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TADEUSZ BURCZYŃSKIa*, MARC BONNETb,
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This paper deals with an analytical and computation strategy, based on the adjoint vari-
able approach and boundary integral equation (BIE) formulations, for evaluating void
or crack shape sensitivities of objective functionals. Boundary-only expressions for such
sensitivities are sought in the context of linear elastodynamics. An evolutionary hybrid
algorithm with the gradient mutation is employed for the identification of material
defects. Numerical tests of sensitivity expressions and identification of an internal
crack and void are presented.
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1. INTRODUCTION

The need to compute the sensitivity of integral functionals with respect

to shape parameters arises in many situations where a geometrical

domain plays the primary role; shape optimization and inverse

problems are the most obvious with such instances. In addition to
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numerical differentiation techniques, shape sensitivity evaluation can

be based on either the direct differentiation or the adjoint variable

approach. The direct differentiation approach is in particular appli-

cable in the presence of cracks. Following this approach, a shape

sensitivity computation relies on solving as many new boundary-

value problems as the numbers of shape parameters present [1]. The

adjoint variable approach is even more attractive, since it needs to

solve only one new initial boundary-value problem (the adjoint prob-

lem), whatever be the number of shape parameters. The adjoint

variable approach has been successfully applied to many shape sensi-

tivity problems [3]. However, when geometrical domain contains

cracks or other geometrical singularities, divergent integrals associated

with e.g. crack tip singularity of field variable arise, and obtaining a

boundary-only expression raises mathematical difficulties. The present

paper deals with the formulation of the adjoint variable method

applied to crack shape sensitivity analysis, in connection with the

use of boundary integral equation (BIE) formulations for elastody-

namics in the time domain. In order to solve the defect identification

problem the evolutionary hybrid approach is proposed. This approach

is based on a coupling of an evolutionary algorithm and a gradient

algorithm. A special gradient mutation is employed, in which shape

sensitivity information is used.

2. FORMULATION OF THE PROBLEM

Consider a bounded body B with an external boundary S, containing

an internal defect in the form of a void V of boundary � (see Fig. 1a)

or a crack with crack surface � (see Fig. 1b). Let � denote the actual

body (i.e. containing the defect): �¼B\V or �¼B\� and @� ¼ S [ �.

FIGURE 1 A body with an internal defect: (a) a void, (b) a crack.
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The displacement u, strain e and stress r are related by well-known

field equations of linear elastodynamics in the time domain (C:

fourth-order elasticity tensor):

div r� �€uu ¼ 0; r ¼ C : e; e ¼ 1
2 ðruþ rTuÞ in�: ð1Þ

Equation (1) are completed with boundary and initial conditions.

A given traction �ff is imposed on a part of boundary S, while on the

rest of S a displacement �uu is known. A boundary � is traction-free

and initial rest is assumed. A traction vector f ¼ r � n is defined in

terms of the outward unit normal n to @�. In the crack case the dis-

placement u is allowed to jump across �; ½½u�� ¼ uþ � u� 6¼ 0:

A shape and position of the boundary � characterizing the defect are

unknown. Consider the problem of finding the shape and position of

the defect using elastodynamic experimental data, as in ultrasonic

measurements. The lack of information about V and � is compensated

by some knowledge about u on S (redundant boundary data). Assume

that a measurement ûuðx, tÞ of u is available for x 2 Sm � S and

t 2 ½0,T �. The usual approach for finding � consists in the minimization

of some distance J between u� (computed) and ûu (measured), e.g.

Jð�Þ ¼
Z T

0

Z
Sm

’ðu�, tÞ dS dt; ’ ¼ 1
2 ðûu� u�Þ2, ð2Þ

where u� denotes the solution of the problem (1) for a given location �.

The minimization of J with respect to � needs in turn, for efficiency,

the evaluation of the functional J and its gradient with respect to

perturbations of �.

