9). By virtue

of (4), (6), (10), (32) and the foregoing assumptions, the material derivative of L can be expressed as

⋆
L =

⋆
J +

⋆
Ψ + Re [

⋆
A] = Re

[
∫

Ωobs

(u −uobs)·W ·u′ dΩ + (q − qp)·G·
⋆
q +

⋆
A

]

, (47)

where u′ = ∂u/∂τ , and

⋆
q (Γ) = (

⋆
q0,

⋆
q1, · · · ,

⋆
q9),

⋆
qs (Γ) =























































∫

Γ θn dΓξ, s = 0

1
q0

∫

Γ(ξs − qs) θn dΓξ, s = 1, 2, 3

∫

Γ

3
∑

j=1

j 6=s−3

(ξj − qj)
2θn dΓξ, s = 4, 5, 6

∫

Γ

3
∏

j=1

j 6=s−6

(ξj − qj) θn dΓξ, s = 7, 8, 9

(48)

with qs (s = 0, 1, · · · , 9) given by (11) in terms of surface integrals over Γ.
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For the remote sensing problem of interest, it is natural to postulate that the support of f which is

used to ”illuminate” the cavity lies entirely outside of ΩC, i.e. that f(ξ) ≡ 0 for ξ ∈ Γ. With such

hypothesis and the fundamental property of the test function space

A(Γ,u, ũ;f) = 0 =⇒ A(Γ,u, ũ′;f) = 0, ∀ ũ ∈ V, (49)

it can be shown by means of (32) and (40) that (47) reduces to

⋆
L (Γ,u, ũ;f) = Re

[
∫

Ω−

(

∇·σ̃ + (u −uobs)·W + ρω2ũ
)

·u′ dΩ −

∫

Γ+S
t̃·u′ dΓ

]

+ Re

[
∫

Γ

(

ρω2ũ·u − σ̃ :∇u
)

θn dΓ

]

+ (q−qp)·G·
⋆
q, (50)

where σ̃ = C :∇ũ, and
⋆
q is homogeneous in θn as specified by (48).

5.2 Adjoint state

Following the conventional approach in the theory of optimization, the Lagrange multiplier ũ is

chosen so that
⋆
L vanishes when the normal transformation velocity θn = 0, i.e. that the fist term

in (50) equals zero. Such a requirement directly defines the (elastodynamic) adjoint state ũ as a

solution to the variational problem

∫

Ω−

(

∇·σ̃ + (u −uobs)·W + ρω2ũ
)

·u′ dΩ −

∫

Γ+S
t̃·u′ dΓ = 0, (51)

whose strong statement can be written explicitly in terms of the field equations

∇·σ̃ + W ·(u −uobs) = −ρ ω2ũ,

σ̃ = C : ε̃, ξ ∈ Ω
−,

ε̃ = 1
2(∇ũ + ∇T ũ),

(52)

and boundary conditions

t̃ = 0, ξ ∈ Γ ∪ S. (53)

Given the primary field u for an assumed cavity geometry, the solution to (52) and (53) can be

effectively evaluated in terms of the regularized boundary integral equation (16) with the free field

uF

k taken as the response of a cavity-free half-space due to internal sources f̃ = W ·(u −uobs) which

are proportional to the misfit between experimental observations and forward predictions at

measurement locations.

On the basis of (1), (25) and (52), it can further be shown that both the primary field and the

adjoint state satisfy the generalized radiation condition owing to the localized (i.e. finite) support of

the respective body force distributions, f and f̃ . With such observation and lemma (26), the proof

of the relationship (43) (whose validity was assumed earlier) immediately follows.

14



5.3 Gradient formula

In view of (50), (51) and the identity
⋆
A= 0, the material (i.e. shape) derivative of the cost

function (4) reduces to

⋆
J (Γ;f) =

⋆
L (Γ,u, ũ;f) = Re

[
∫

Γ

(

ρω2ũ·u − σ̃ :∇u
)

θn dΓ

]

+ (q−qp)·G·
⋆
q, (54)

where u and ũ are the forward and adjoint solutions, respectively. This formula is similar to that

obtained by Bonnet (1995a) for a homogeneous full-space problem without an account for the

radiation condition.

