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Abstract A boundary-domain integral equation for a coated half-space (elastically isotropic homoge-
neous substratum, possibly anisotropic coating layer) is developed. The half-space fundamental solution is
used, so that the discretization is limited to the potential contact zone (boundary elements), the potentially
plastic part of the substratum and the coating layer (domain integration cells). Steady-state elastoplastic
analysis is implemented within this framework, for plane-strain conditions, for solving rolling and/or slid-
ing contact problems, where at the moment the contact load comes from either a purely elastic contact anal-
ysis or is of Hertz type. The constitutive integration is of implicit type. In order to improve accuracy and
computational efficiency, infinite elements are used. Comparison of numerical results with other sources,
when available, is satisfactory. The present formulation is also used to compute the contact pressure for an

isotropic (or anisotropic) coating on an isotropic homogeneous half-space indented by an elastic punch.

Key words boundary integral equation — coated half-space — steady-state elastoplastic analysis — implicit

constitutive integration.

1 Introduction

The study of rolling and/or sliding of hard cylinders on semi-infinite elastoplastic regions having either
elastic- perfect plastic or kinematically hardening constitutive properties goes back to Merwin and John-

son (1963) and Johnson and Jefferis (1963) who used simplifying assumptions such as a Hertzian contact
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pressure distribution and equivalence between the total strain cycle and the elastic strain cycle. In order to
avoid those assumptions, Bhargava, Hahn, and Rubin (1985a,b) adopted a finite element formulation in a
fixed frame and a traditional time-stepping scheme. This approach is time-consuming because of the need to
deal with incrementally moving loads. Yu, Moran, and Keer (1993) extended the direct approach proposed
by Zarka and Casier (1979) to investigate the steady-state problem under repeated rolling loading. This
method is very effective in solving cyclic rolling contact problem with linear-hardening materials and was
also used to study ratchetting behavior (Sakae and Keer, 1997) by adopting a nonlinear kinematic hardening
rule proposed by Armstrong and Frederick (1966). Dang Van and Maitournam (1993) proposed an efficient
and reliable steady-state algorithm for the calculation of stresses and strains in the half-space with perfect
plastic or linear kinematic hardening materials. However, although the underlying steady-state assumptions
imply that the computational domain is in principle unbounded in the direction of the moving load, finite
element-based approches require bounded meshes in practice. This is a significant shortcoming, especially
in view of the fact that plastic strains are expected to develop up to infinity. The characteristic length of the
computational region must thus be much larger than that of the contact area, and the boundary conditions

to apply at infinity are not clear.

On the other hand, boundary element method (BEM) is a very good method for solving elastic problems,
especially with unbounded domains. Besides, it still has some advantages for problems with small plastic
regions. For problems with elastoplastic behavior under repeated rolling loading, the plastic regions develop
near the surface. Hence, BEM is expected to provide an efficient tool for the analysis of the stresses and

strains in half space under cyclic loading.

The application of BEM to steady-state elastoplastic rolling contact problems was first proposed in
Lederer, Bonnet, and Maitournam (1998), where a regularized integral equation formulation for contact
problems on homogeneous elastoplastic bodies was used, together with an implicit elastoplastic constitutive
integration algorithm. The presence and effect of a coating, often used to extend the fatigue life of various

components, was not considered.

This paper extends the approach of Lederer, Bonnet, and Maitournam (1998) to rolling/sliding contact
on a coated half-space. The boundary-domain traction and strain integral equations are still based on the
half-space fundamental solutions, but here a new singular domain integral (over the layer) arises due to
the contrast of elastic constants. These highly singular integral equations require a specific regularization
treatment, presented in section 3. The present formulation is tailored for half-space geometries: the dis-
cretization is limited to the potential contact zone (boundary elements), the potentially plastic part of the
substratum and the coating layer (domain integration cells). Steady-state elastoplastic analysis is imple-
mented within this framework, for linear-kinematic-hardening constitutive plastic behavior. The integration