3. SHAPE SENSITIVITY ANALYSIS

Consider in the m-dimensional Euclidean space Rm, m¼ 2 or 3, a body

�p whose shape depends on a finite number of shape parameters

p ¼ f p1, p2, . . . , png: Shape parameters are treated as time-like

parameters using a continuum kinematics-type Lagrangian description

and initial configuration conventionally associated with p¼ 0

x 2 �0 ! xp ¼ Uðx,pÞ 2 �p ð3Þ
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with �ðx, 0Þ ¼ xð8x 2 �0Þ: The geometrical transformation �ðE, pÞ
must possess a strictly positive Jacobian for any given p. As far as

first-order derivatives with respect to p are concerned, attention can

be restricted to the consideration of a single shape parameter p without

loss of generality.

The initial transformation velocity field h(x), defined by

hðxÞ ¼ @�

@p
ðx, p ¼ 0Þ ð4Þ

is the ‘initial’ velocity of the ‘material’ point which coincides with the

geometrical point x at time p¼ 0. One assumes here that the external

boundary S and its neighborhood are unaffected by the shape trans-

formation, so h¼ 0 and rh¼ 0 on S. However, this is not true in

case of an emerging crack. Introduce the following Lagrangian, in

which the weak formulation of the direct problem (1) appears as an

equality constraint term added to the objective function J:

Lðu, m,�Þ ¼ Jðu,�Þ þ
Z T

0

Z
�

½rðuÞ: rðmÞ þ � €uuEm� d� dt

�
Z T

0

Z
s

�ffEm dS dt

ð5Þ

where m is a test function. After some transformations one can express

the derivative of J as the total material derivative of the Lagrangian

with respect to a variation of the domain [2].

d

dp
Jð�Þ ¼ d

dp
Lðu�, m�,�Þ ¼

Z T

0

Z
�

½rðuÞ: "ðmÞþ�€uu:m� div h d�dt

�
Z T

0

Z
�

½rðuÞ:rðmÞ þ rðmÞErðuÞ�: rh d� dt

ð6Þ

Now m is a solution of the adjoint problem, described by Eq. (1) with

the following boundary and final conditions:

fðmÞ ¼ � @’

@u
on S; fðmÞ ¼ 0 on �; m ¼ _mm ¼ 0 in �, at t ¼ T :

ð7Þ
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The adjoint problem can be solved in the same way as the direct

problem, but time-reversed. The expression (6) is valid for any shape

transformation and uses the primary and adjoint solution.

4. SHAPE SENSITIVITY: BOUNDARY INTEGRAL

FORMULATION FOR THE VOID

AND CRACK PROBLEM

The formula (6) for the sensitivity of J is expressed by a domain

integral, but it can be converted into an equivalent boundary-only

expression in the case of the void problem [2]:

dJ

dp
¼

Z T

0

Z
�

½rðuÞ :rðmÞ � � _uu � _mm�h � n dS dt: ð8Þ

Consider the case where unknown defect is a crack, i.e. the limiting

case of a void bounded by two surfaces �þ and �� identical and of

opposite orientation. It is tempting to still apply Eq. (8) to compute

sensitivities with respect to crack location perturbation, but it is not

correct. For instance, consider a domain shape transformation such

that h¼ 0 on the crack surface �. This means that crack perturbations

along the tangent plane at the crack front are allowed. But then Eq. (8)

gives dJ/dp¼ 0, which is not true. This paradox appears because of

the quantity div(�(u): rm) behaves like d�2 in the vicinity of the

crack tip (for 2D) and is therefore not integrable (d – distance to the

crack tip or front). These difficulties can be overcome by the additive

decomposition of the transformation velocity field h in the neighbor-

hoods of the crack tips into a constant and a complementary term.

