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Cet article présente une procédure, basée sur les équations intégrales variationnelles symétriques régularisées en élasticité tridimensionnelle, permettant de construire la matrice de rigidité d'un super-élément. Celle-ci s'exprime, pour un domaine élastique et sans force de volume, en termes des déplacements nodaux à la frontière. Le super-élément ainsi défini a été implanté dans l'environnement CAST3M. L'extension de cette technique à un domaine élastique contenant une fissure est présentée. Trois exemples numériques tridimensionnels sont présentés : cavité sphérique préssurisée en milieu infini élastoplastique, assemblage, cylindre avec fissure.

Introduction

De nos jours la méthode des éléments finis possède un champ d'application très étendu, comprenant notamment les problèmes à fortes non linéarités, inhomogénités, etc. Néanmoins, le fait de devoir discrétiser tout le domaine étudié peut à l'occasion rendre complexe la définition de la géométrie étudiée. De son côté, la méthode des éléments de frontière repose sur la discrétisation d'équations intégrales de frontière, dont la formulation s'appuie sur le théorème de réciprocité et la connaissance d'une solution fondamentale satisfaisant les équations de l'élasticité linéaire à l'intérieur du domaine. Elle permet de poser et résoudre des problèmes linéaires sur la frontière du domaine considéré, ce qui offre un gain d'une dimension d'espace, et trouve son efficacité maximale quand le domaine est non borné ou présente un rapport volume/surface important.

Une méthode couplée éléments finis -équations intégrales offre à l'utilisateur la possibilité de tirer parti des avantages de chacune des ces deux techniques [JOH 80, SIR 93, HSI 90, BIE 95]. Cet article décrit une procédure de couplage symétrique entre les méthodes d'éléments finis et d'éléments de frontière, basée sur la construction de la matrice de rigidité d'un domaine tridimensionnel, éventuellement non borné, en équilibre élastique en l'absence de forces de volume. Le point saillant consiste à tirer parti des équations intégrales symétriques de Galerkin, approche variationnelleintégrale décrite dans [BON 95, BON 99], en vue de construire cette matrice de rigidité en termes de déplacements nodaux sur la frontière du sous-domaine. Ce sousdomaine ainsi discrétisé est traité comme un super-élément fini. Le calcul de sa matrice de rigidité selon la méthode décrite ci-après a été implanté dans le code CAST3M. Nous présentons une étude de validation menée sur une cavité sphérique préssurisée dans un milieu infini élastoplastique ; la région potentiellement plastique est discrétisée par éléments finis, le domaine complémentaire infini étant pris en compte à travers un tel super-élément. Un exemple de structure d'assemblage est ensuite présenté. Enfin, notre approche permet également la construction de super-éléments contenant des fissures ; un dernier exemple numérique est présenté pour illustrer ce point.

Formulations intégrales de Galerkin

Considérons un domaine élastique tridimensionnel Ω dont la frontière S est telle que S = ∪ α S α (α = 1, ..), où chaque S α est une surface fermée. Sous l'hypothèse de comportement élastique linéaire, l'énergie de déformation du domaine Ω s'exprime comme une énergie de frontière (formule de Clapeyron) [HSI 90] :

W = 1 2 Ω σ(x) : ε(x) dΩ = 1 2 S t(x).u(x) dS (1) 
Les déplacements u et les tensions t étant compatibles, l'énergie de frontière est donc fonction soit de u soit de t. Dans le souci de construire l'opérateur de rigidité, le déplacement est considéré comme la variable primale, et W ≡ W (u) dans l'équation (1). La relation mathématique entre t et u sur S prend au choix deux formes explicites : l'équation intégrale en déplacement (identité de Somigliana) ou l'équation intégrale en tension, moyennant le recours à une dérivation sous le signe intégral de l'identité de Somigliana. Ici, chacune de ces deux équations intégrales est prise au sens variationnel, ou de Galerkin (résidus pondérés) [BON 99, BUR 99]. Dans cet ordre d'idées, les tensions t sont dans un premier temps supposées résulter de déplacements u imposés le long de toute la frontière S, ce qui revient alors à considérer la formulation intégrale variationnelle du problème aux limites de Dirichlet :