Despite its elegance, however, expression (54) may not be tractable within the framework of

boundary integral techniques owing to the difficulties associated with the evaluation of total

displacement gradients at the boundary (e.g. Sladek and Sladek, 1986). To circumvent such

impediment, it is instructive to invoke the concept of surface gradients (33) and observe that

σ̃ :∇u = σ̃ : (∇Su + (∇u·n) ⊗ n)

= σ̃ :∇Su + t̃·u,n (55)

where u,n = ∇u·n. By means of (55) and taking advantage of the Neumann boundary

condition (53), material derivative (54) can be rewritten as

⋆
J (Γ;f) = Re

[
∫

Γ

(

ρω2ũ·u − σ̃ :∇Su
)

θn dΓ

]

+ (q−qp)·G·
⋆
q . (56)

Finally, on expressing σ̃ in terms of t̃ and ũ,n for an isotropic elastic solid (see Bonnet, 1995b), (56)

can be shown to permit the representation

⋆
J (Γ;f) = Re

[
∫

Γ

{

ρω2ũ·u −
2λµ

λ+2µ
(∇S ·ũ) (∇S ·u) − µ (∇Sũ + ∇T

S ũ) :∇Su

+ µ (n·∇Sũ)·(n·∇Su)
}

θn dΓ

]

+ (q−qp)·G·
⋆
q, (57)

which involves strictly the tangential derivatives that are readily computable from the nodal values

of u and ũ on Γ.

5.4 Additional considerations

To demonstrate the generality of (45) in view of the fact that the imaginary part of A is neglected in

constructing the augmented functional, it is important to observe that taking L in the alternative

form

L(Γ,u, ũ;f) = J(u;f) + Ψ(Γ) + Im [A(Γ,u, ũ;f)] , (58)
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yields the expression for
⋆
J which is identical to the formula derived earlier on the basis of (45). As a

result the shape derivative (57), with the featured adjoint state given by (52) and (53), intrinsically

enforces both real and imaginary components of the weak statement (44) as required by the inverse

solution.

In situations when a set of K sequential seismic fields, generated by the respective time-harmonic

body force distributions fk (k=1, 2, · · · ,K) is used to illuminate the cavity, the foregoing

developments can be generalized by writing

J (Γ;f1, · · ·,fK) =
1

2

K
∑

k=1

∫

Ωobs

(uk−uk,obs)·W k ·(uk−uk,obs) dΩξ +
1

2

(

q−qp
)

·G·
(

q−qp
)

, (59)

and

⋆
J (Γ;f1, · · ·,fK) =

K
∑

k=1

Re

[
∫

Γ

{

ρ ω2
k ũk ·uk −

2λµ

λ+2µ
(∇S ·ũ

k) (∇S ·u
k) − µ (∇Sũk + ∇T

S ũk) :∇Suk

+ µ (n·∇Sũk)·(n·∇Suk)
}

θn dΓ

]

+ (q−qp)·G·
⋆
q, (60)

for the cost function and its material derivative, respectively. In (60), [ũk, t̃
k
≡ σ̃k·n] denotes the

adjoint elastodynamic state associated with the kth seismic source where

∇·σ̃k + W k ·(uk −uk,obs) = −ρ ω2
kũ

k,

σ̃k = C : ε̃k, ξ ∈ Ω−,

ε̃k = 1
2(∇ũk + ∇T ũk),

(61)

and

t̃
k

= 0, ξ ∈ Γ ∪ S. (62)

6 Computational treatment and results

In practice, the location and shape of Γ is taken to depend on a finite set of design parameters,

p = (p1, p2, . . . , pD). With such assumption, the sensitivity formulas ∂J /∂pd required for the

minimization of J can be obtained by setting τ =pd (d=1, 2, . . . , D) in (60). As long as the

topological characteristics of Γ are independent of τ (e.g. Γ(τ) remains simply connected), the

evolving boundary element mesh representing Γ(τ) can be created by interpolating a suitable set of

parameter-dependent nodes xq(p) with fixed, i.e. pre-defined mesh connectivity. For a generic point

ξ ∈ Γ and a given Q-noded boundary element E⊂Γ, the foregoing interpolation can be formally

written as

ξ(p) =

Q
∑

q=1

Nq(η) xq(p), ξ ∈ E, η ∈ E0, (63)

16



where Nq(η) are the shape functions for the Q-noded element with parent domain E0. With (63),

the boundary element solution is implemented on the basis of (16) in a standard fashion. For the

gradient-based back-analysis, each partial derivative ∂J /∂pd is computed by applying (60) with the

transformation velocity θ = θd given by

θd =

Q
∑

q=1

Nq(η)
∂xq

∂pd
(p), ξ ∈ E, η ∈ E0. (64)

In this investigation, surface of the cavity is discretized via eight-node quadratic boundary elements

(see, e.g., Brebbia et al., 1984).