with respect to load step is of implicit type. For simplicity and following a practice commonly used for this
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type of analysis, the elastic-plastic analysis is carried out for a given contact load, either of Hertz type or
coming from a purely elastic contact calculation (in other words, elastoplasticity and contact are treated in
an uncoupled fashion). The present formulation can be also used to compute the (a priori unknown) contact
pressure for an isotropic (or anisotropic) coating on an isotropic homogeneous half-space indented by an
elastic roller. These various implementation issues are discussed in section 4. In order to test numerically
the proposed boundary-domain integral equation for a coated half-space in 2-D plane strain, numerical ex-
amples are presented in section 5 for stress analysis in elastic contact, elastoplastic analysis under a statical
Hertz load and steady-state elastoplastic rolling under a moving Hertz load. The influence of the coating and
the friction coefficient on contact pressure is studied. Comparisons with other published results are made

when possible.

2 Geometry and basic governing equations

The generic configuration considered in this paper (figure 1) is a coated half-€pace{z; > 0}: a
coating(2¢ of constant thickness and made of possibly anisotropic material lies on top of a substratum

2° = 2 — ¢ made of isotropic material. A given loading is applied on a bounded sulsef the
boundaryl” = {z; = 0} while the complementary boundafy — I, is traction-free. Perfect bonding is
assumed along the interfaék between the coating and the substratum. For the numerical results presented
in section 5, an elastic-plastic constitutive behavior is considered for the substratum, whereas the coating
is assumed to remain purely elastic. However, for the sake of completeness, the integral equations are
presented in section 3 assuming that plastic strains are present in both the coating and the substratum.

The stresses” in £2¢ ando in £2° solve the equilibrium field equation without body forces, i.e.:

dvo =0  inQ° 0Q° 1)

Fig. 1 A coated half-space



4 Chunying Dong, Marc Bonnet
together with the boundary conditiorns:(outer unit normal td”)

oc‘n=t onrly (2)

oc’n=0 onl'—1, (€)

and perfect bonding conditions along the interfa¢detween the coating and the substraturf &ndu:

displacement irf2¢ and (2°):

(6¢—0o)n=0
onT; (4)
u®—u =0
The straing, stresses and plastic strains are related through the constitutive equations
oc=L:(e—¢) (5)
in the substratum, and
o¢=L"(e°—¢&° (6)

in the coating. Isotropic elasticity is assumed in the substratum, so that the corresponding elasticity tensor
L has the form:

2v
Lijke =G E%ﬁu + (05050 + diedjn)

(G: shear modulusy: Poisson ratio), wheré;; is the Kronecher symbol. On the other hand, the elastic
properties of the coating are possibly anisotropic, and the corresponding elasticity tensor is expressed as
L° = L — AL, where AL denotes the (possibly anisotropic) contrast of elastic properties between the
coating and the substratum. In addition, rate-independent plasticity with the Von Mises yield criterion and an
associated flow rule is assumed (see section 4.2 for details about the corresponding constitutive equations).

In this paper, two kinds of situations are considered: fixed loads (relevant for modelling e.g. indentation
experiments) and loads moving at a constant veld¢itglong the horizontaks-direction (for modelling
repeated rolling / sliding contact). In the latter case (referred to as steady-state), following the approach of
Dang Van and Maitournam (1993), a frame moving along with the load is introduced, i.e. a new coordinate
9 = x9 — V't is defined so that all physical quantities are time-independent ifuthe:s) coordinates.

Letting X denote one such quantity, its particle time derivative is thus given by:

dX 0X
@~ Vo, (7)

This approach is significantly more efficient than a more traditional incremental solution strategy in a fixed
frame, used in e.g. Bhargava, Hahn, and Rubin (1985a,b).

Here, and in Lederer, Bonnet, and Maitournam (1998) for homogeneous half-planes, the novel feature
consists in using an integral equation approach for dealing with steady-state problems, whereas Dang Van

and Maitournam (1993) used the finite element method (FEM). Steady-state problems entail considering
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domains that are infinite in the,-direction, due to the underlying requirement of translational invariance.
Infinite media are well handled by integral equation formulations: decaying conditions at infinity are built in
these formulations, and other conditions at infinity can be considered as well without giving rise to divergent
integrals. On the other hand, FEM for steady-state calculations requires a bounded computational domain,
because nonzero (but asymptotically constant) plastic strains are expected at infinity, which prevents one to

use infinite elements (divergent integrals at infinity do arise in that case).