Trouver t ∈ ϑ T B tt (t, t) = B tu (u, t) + D tu (u, t) (2) 
B tt (t, t) = S S t k (x) tk (y) U k i (x, y) dS y dS x (3) B tu (u, t) = α S α S α tk (y)[u i (x) -u i (y)] T k i (y, x) dS x dS y + α =α S α S α tk (y)u i (x) T k i (y, x) dS x dS y (4) D tu (u, t) = α κ α S α tk (y) u k (y)dS y (5) 
Dans un second temps, nous considérons que les déplacements u sont résultants des tensions t imposées sur toute le frontière S, à travers la formulation variationnelle intégrale du problème aux limites de Neumann :

Trouver u ∈ ϑ u B uu (u, ũ) = B ut (t, ũ) + D ut (t, ũ) (6) 
B uu (u, ũ) = S S
(Ru) iq (x) B ikqs (yx) (Rũ) ks (y)dS y dS x (7)

B ut (t, ũ) = α S α S α t k (x)[ũ i (y) -ũi (x)] T k i (x, y) dS y dS x + α =α S α S α t k (x)ũ i (y) T k i (x, y) dS y dS x (8) D ut (t, ũ) = α (κ α -1) S α t k (x)ũ k (x) dS x (9) 
ϑ u et ϑ T représentent les espaces des fonctions admissibles en déplacements et en tractions sur la frontière. ũ et t désignent respectivement des fonctions test en déplacement et en tensions. U k i (x, y) et T k i (y, x) sont les composantes, dans la direction i de la solution fondamentale de Kelvin (respectivement en déplacements et en tensions). La normale n est extérieure au domaine Ω. Notons que dans les équations (5) et (9), κ α = 0, si la normale n est extérieure à la surface S α (cas où S α est la frontière extérieure du domaine borné). κ α = 1, si la normale n est intérieure à la surface S α (cas où S α est la frontière d'une cavité ou d'un domaine non borné). Les formulations intégrales symétriques de Galerkin représentées par les équations (2-5) et (6-9) sont écrites sous leurs formes régularisées et font intervenir des intégrales doubles de surface dont l'extérieure est régulière et l'intérieure faiblement singulière (ordre de singularité en 1/ |y -x|). Le processus de régularisation mis en jeu [BON 95, BON 99] se base sur l'utilisation combinée du théorème de Stokes et de la régularisation indirecte. L'opérateur surfacique (Ru) iq = e jf q n j u i,f a été introduit initialement dans [NED 85] et B ikqs désigne le tenseur de quatrième ordre donné par :

B ikqs = [(δ ik + r ,i r ,k )δ qs -2νδ is δ kq -(1 -ν)δ iq δ ks ] µ 4π(1 -ν)r (10) 
On note alors que l'énergie de surface (1) est donnée par :

2W (u) = D tu (u, t) -D ut (t, u) (11) 
où t est relié à u à travers (2)-(5) ; cette identité est la clé de la construction de l'opérateur de rigidité en termes des degrés de liberté sur S.

Construction de la matrice de rigidité

La discrétisation des équations (2-5) et (6-9) repose sur la partition de la frontière en N e éléments de frontière disjoints et sur la discrétisation des champs élastiques sur la frontière ainsi que des champs test qui leurs sont associés. Les équations (2) et (6) prises sous forme discrétisée et avec ũ = u, t = t donnent :

{t} T [B tt ]{t} = {u} T ([B tu ] + [D tu ]){t} (12) {u} T [B uu ]{u} = {t} T ([B ut ] + [D ut ]){u} (13) 
En utilisant la propriété de symétrie [B tu ] T = [B ut ] et compte tenu de l'identité (11), on obtient l'expression suivante de l'énergie de déformation contenue dans le domaine Ω :

W = 1 2 {u} T ([B ut ] + [D ut ])[B tt ] -1 ([B tu ] + [D tu ]) T -[B uu ] {u} (14) 
et la matrice de rigidité K SE du domaine est symétrique et est donc donnée par :

[K SE ] = ([B ut ] + [D ut ])[B tt ] -1 ([B tu ] + [D tu ]) T -[B uu ] (15) 
Elle s'applique indifféremment à des domaines bornés ou non bornés.

Extension aux super-éléments fissurés.