6.1 Gradient evaluation

To illustrate the performance of the adjoint problem approach, a numerical experiment was

performed with reference to the spherical cavity pictured in Fig. 2 whose design parameters,

p = (p1, p2, p3), represent the position of its center. In this case, (64) reduces to

θd = ed, d = 1, 2, 3. (65)

The true and trial cavities are centered respectively at ptrue=(0, 0, 2a) and p0 =(2a, 3a, 6a), where a

denotes the radius of the sphere. The testing configuration shown in the Figure has nine points; in

succession, each grid node is taken as a location of the vertical point source, with the remaining

eight points used as receivers, so that a total of K× M× 3 = 9× 8× 3 = 216 synthetic observation

data are generated for the true cavity. The constitutive parameters of the half-space and the testing

frequency are chosen such that

λ

µ
=

3

2
, ω̄ ≡

ωa
√

µ/ρ
= 1. (66)

To expose the performance of the adjoint problem approach, objective function for the trial cavity is

computed via (4) to (6) with Wm
ij = 106µa δij and no prior information, i.e. Ψ = 0.

In Table 1, rows 3 through 6 show a comparison between the adjoint approach and central difference

estimates in terms of the sensitivities ∂J /∂pd (d=1, 2, 3) for an assumed location of the trial cavity.

The step size for the finite difference calculation is taken as ∆pd =0.002a. As can be seen from the

Table, there is a reasonable agreement between the two methods. It should be noted, however, that

the computational time for the adjoint approach is approximately 1/6 of that for the central

difference method in the problem examined. For a general setting involving D design parameters,

the foregoing efficiency ratio can be estimated as 1/(2D) since the central difference method requires

2D computations of the BIE (16), each corresponding to a different (perturbed) configuration of Γ.

In the foregoing example, the initial transformation velocity is restricted to a constant value, i.e.

θ=ed (d=1, 2, 3) as driven by the assumed parameterization. To investigate the performance of (60)
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Sensor layout:

Sources/Receivers
ω   = (µ/ρ)0.5a

True

7a7a

Trial

7a
7a

λ, µ, ρ

ξ

i   tωe

1ξ

1

a

a

ξ3

2ξ
Figure 2: Spherical cavity and testing grid in a half-space with λ/µ = 3/2

Table 1: Gradient comparison: finite difference vs. adjoint approach

Mesh 96 elements, J = 61.62 µa3 294 elements, J = 61.99 µa3

Method Central diff. Adjoint Central diff. Adjoint

1/(µa2) ∂J/∂p1 0.8858 0.8761 0.8764 0.8779

1/(µa2) ∂J/∂p2 1.4184 1.4322 1.4431 1.4350

1/(µa2) ∂J/∂p3 -1.6642 -1.6549 -1.6715 -1.6703

1/(µa2)
⋆
J 2.2762 2.2363 2.2720 2.2543

under more general conditions, the finite difference and adjoint approach estimates of
⋆
J are further

compared in the last row of Table 1 for the case

θ(ξ) = sin
ξ1

a
sin

ξ2

a
loge

ξ3

a
e1 +

ξ1 ξ2

a2
sin

πξ3

a
e2 +

ξ1 ξ2
2

a3
e−ξ3/a e3, (67)

with the finite difference approximation calculated as

⋆
J ≈

J (Γ+ τθ;f1, · · ·,f9) − J (Γ− τθ;f1, · · ·,f9)

2τ
, τ = 0.002a. (68)

From the Table, an overall agreement between the two methods should again be apparent.
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6.2 Cavity imaging

The next example deals with the inverse scattering problem for an ellipsoidal void illustrated in

Fig. 3, whose semi-axes are aligned with the global coordinate system. For imaging purposes, the

cavity is parameterized in terms of its centroid coordinates ci and semi-axes lengths ri (i=1, 2, 3) so

that

p = (c1, c2, c3, r1, r2, r3). (69)

The true void geometry, with volume V true =4.072a3, is given by

ptrue=(−4a,−2a, 4a, 1.8a, 0.9a, 0.6a); its trial counterpart is taken as p0 =(−2a, 0, 5a, a, a, a). The

cavity is illuminated in succession via nine point sources according to the testing grid depicted in

Fig. 2. For each incident seismic field, Cartesian components of the surface motion are monitored at

64 control points uniformly spaced over the square observation area (14a × 14a) bounded by the

source grid. Similar to the previous example, the constitutive parameters and testing frequency are

chosen after (66). From the problem configuration, one may observe that the shear wave length of

the illuminating seismic field is approximately twice the largest diameter of the true cavity.