Introduce neighborhoods Di�� (i¼ 1, 2) of the two crack tips xi; the

boundary of Di is denoted by Ci (Fig. 2). Put �i ¼ � \Di,
��� ¼ � nð�1 [ �2Þ and ��� ¼ �nðD1 [D2Þ. Then @Di ¼ C1 [ �i and

@� ¼ S [ C1 [ C2 [ ���. The transformation velocity field is now

expressed

l ¼ h ðin ���Þ l ¼ h� hi ðinDi, i ¼ 1, 2Þ ð9Þ

where hi ¼ h(xi ) is the transformation velocity at the crack tip i.
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Now the integration by parts on Eq. (6) is carried out separately

in each subdomain ���,D1,D2 and with h replaced by l. Keeping in

mind that l is discontinuous across Ci, one obtains

d

dp
Jð�Þ ¼

Z T

0

Z
�

½ ½rðuÞ: rðmÞ � �_uu � _mm� � ln dS dt

�
X2

i¼1

Z T

0

Z
Ci

½rðuÞ: rðmÞ � �_uu � _mm�ðhi � nÞ dS dt

þ
X2

i¼1

Z T

0

Z
Ci

½fðmÞ: rðmÞ þ fðuÞ: rðmÞ� hidS dt

ð10Þ

where the various normal vectors are as indicated in Fig. 2.

The formula (10) can be expressed also by means of stress intensity

factors SIFs [4]. Assume that the dynamical SIFs Ku
I ðt;xiÞ, Ku

IIðt;xiÞ,
K�

I ðt;xiÞ, K�
IIðt; xiÞ at tip xi, associated with the solutions of the primary

and adjoint problems, respectively are known. Since the curves Ci are

arbitrary, one may follow the procedure that allows linking J-integral

to SIFs, i.e. assume that Ci is the circle of radius e centered at crack

tip xi and investigate the limiting case e! 0. In this limit, Eq. (10) is:

d

dp
Jð�Þ ¼

Z T

0

Z
�

½ ½rðuÞ : rðmÞ � �_uuE_mm� �hEndSdt� 1� �

�

�
X2

i¼1

Z T

0

ðKu
I ðt;xiÞK�

I ðt;xiÞ þKu
IIðt;xiÞK�

IIðt;xiÞÞ ð�i�Þ
�ðKu

I ðt;xiÞK�
IIðt;xiÞ þKu

IIðt;xiÞK�
I ðt;xiÞÞ ð�inÞ

" #
dt

ð11Þ

where hi� , h
i
n are the tangent and normal components (according to

Fig. 2) of the crack tip velocity. Equations (10) and (11) in fact involve

FIGURE 2 Isolation of the crack tips by neighborhoods Di (i¼ 1,2); notation.
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a time convolution between direct and adjoint quantities; this is a usual

feature of adjoint methods employed for time-dependent problems.

5. IDENTIFICATION METHOD

Here a hybrid evolutionary algorithm carries out the identification of

an internal defect with a boundary �. The hybrid algorithm, which

connects evolutionary and gradient algorithms together [5], is consid-

erably more efficient than the genetic algorithm, and its application

makes the results more accurate.

The objective function (Eq. 2) is now called a fitness function. The

hybrid algorithm minimizes the fitness function with respect to defect

shape parameters. A vector chromosome characterizes the solution:

p ¼ f p1, p2, . . . , pi, . . . , png ð12Þ

where pi, i ¼ 1,2, . . . n are genes which specify a shape and position of

the defect. The genes are real numbers on which constraints are

imposed in the form:

piL � pi � piR; i ¼ 1, 2, . . . , n ð13Þ

The evolutionary algorithm starts with an initial generation. This gen-

eration consists of N chromosomes generated in a random way. Every

gene is taken from the feasible domain. The initial generation is then

modified by evolutionary operators: Mutation and crossover. Next

stage is an evaluation of the fitness function for every chromosome

and the selection is employed. The selection is performed in the

form of the ranking selection or the tournament selection [6]. The

next generation is created and operators work for this generation

and the process is repeated. The algorithm is stopped if a chromosome

for which the value of the fitness function is zero has been found. An

effectiveness of the evolutionary algorithm depends on its operators,

which can be defined in a different way.