3 Integral representation of displacement and strain in a coated half-space

The equilibrium of the coated half-space is formulated in terms of boundary-domain integral equations.
The usual basis for such formulation is a reciprocity identity between the unknown state and a known
fundamental solution, here chosen to be an elastic field generated by an unit point force applied at a fixed
source pointP and along a fixed directioh in a fictitious body endowed with the isotropic elastic moduli

of the substratum elastic constants. The componems$the unknown displacement field are governed by

the equilibrium equation
Lijap(tab; = €ab) =0 (8)

(commas denoting partial differentiations w.r.t. coordinates of the field pginthile the components

U.r(P, q) of the fundamental displacement are governed by the equation:
LijapUak,p; + 6(¢ — P)di, =0 (9)

whered(q — P) is the Dirac distribution at poinP. Multiplying Eq. (8) byU;x(P,q) and Eq. (9) byu;,
integrating both equations over a dom&linvoking the defining property @f(q — P), integrating by parts

the remaining integrals and subtracting the resulting identities, one obtains the reciprocity identity:

K(PyustP) = [ {Ua(Pia)tle) = Tu(Piausle)} dra)
+ [ (S1P.Q) = ALy s(P.Q)2ar( Q) 42(Q)
+ [ ALyl (P.Quis(Q) d2(Q) (10)
0

wherex(P) = 1 or 0 according to whether the source poits interior or exterior to the domaif?; be-
sidest;, T3, andX;;, denote the components of unknown tractions, fundamental tractions and fundamental
stresses, respectively.

The formulation presented in this section relies upon the use of the fundamental solution which is
traction-free onl”. It has been implemented for two-dimensional (plane-strain) calculations, using the fun-

damental solution for a traction-free half-plane (see Telles et al., 1981), but essentially holds for three-
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dimensional situations as well, using the half-space Mindlin fundamental solution. From Eg. (10), the equi-
librium of the coating(2¢ considered in isolation is thus governed by:

re(PYun(P) = /F Usn (P a)ti(q) dI(q) + /

| {U(Pi0)a) - Ta(Praui(@) 4 (o)

+ / (Zran(P.Q) = ALyaUin (P, Q))ean(Q) 42(Q)
+ / ALV (P, Quis4(Q) 42(Q) (11)

The equilibrium of the substratui?® considered in isolation is governed by:

ks(P)ug(P) = / {Uik(P§Q)ti(Q) — Tk (P; Q)Uz(Q)} dr'(q) + Yijk(P,Q)E1;(Q)dR2(Q)  (12)
I; Qs

since in that casé\L = 0. Note that in the last two equations the tractions refer to the unit normal vector
which is exterior to the coating and the substratum, respectively.

Next, Egs. (11) and (12) are added. The integrals over the inteffazancel out in the process by virtue
of the bonding conditions (4); besides, one ka&P) + ks(P) = 1 for any source point in the half-space.

The displacement at any poiftin the coated half-space is thus given by:

w(P)= [ Ua(Piat(@dr@
[ Lt Q)+ ALz @)En(P.Q)42Q) + [ ZuP.@2,(@82(Q) (13)

where

1
5 Wik,j + Ukjyi)

Eijk =5

= %(Eijk — XZkaadij) (14)
andy = v/(1 4 v) (in three dimensions) of = v (in plane strain).

Note that (13) is written in terms of the fundamental solutions for a half-plane with homogeneous and
isotropic elastic moduli. It involves domain integrals over the whole coating (in practice very thin) and
over the potentially plastic part of the substratum. A possible alternative would be to use the fundamental
solutions for coated half-spaces (Pan, Chen, and Amadei, 1997). However, the latter are much more com-
plicated (and computationally intensive); besides, the discretization of the coating is necessary anyway if
plastic strains are expected to develop in it.