1ξ2 ξ3

ξ

Figure 3: Surface of an ellipsoidal cavity discretized via 96 eight-noded boundary elements

With reference to (4), (5), (6) and (9), the cost function J is computed with Wm
ij = 106µa δij and

the prior information on the cavity geometry given by

qp = ( V true, •, •, •, •, •, •, 0, 0, 0 ),

G = 2 × 10−6µ diag
[

a−3, 0, 0, 0, 0, 0, 0, a−7, a−7, a−7
]

, (70)

which indicate an opening of volume V =V true whose principal axes of inertia are aligned with the

global coordinate system. In (70), indicated by the bullet symbol are the entries of q (with zero
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weighting coefficient) on which no prior information is available, namely the cavity’s centroid

coordinates and its principal moments of inertia. One may also observe that the last three entries of

qp, while formally constituting the prior information, have been already assimilated into the problem

via parameterization (69). As a result, the only limitation directly enforced through (70) is that on

the cavity volume, with the weighting coefficient (2×10−6µ) chosen so that the prior knowledge

component in (4) is an order of magnitude larger than its misfit counterpart, J , at p=p0.

To simulate the presence of modeling and measurement uncertainties, synthetic observations of the

ground motion (uobs) are contaminated with the aid of a perturbation factor (1+̺) applied to their

scattered component, where ̺ is a random variable uniformly distributed over the interval

[−0.01, 0.01]. The Matlab minimization procedure, employed in this study, revolves around an

unconstrained quasi-Newton descent method with a quadratic line search algorithm, where the

Hessian operator is updated via the BFGS formula (see, e.g. Nocedal and Wright, 1999). With

reference to the results obtained in Section 6.1, the computational time is reduced by a factor of 12

by estimating the sensitivity functions ∂J /∂pd (d=1, 2, . . . , 6) via an adjoint problem approach.
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Figure 4: Evolution of design parameters in the minimization process

Fig. 4 illustrates the iterative process of mapping the featured cavity, ptrue, starting from p=p0. As

can be seen from the Figure, the optimization procedure converges to the global minimum after

approximately thirty major iterations. For clarity, Fig. 5 depicts the imaging procedure

geometrically in plane view.

It should be noted that the success of the foregoing method is strongly dependent on the choice of a
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Figure 5: Projection of true and trial cavities on the horizontal plane

starting point, a pitfall that is common to all gradient-based algorithms. Such a deficiency could be

alleviated by restarting the search procedure from a variety of initial points or, alternatively, by

selecting p0 using the concept of topological derivative T (x) (Sokolowski and Zochowski, 1999;

Garreau et al., 2001), which furnishes an information about the variation of the cost function J ,

when a spherical cavity of infinitesimal radius is introduced at x ∈ Ω. A more robust, yet reasonably

efficient minimization algorithm could be devised by employing a random global search (e.g. a

genetic algorithm, Gen and Cheng, 2000), followed by the descent procedure described herein.

7 Conclusions

In this communication, the problem of mapping three-dimensional cavities in a semi-infinite solid

from surface seismic measurements is investigated via a regularized boundary integral equation

(BIE) method. With the solid modeled as a uniform elastic half-space, the inverse problem is

reduced to the gradient-based minimization of a misfit between the observed surface motion and its

elastodynamic prediction for an assumed void location. In the formulation, necessary sensitivities of

the predictive BIE model are evaluated via an adjoint problem approach and an Eulerian-type

continuum kinematics description. A rigorous treatment of the radiation condition for an elastic

half-space, which is essential to both forward and inverse scattering problems involving semi-infinite

solids, is elucidated. The proposed format of the cost function, which includes weighted measures of

(i) observation-theory misfit and (ii) prior information, further lends itself to stochastic

generalizations such as the maximum likelihood inverse theory (Tarantola, 1987). Numerical results
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show that the adjoint problem approach produces sensitivity estimates that are consistent with their

finite difference counterparts, while reducing the computational time by a factor of 2D, where D is

the number of design parameters used to describe the cavity geometry. Beyond serving as an

effective tool for the three-dimensional imaging of voids concealed by a uniform semi-infinite solid,

the analysis furnishes the basis for extensions of the methodology to problems involving solid

inclusions in layered media, with potential use in meso- and micro-scale material characterization,

defense applications, and the diagnosis of medical ailments. It is also shown that the elastic waves

are capable of resolving inhomogeneities smaller than the predominant wave length of an

illuminating wave field, a situation that is considered to be beyond the resolution limits of

stress-wave (e.g. ultrasonic) material testing.
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Appendix: Symmetry of fundamental solution