La procédure décrite plus haut a été étendue au cas où le super-élément contient une fissure [MOU 00] (actuellement, seul le cas d'une fissure non débouchante a été traité, mais l'extension aux fissures débouchantes est possible). On construit ainsi la matrice de rigidité du super-élément fissuré en termes des degrés de liberté de déplacement (sur la frontière externe) et de saut de déplacement (sur la surface définissant la fissure). Désignant par Γ la surface définissant la fissure, supposée libre de contraintes, et par ϕ le saut de déplacement à travers Γ, l'énergie de déformation pour le domaine fissuré Ω de frontière S ∪Γ est encore donnée par (1). Les formulations variationnelles intégrales (2) et (6) ont d'autre part la forme :

Trouver t ∈ ϑ t , ϕ ∈ ϑ φ B tt (t, t) + B tφ (ϕ, t) = B tu (u, t) + D tu (u, t) B φt (t, φ) + B φφ (ϕ, φ) = B φu (u, φ) Trouver u ∈ ϑ u , ϕ ∈ ϑ φ B uu (u, ũ) + B uφ (ϕ, ũ) = B ut (t, ũ) + D ut (t, ũ) -B φu (u, φ) + B φφ (ϕ, φ) = B φt (t, φ)
(on notera que la deuxième équation de chaque groupe est identique) où les nouveaux opérateurs bilinéaires sont donnés par :

B φφ (u, φ) = Γ Γ (Rφ) iq (x) B ikqs (y -x) (R φ) ks (y)dS y dS x B φu (u, φ) = S Γ (Ru) iq (x) B ikqs (y -x) (R φ) ks (y)dS y dS x = B uφ ( φ, u) B φt (t, φ) = S Γ t k (x) φi (y) T k i (x, y) dS y dS x = B tφ ( φ, t)
En répétant la démarche précédente, l'énergie de déformation contenue dans Ω s'exprime comme :

2W = u ϕ T K uu K uφ K φu K φφ u ϕ (16) 
avec

[K uu ] = ([B ut ] + [D ut ])[B -1 tt ]([B tu ] + [D tu ]) T -[B uu ] [K uφ ] = ([B ut ] + [D ut ])[B -1 tt ][B tφ ] T + [B uφ ] = [K φu ] T [K φφ ] = [B φt ][B -1 tt ][B tφ ] T -[B φφ ]
Bien entendu, le cas de fissures multiples se traite de la même manière (la surface Γ devenant non connexe).

Implantation numérique

Les doubles intégrations de surface dans (2)-( 5 

Implantation dans le code CAST3M

La mise en oeuvre de ces travaux s'est effectuée dans l'environnement du code aux éléments finis CAST3M, développé par le commissariat à l'Energie Atomique (CEA). Plusieurs avantages ont dicté le choix de ce code : l'existence d'une riche bibliothèque, aussi bien d'éléments que de lois de comportement ou de pré et postprocesseurs, sa large diffusion dans la communauté universitaire, et surtout son caractère ouvert, l'ensemble des fichiers sources étant consultable et modifiable par les développeurs. L'utilisateur communique avec le programme en langage GIBIANE, qui permet de créer ou de modifier des objets tels qu'un maillage, une matrice de rigidité, un champ par points, etc. Ces manipulations sont effectuées par des opérateurs agissant directement sur des objets fournis en argument. L'implantation du couplage a nécessité l'écriture de nouveaux opérateurs, programmés en langage ESOPE. Ce dernier, basé sur une extension orientée objet de FORTRAN 77, a servi à l'écriture de l'ensemble des codes source de CAST3M.

La démarche retenue pour définir le domaine Ω consiste à fabriquer un nouvel objet, de type frontière, constitué de la réunion des surfaces limites S α , Γ, cellesci pouvant être intérieures (cavité), extérieures (domaine borné), ou de type fissure. Chaque surface est un objet de type maillage surfacique créé par les opérateurs classiques, et constitué d'éléments quadrilatéraux à 8 noeuds (QUA8). A ce jour, seuls ces derniers sont traités dans notre approche de couplage, mais l'extension aux éléments triangulaires à 6 noeuds (TRI6) peut s'envisager sans difficultés.

La phase d'intégration où sont construites les différentes matrices [B αβ ] par intégration sur des paires d'éléments surfaciques constitue sans aucun doute la partie la plus conséquente et la plus délicate de la programmation. Avant cette phase, il convient d'effectuer un certain nombre de traitements préliminaires, spécifiques aux méthodes intégrales. Nous n'en présentons ici que quelques aspects :

-l'orientation aléatoire des sens de numérotation des noeuds des éléments générés par CAST3M pose des difficultés pour le calcul du sens de la normale. L'écriture d'un algorithme spécifique a été nécessaire pour obtenir en tout point une normale effectivement sortante par rapport à la zone considérée ;

-si la frontière présente des arêtes, un dédoublement des degrés de liberté en tension est nécessaire. Les matrices [B uu ] et [B tt ] ont ainsi des dimensions distinctes, tandis que [B ut ] et [B tu ] ne sont pas carrées. Une détection automatique des discontinuités de normale entre plusieurs éléments contigus permet de gérer ces dédoublements.