Equation (13) is valid for any source poifttin {2 or on["; in particular the well-known properties of
the fundamental solution (namely thdy, = O(Inr) andU; ;, 2, = O(1/7)) ensure that all integrals
are convergent in the ordinary sense. Assuming that the loadidg enprescribed, the only unknowns in
Eq. (13) are the plastic strains fdand the total strains if2°.

To find these quantities, as usual for elastic-plastic calculations based on an integral equation approach

(see Mukherjee and Chandra, 1987), the integral representation for the strain tensor is also needed. Poten-

tially non-integrable singularities arise in the differentiation of Eq. (13) w.r.t the coordinates s that
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this operation cannot be carried out straightforwardly. Here the indirect regularization approach (see e.g.
(Tanaka, Sladek, and Sladek, 1994; Bonnet, 1999)) is followed. To this end, assuiRdi¢isanside either
the substratum or the coating (i.e. not on the interface) an@Jetenote a portion of2° or {2¢ containing

P as an interior point (in practice). would typically be the integration cell containiri). Since:

| UaiP.Qd2@ = [ Vi@ dar@

Ie

one has for any constant symmetric tensor

o=s{ [ EQd2Q) - [ Ua@no aro)} (15)

First, let P lie in £2°. Puttings = L:&(P) in EqQ. (15) and subtracting the resulting identity from Eq. (13),

one obtains:

ug(P) :/F Ui(P; q)ti(q) dF(Q)""(Lijabéab(P))/F Uir(P;q)nj(q)dl'(q)

a

+ [ (Luf(Q)+ ALure Q) B (P.Q) 42(Q)

+/ Yiin(P,Q)éi;(Q) d2(Q) +/ Yiik(P,Q)(645(Q) — €i5(P))dR2(Q)  (16)
25—0,

e

The integral representation formula in the above form may be safely differentiated w.r.t. the generic

coordinate ofP since this operation gives rise to convergent integrals only. One obtains:

up g (P) = /F (@) Ui 2(P.a) AT(0) + (Lijaréan(P)) / 03 (@)Usp 2(P, q) AT (q)

a

4 [ (EfalQ) + ALyl Q) By (P.Q) 4@

S PQE@d2Q+ [ SR Q)E@ - 25(P) d2(Q)
25—02, 2.

+ Lyt P){ [ nUaPa)dra - [ Ba(P.Qdo@) a7

(the overbar in() ; denoting a partial derivative w.r.t. tifecoordinate ofP’). Upon noting that the last line

vanishes due to equation (15), the strains at the source paiah be expressed as

cwlP) = [ 1P AT (@) + (LoénP) [ ni(0)Uia(Pa) A7)
+ [ (Luéan(Q) + ALiyaseun( Q) P (P. Q) 42(Q)
w [ SR @@+ [ Si(POEQ - 2(P) @ a8

having put:

Utu(P,Q) = 3 (Ui (P @) + U i(P,Q))

1
Yo (PQ) = §(Eijk,Z(Pa Q)+ Xier(P,Q))

1
B (PQ) = i(Eijk.[(PvQ) + B 5 (PQ))
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The expressions fol;x, Xk, Uy, and X7, . are available Telles and Brebbia (1981) (for plane-strain
problems) or in Balas, Sladek, and Sladek (1989) (for three-dimensional problems). Thagg fdollow
by virtue of (14).

Now let P lie in £2¢. Puttings = L°:&(P) + AL : e(P) in Eq. (15) and subtracting the resulting
identity from Eq. (13), the regularized form of Eq. (13) is obtained as:

uk(P) :/F Uir(P;q)ti(q) dI'(q) + (ALijapean(P) +ijabéab(P))/F nj(q) Uik (P, q)dI'(q)

a

i /Qc,g (Lijabéab(Q) + ALijavean(Q)) Eiji (P, Q) d2(Q)
+ /Q {ijab(éab(Q) —Eap(P)) + ALijap(cap(Q) — Eab(P))}Eijk(P, 0)d2(Q)
+ [ P02 19