By means of the method of displacement potentials and the Hankel integral transform (see Pak,

1987), it can be shown that the time-harmonic displacement fundamental solution ûk
i for a

homogeneous elastic half-space Ω permits the integral representation

ûk
1(x,y, ω) =

1

4πµ

{

δk1

∫ ∞

0
(γ2+γ1)ξJ0(rξ) dξ + (δk1 cos 2θ + δk2 sin 2θ) ×

∫ ∞

0
(γ2−γ1)ξJ2(rξ) dξ − 2δk3 cos θ

∫ ∞

0
γ3 ξJ1(rξ) dξ

)

}

,

ûk
2(x,y, ω) =

1

4πµ

{

δk2

∫ ∞

0
(γ2+γ1)ξJ0(rξ) dξ + (δk1 sin 2θ − δk2 cos 2θ) ×

∫ ∞

0
(γ2−γ1)ξJ2(rξ) dξ − 2δk3 sin θ

∫ ∞

0
γ3 ξJ1(rξ) dξ

)

}

, (A.1)

ûk
3(x,y, ω) =

1

4πµ

{

δk3

∫ ∞

0
Ω2 ξJ0(rξ) dξ + (δk1 cos θ + δk2 sin θ)

∫ ∞

0
Ω1 ξJ1(rξ) dξ

}

,

where ω is the circular frequency of vibration, k = 1, 2, 3 denotes the force direction, and x and y are

the receiver and source locations, respectively. In (A.1), δ denotes the Kronecker delta; Jn is the

Bessel function of order n, and

r =
√

(x1 − y1)2 + (x2 − y2)2, cos θ =
x1 − y1

r
, (A.2)

with the kernel functions are given by

γ1(ξ;x,y, ω) =
ξ2

2αk2
s

e−α|d1| −
β

2k2
s

e−β|d1| −
1

2k2
s

R+(ξ)

R−(ξ)
(
ξ2

α
e−αd2 + βe−βd2) +

2ξ2β(ξ2 + β2)

k2
sR

−(ξ)
(e−(βx3+αy3) + e−(βy3+αx3)),

γ2(ξ;x,y, ω) =
1

2β
(e−β|d1| + e−βd2),

γ3(ξ;x,y, ω) = sgn(d1)
ξ

2k2
s

(e−α|d1| − e−β|d1|) +
ξ

2k2
s

R+(ξ)

R−(ξ)
(e−αd2 + e−βd2) −

2ξ(ξ2 + β2)

k2
sR

−(ξ)
(αβe−(βx3+αy3) + ξ2e−(βy3+αx3)), (A.3)

Ω1(ξ;x,y, ω) = −sgn(d1)
ξ

2k2
s

(e−α|d1| − e−β|d1|) +
ξ

2k2
s

R+(ξ)

R−(ξ)
(e−αd2 + e−βd2) −

2ξ(ξ2 + β2)

k2
sR

−(ξ)
(ξ2e−(βx3+αy3) + αβe−(βy3+αx3)),

Ω2(ξ;x,y, ω) = −
α

2k2
s

e−α|d1| +
ξ2

2βk2
s

e−β|d1| −
1

2k2
s

R+(ξ)

R−(ξ)
(αe−αd2 +

ξ2

β
e−βd2) +

2ξ2α(ξ2 + β2)

k2
sR

−(ξ)
(e−(βx3+αy3) + e−(βy3+αx3)),
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where d1/2 = x3 ∓ y3 and

R± = (ξ2 + β2)2 ± 4ξ2αβ, α =
√

ξ2 − k2
p, β =

√

ξ2 − k2
s ,

kp = ω

√

ρ

λ+2µ
, ks = ω

√

ρ

µ
. (A.4)

One may observe that the kernels (A.3) are characterized by intrinsic symmetries

γ1(ξ;x,y, ω) = γ1(ξ;y,x, ω), γ2(ξ;x,y, ω) = γ2(ξ;y,x, ω),

γ3(ξ;x,y, ω) = Ω1(ξ;y,x, ω), Ω2(ξ;x,y, ω) = Ω2(ξ;y,x, ω), (A.5)

with respect to the source-receiver arrangement. With the aid of (A.2) and (A.5), it can be directly

verified that the displacement Green’s functions (A.1) exhibit spatial reciprocity wherein

ûk
j (x,y, ω) = ûj

k(y,x, ω), x,y ∈ Ω, j, k ∈ {1, 2, 3}. (A.6)
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