Bien que CAST3M soit déja doté d'opérateurs de calcul matriciel, il a été jugé plus performant de traiter spécifiquement et dans une même étape l'inversion de [B tt ] et les produits avec les autres matrices. Un nouvel algorithme basé sur une factorisation de Choleski, actuellement à l'étude, devrait accroître encore la rapidité du traitement.

Le super-élément consiste en un nouvel objet de type maillage, constitué d'un seul élément comprenant tous les noeuds des frontières, et auquel est associée la matrice de rigidité [K SE ].

Le couplage avec les éléments finis s'effectue alors très simplement grâce à l'opérateur et de CAST3M, avec pour opérandes la rigidité du super-élément d'une part, et la rigidité de la zone éléments finis d'autre part. Le résultat de l'opération donne la matrice de rigidité de l'ensemble de la structure. Il faut auparavant veiller à ce que les noeuds de contrôle appartenant aux deux domaines couplés le long de l'interface soient effectivement les mêmes (utilisation de la directive ELIM, si les éléments à associer ont été générés séparément ). Après l'adjonction des rigidités correspondant aux blocages ou aux déplacements imposés sur la structure et la définition des chargements, le problème est résolu de manière classique.

La structure du super-élément permet de profiter pleinement de la versatilité de l'opérateur et de CAST3M. Outre le couplage avec les éléments finis, il est également possible de coupler plusieurs super-éléments entre eux, créant ainsi un modèle équations intégrales multi-zone. On peut aussi appliquer des blocages ou des déplacements imposés sur des portions de surface du super-élément. Par contre, l'application ou l'évaluation des tensions ne peut à ce jour s'effectuer que par l'interposition d'une couche intermédiaire d'éléments finis. les exemples numériques qui suivent montrent un aperçu non exhaustif de la variété des possibilités offertes aux utilisateurs.

Exemples numériques

Validation : cavité sphèrique sous pression en milieu élastoplastique infini

L'exemple d'une cavité sphérique sous pression, dans un milieu infini avec plastification localisée du matériau au voisinage de la cavité est un bon cas test : d'une part, on en connaît la solution analytique, et d'autre part le partage entre discrétisation par éléments finis (pour la région potentiellement plastique) et par éléments de frontière (pour la région élastique allant à l'infini) illustre bien l'utilité d'une telle procédure de couplage. On considère ainsi une cavité sphérique de rayon a = 1mm, dans un milieu infini élastoplastique (matériau à écrouissage isotrope, critère de plasticité de Von Mises, avec les caractéristiques suivantes : module d'Young E = 1300M P a, coefficient de Poisson ν = 0.3 limite d'élasticité σ e = 1M P a). On désigne par u(r) le déplacement radial dans la zone plastique et par e p (r) les déformations plastiques cumulées. Partant de l'état naturel, on soumet cette cavité sphérique à une pression intérieure uniforme p(t) que l'on fait croître en fonction du temps : p(t) = p e (1 + λ(t)), où p e est la pression de première plastification. Les valeurs de déplacements radiaux dans la zone plastifiée et de déformations plastiques cumulées issues du calcul numérique par l'approche couplée ont été comparés aux solutions analytiques respectives. Les résultats restent encourageants compte tenu de la discrétisation très grossière adoptée (24 éléments de frontière à 8 noeuds, et 48 éléments finis cubiques à 20 noeuds). Nous avons représenté sur les figures (1) les déplacements plastiques et les déformations plastiques cumulées pour différents paramètres de chargement λ(t) = 1.21, λ(t) = 1.78 et λ(t) = 2.1, ce qui correspond aux rayons de plastification b/a = 1.5, b/a = 1.75, b/a = 2. Le cas où toute la zone modélisée par éléments finis est plastifiée (b = R = 2) correspond à la limite de chargement pour le maillage utilisé (pour monter en chargement, il faut agrandir le sous-domaine modélisé par éléments finis). 

Application à une structure d'assemblage

L'exemple qui suit a pour but de montrer les possibilités d'adaptation du super élément au traitement de problèmes présentant des géométries complexes, et des conditions aux limites variées. Il s'agit de la zone d'assemblage schématisée par la figure 2, dans laquelle la transmission d'un effort de traction entre deux barres s'effectue par un assemblage de type sandwich, composé de deux fourrures (F 1 et F 2 ) et de deux tiges (T 1 et T 2 ) sollicitées en cisaillement. L'assemblage n'est pas sérré, de sorte qu'il existe toujours un jeu entre les plaques et les fourrures. Le modèle tient compte des déformations de flexion des tiges. Dans ce modèle simpliste, qui n'évalue pas les zones rélles de contact entre tiges et plaques, on suppose des conditions d'adhérence le long des parties latérales a priori comprimées des tiges.