The crossover operator swaps some chromosome of the selected

parents in order to create offspring. Simple, arithmetical and heu-

ristic crossover operators are used.
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Simple crossover: This operator needs two parents and produces off-

spring. The simple crossover may produce an offspring outside the

design space. To avoid this, a parameter � 2 ½0, 1� is applied. For ran-
domly generated crossing parameter i it works as follows (chromo-

somes p1, p2 are parents in the vector form):

parent 1: p1 ¼ f p1, p2, . . . , pi, . . . png
parent 2: p2 ¼ fe1, e2, . . . , ei, . . . eng

ð14Þ

offspring 1: p 0
1 ¼ fp1, . . . ,pi,þ �eiþ1 þ ð1� �Þpiþ1, . . . ,�en þ ð1� �Þpng

ð15Þ
offspring 2: p 0

2 ¼ fe1, . . . , ei, þ �piþ1 þ ð1� �Þ eiþ1, . . . ,�pn þ ð1� �Þ eng
ð16Þ

Arithmetical Crossover: This operator produces two offspring, which

are a linear combination of two parents

p 0
1 ¼ �p1 þ ð1� �Þ p2; p 0

2 ¼ �p2 þ ð1� �Þ p1 ð17Þ

Heuristic Crossover: This operator produces a single offspring from

two parents:

p 0
3 ¼ rðp2 � p1Þ þ p2 ð18Þ

where r is a random value from the range [0, 1] and J(p2)� J(p1).

Four kinds of mutation operators: Uniform, boundary, non-uniform

and gradient mutation are used:

before mutation : p1 ¼ fp1, p2, . . . , pi, . . . , png;
after mutation : p 0

1 ¼ fp1, p2, . . . , p 0
i, . . . , png

ð19Þ

Uniform mutation: Offspring are allowed to move freely within the fea-

sible domain and the gene p 0
i takes any arbitrary value from the range

[ piL, piR].

Boundary mutation: The chromosome can take only boundary values

of the design space, p 0
i ¼ piL or p 0

i ¼ piR.
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Non-uniform mutation: This mutation operator depends on generation

number t and is employed in order to tune the system

p 0
i ¼

pi þ�ðt, piR � piÞ if a random digit is 0

pi ��ðt, pi � piLÞ if a random digit is 1

(
ð20Þ

where the function � takes value from the range [0, e].

A special type of mutation, so-called gradient mutation, is applied.

This mutation is characterized by a full genetic interference, which

means a modification of genes making use of information about the fit-

ness function gradient.

Gradient Mutation: This single-argument operator changes any chro-

mosome on the ground of fitness function gradient:

p 0 ¼ pþ�p ð21Þ
where �p¼ 	h, while 	 is a coefficient determining a step increment in

a search direction h. The search direction h¼ h(rpJ) depends on the

fitness function gradient rpJ, whose elements are determined by Eq.

(8) for the case of the void identification or by Eq. (11) for the case

of the crack identification. In the paper the steepest descent method

is proposed for evaluation of the direction h¼�rpJ.

6. NUMERICAL EXAMPLES

Numerical tests have been carried out for two-dimensional problems

with internal defects in the form of voids or cracks. Derivatives of

the formulated objective function with respect to defect transforma-

tion are calculated in order to demonstrate accuracy of the proposed

method of crack and flaw shape sensitivity analysis. An identification

procedure of the defect based on evolutionary programming and

employed information on the gradient of the objective function is

presented.