Cette structure a été soumise à un déplacement imposé unitaire sur sa face 1 (figure 3 La figure 4 montre la déforméé de l'assemblage soumis à d'autres conditions aux limites : traction imposée en face 1 ; face 2 bloquée en déplacement normal.

Super-élément contenant une fissure

Afin de valider le calcul du super-élément fissuré, un test numérique a été réalisé sur l'exemple d'un barreau cylindrique (hauteur H = 12 mm, rayon R = 10 mm) contenant une fissure circulaire (rayon a = 1 mm) centrée et perpendiculaire aux génératrices (figure 5). Le cylindre entier est traité comme un super-élément discrétisé par éléments de frontière quadrilatéraux à 8 noeuds. Deux maillages ont été considérés, constitués de 40 éléments pour la surface externe et respectivement 80 ou 164 éléments pour la fissure. Les déplacements verticaux de la face inférieure du barreau sont bloqués, et un chargement de traction simple est appliqué sur sa face supérieure, par l'intermédiaire d'une couche d'éléments finis. Le caractéristiques dimensionnelles choisies de telle façon que R, H ≥ a permettent de comparer les résultats avec la solution bien connue de la fissure circulaire en mode I en milieu infini. La solution obtenue sur la fissure, exprimée en termes de discontinuités de déplacement normal, peut être visualisée (figure 6). La comparaison avec la solution analytique (figure 7) montre que la précision des résultats est acceptable, pour les deux maillages testés.

La couronne d'éléments touchant la pointe de fissure est constituée d'élément « à noeuds au quart »dont l'utilisation est classique dans ce cas de figure. Ceux-ci permettent une représentation exacte de la variation en racine carrée de l'ouverture des lèvres en fonction de la distance à la pointe de fissure, et facilitent ainsi l'évaluation du facteur d'intensité de contraintes. Les erreurs relatives obtenues sur la valeur de K I par rapport à la solution analytique sont respectivement de -3.6% et -3.2% pour les maillages à 80 éléments et à 164 éléments. Dans des problèmes d'interaction sol-structure ou d'ouvrages souterrains, le superélément permet de s'affranchir très efficacement de la discrétisation du sol élastique lointain. Son utilisation peut également simplifier grandement la définition de zones géométriquement complexes, que l'on peut rencontrer dans les assemblages ou dans des microstructures de matériaux, et pour lesquelles la conception de maillages volumiques pourrait s'avérer délicate. Le super-élément peut alors jouer le rôle d'une matrice élastique, incluant des zones à comportement non-linéaire modélisables par éléments finis. Enfin, le champ d'investigations ouvert par cet outil pour l'étude des propagations de fissures invite aussi à une poursuite des travaux.

Conclusion

Dans

  ) et (6)-(9) conduisent au calcul d'intégrales doubles sur des produits d'éléments de frontière. Les procédures d'intégration numérique nécessaires varient selon que les éléments d'intégration sont (a) disjoints, (b) coïncidents, (c) adjacents par côté ou (d) adjacents par coin. Le cas (a) correspond à une double intégration régulière, pour laquelle une double quadrature de Gauss s'applique. Afin d'optimiser le temps d'intégration, le nombre de points de Gauss utilisés est variable en fonction de la distance séparant les deux éléments. Dans les cas (b), (c) et (d), l'intégrale contient une singularité faible (≡ 1/ |y -x|). Pour traiter adéquatement ces intégrations numériques singulières, un nouveau schéma respectant parfaitement la symétrie des formulations intégrales variationnelles a été développé avec succès [MOU 00] et est utilisé pour les exemples numériques qui suivent.
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  ), sa face 2 ayant été préalablement encastrée. La structure est constituée d'un matériau élastique (module d'Young E = 1, coefficient de Poisson µ = 0.3). Pour discrétiser les zones par équations intégrales, nous avons utilisé des éléments isoparamétriques à 8 noeuds et pour les zones étudiées en éléments finis, nous avons fait appel à des éléments cubiques à 20 noeuds. Nous avons effectué le calcul sur deux modèles : Revue européenne des éléments finis. Déplacements u y donnés par les modèles A et B.
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