Example 1

A square plate contains an internal defect in the form of a circle void,

as it is shown in Fig. 3. The plate has thickness w. One edge is

constrained, while the opposite one is loaded by a harmonic traction
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�ffðtÞ during the time interval t 2 ½0,T �. Displacements are computed in

32 sensor points located on the boundary Sm. The time step used for

the time discretization is �t. The shape and position of the void is

defined by a set of 3 parameters p ¼ ðx�1, x�2, rÞ, which are x1 and x2
coordinates of the void center and the void radius, respectively. The

plate has the following material properties: The Young modulus

E¼ 0.2E12 Pa, the Poisson’s ratio �¼ 0.3 and the density

�¼ 7800 kg/m3. The objective function is the following:

Jð�Þ ¼
Z T

0

Z
Sm

’ dS dt ð22Þ

where: ’ ¼ 1
2 ðûuðx, tÞ � uðx, tÞÞ2; x 2 Sm. The displacement field û is

taken from computation for the actual void p.

Sensitivity Analysis

The derivatives of the objective function with respect to transforma-

tions of the parameter vector p, are calculated for the void ps. It

needs to solve the primary and the adjoint problems, which are defined

in Table I. The derivatives of the objective function (22) are calculated

by using Eq. 8. Obtained results are shown in the Table II and com-

pared with a finite difference computation (FD).

FIGURE 3 The plate with an internal circle defect.
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Identification of the Void

The identification task is to find the actual void in the plate from

Fig. 3, having accurate values of displacements û(x, t) for x 2 Sm in

the time t 2 ½0,T � and displacements with noise. The noise imposed

on the displacements has a Gauss normal distribution with expected

value û(x, t) and standard deviation 1/30 û(x, t).

The identification process is carried out as minimization of the objec-

tive function (22). A minimization method: Hybrid algorithm [5], based

on evolutionary and gradient algorithms is used. This method needs

value of objective function and its derivative with respect to void trans-

formation.

Figure 4 presents a graph of values of the fitness function for the best

chromosome, found in each generation, for the case with and without

any noise. The influence of the gradient operator can be seen, which

TABLE I Boundary conditions and geometry of the plate (Fig. 3) for the primary and
adjoint problem

Geometry of the plate L¼H¼ 200mm; w¼ 10mm
Actual void: p¼ {75, 80, 1}
Void for sensitivity: ps¼ {74, 79, 1.1}
Sm ¼ MN [OP; Su¼MP; Sp¼ON

Boundary condition
for the primary problem

f(t)¼ f0(1þ sin!t) on Sp; f0¼ 200 kN/m
!¼ 15708 rad/s; T¼ 800ms; �t¼ 2ms
u(x, t)¼ 0 on Su

Boundary condition
for the adjoint problem

f(t)¼ u(x, �)� û(x, �); �¼T–t on Sp

TABLE II Sensitivity results for the void

Case Transformation
of the void

dJ/dp �J/�p
FD

Error |c–d|/d
%

a b c d e

(1) Translation x1 � 0.7314E�8 � 0.7229E�8 1.2
(2) Translation x2 � 0.3049E�7 � 0.3004E�7 1.5
(3) Expansion 0.2342E�5 0.2306E�5 1.6

TABLE III Void identification results

p ¼ fx�1,x�2, rg
Actual void {75.00, 80.00, 1.00}
Solution with no noise {74.96, 80.04, 0.99}
Solution with the noise {73.82, 82.13, 0.96}
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decreases the value of objective function faster than classical genetic

algorithm. The identification method works very well for the case

without noise (see Fig. 5). When the noise is imposed, the result is

less accurate, but still good (see Table III).

Example 2

A square plate contains an internal defect in a form of a straight crack,

as it is shown in Fig. 6. The plate has thickness w. One edge is

FIGURE 4 Values of the fitness function for the best chromosome in the void identi-
fication process

FIGURE 5 Illustration of the void identification process for the case: (a) no noise;
(b) noise.
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constrained, while the opposite one is loaded by a traction �ffðtÞ during
the time interval t 2 ½0,T �. Displacements are computed in 32 sensor

points located on the boundary Sm. The time step used for the time dis-

cretization is �t. A shape and position of the crack is defined by a set

of 4 parameters p ¼ fxc1, xc2, a,�g, which are x1 and x2 coordinate of the

crack center, length of the crack and angle of the crack respectively.

The plate has the same material properties and the objective function

as in the Example 1.

Sensitivity Analysis

The derivatives of the objective function with respect to crack shape

transformations are calculated for the crack ps. The primary and the

adjoint problem are defined in Table IV. The derivatives of the objec-

TABLE IV Boundary conditions and geometry of the plate (Fig. 5) for the primary
and adjoint problem

Geometry of the plate L¼H¼ 200mm; w¼ 10mm
Actual crack: p¼ {30, � 25, 40, 1.18}
Crack for sensitivity: ps¼ {28, � 27, 38, 1.38}
Sm ¼ MN [OP; Su¼MP; Sp¼ON

Boundary condition for
the primary problem

f(t)¼ f0H(t) on Sp

f0¼ 200 kN/m; T¼ 800ms; �t¼ 2ms
u(x, t)¼ 0 on Su

Boundary condition for the
adjoint problem

f(t)¼ u(x, �)� û(x, �); �¼T–t on Sp

FIGURE 6 The plate with an internal crack.
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tive function (22) are calculated by using Eq. (11). The results are shown

in the Table V and compared with a finite difference computation (FD).

Identification of the Crack

The identification task is to find the actual crack in the plate from

Fig. 7, having computed displacements û(x, t) and displacements

with a noise. The noise is defined as in Example 1. The identification

process is carried out in the same way as for the void in Example 1. An

identified crack for the cases: without any noise and with the noise are

presented in the Table VI and graphically in Fig. 7. The result for

the noise is less accurate, but the information is still useful from the

engineering point of view. The history of the identification is shown

in Figure 8, in the form of a value of the objective function for the

best chromosome in each generation converges very quickly. It

demonstrates the efficiency of the identification method.

TABLE V Sensitivity results for the crack

Case Transformation
of the crack

dJ/dp �J/�p
FD

Error |c–d|/d
%

a b c d e

(1) Translation x1 �0.9164E�04 �0.9103E�04 0.7
(2) Translation x2 �0.5782E�04 �0.5740E�04 0.2
(3) Expansion 0.2780E�03 0.2727E�03 1.9
(4) Rotation 0.4672E�03 0.4598E�03 1.6

FIGURE 7 Illustration of the crack identification results for the case (a) no noise;
(b) noise.

14



7. CONCLUDING REMARKS

In the present work a shape sensitivity analysis for identification of

internal defects was presented. The main motivation of this paper

was to explore the adjoint variable approach, in the presence of

cracks and in connection with BIE formulations of the direct problem.

The corresponding boundary-only formula for the shape sensitivity of

the functional was first established for the case of a void. It was then

shown to become inconsistent in the limit when the void became a

crack because of the divergence of a certain domain integral.

However, resting on the analysis made for the case of a void, func-

tional shape sensitivity expressions which are consistent with the use

of BIE formulations and applicable to crack identifications problems

were derived. A sensitivity formula involving integrals on the crack

and on arbitrary contours around the crack tips was established for

2D situations. It holds regardless of the crack shape and of the

shape transformation. Numerical implementation of the analytical

TABLE VI Crack identification results

p ¼ fx�1, x�2, a, �g
Actual crack {30.00, � 25.00, 40.00, 1.18}
Solution with no noise {29.32, � 24.56, 39.63, 1.20}
Solution with the noise {33.04, � 23.57, 38.87, 1.41}

FIGURE 8 Values of the fitness function for the best chromosome in the crack iden-
tification process
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expressions for sensitivities has been performed. Numerical tests show,

that derivatives of the objective function with respect to defect trans-

formations are in a good agreement with the finite difference method

and require less computing time. The evolutionary hybrid algorithm

based on the gradient mutation is employed for identification of

voids and cracks. The presented results are very accurate for the

defect identification in the absence of noise. Even if noise is added

in the objective function, the results remain reasonably accurate.

This algorithm is considerably more efficient than the genetic algor-

ithm and its application makes the results more accurate.
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