Again, it is now safe to differentiate equation (19) with respect to/theordinate ofP. This results in:

up o (P) = /F Us (P: @)t:(0) AT (g) + (ALyjapean(P) + L unéan(P)) /F 03 @)Uy 2(P.q) dT(q)

a

n /mm (L§japéab(Q) + ALijapean(Q)) By, (P, Q) d2(Q)

4 /Q {Lija(Ean(@) = 2a(P)) + ALijan (2a(Q) = £a(P)) } By (P, Q) d2(Q)
+ /Q Sijr (P, Q)E(Q) d2(Q)

n <ALijab5ab,[7(P )+ Lijap€an,i(P ))

{| m@usradre - [ parqdeq) (20)

e

where again the term in curly brackets in the last line vanishes due to equation (15). Thus the strains at the
source point” can be expressed as

ene(P) = / Ukei(P @)ti(q) AT'(q) + (ALijabeab(P) + Lijapan(P)) / 1 (@)Ukei (P, q) dI'(q)

I, Ie

) EhuflQ) + ALiuen(@) By (PO 82(Q)
+ [ {Eun(EanlQ) = un(P) + ALijon(c0n(Q) = 2us(P) | By (P. Q) 82(Q)
[ Pz @d (21)

In equations (18) and (21), all integrals except those @¥eare nonsingular. Assuming thatande
haveC%~ smoothness at= P, the integrands in integrals ovéx, areO(r~2+*) are weakly singular and
can be evaluated by appropriate numerical integration methods (see for example Mustoe, 1984).
Equations (13), (18) and (21) can be applied to either three-dimensional or two-dimensional situations,

using the appropriate fundamental solutions and ranges of indices.
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y

€) (b)

Fig. 2 Plastic inclusions in the half-space

The correctness of Egs. (18) and (21) can be checked against closed-form expressions of the stress field
produced in a linear isotropic elastic half-space under plane-strain conditions by a rectangular inclusion
with constant plastic strain, established by Ballard and Constantinescu (1994). Material constants are
210 GPa and = 0.3. Figures 3 and 4 show that stresses obtained using Egs. (18) and (21) agree well with
the corresponding analytical values, for the inclusions described by Figure 2 (a) and (b), respectively, with

€gz = 1., €y = —0.5, andé,, = 0. and usingltl = 210 GPa and’ = 0.3.

4 Numerical implementation

An implementation of the approach of Secs. 2 and 3 under plane-strain conditions is now presented.

— q,, (anal)

---- 0, (anal)

"""""""" g, (anal)
¢ a,, (eqn. 17)
+a,, (eqn. 17)
oo, (eqn. 17)
% a,, (eqn. 20)
s, (eqn. 20)
*0,, (eqn. 20)

stress/G

-1.0

_1.5 L 1 1 1 1 1 1
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

y (mm)

Fig. 3 Stresses produced by the inclusion of figure 2(a): comparison of analytical and numerical values
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2.0
— 0, (anal)
- ---- 0, (anal)
15 /ﬁfﬁ’ﬁ T e cz (anal)
¢ o, (eqn. 17)
+o0,, (eqn. 17)
1.0 - oo, (eqn. 17)
x a,, (eqn. 20)
20, (eqn. 20)
o 05 * 0, (eqn. 20)
2]
n
g
2 0.0 -
_05 L
-1.0
_15 Il Il Il Il Il L
-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0

y (mm)

Fig. 4 Stresses produced by the inclusion of figure 2(b): comparison of analytical and numerical values.

4.1 Discretization of the boundary-domain integral equations

The loading boundary, is discretized into straight quadratic boundary elements, totalinmterpolation

nodes. The coatin@* is modelled byM rectangular cells?,,, (1 < m < M), while the potentially plastic

region of the substratuif2,, which is assumed to have a finite depth, is modelled/tnectangular cells2,

(1 < n < N).Both sets of cells include infinite cells, which are used to take into account the nonzero strains
arising at infinity due to the fact that the loads are moving. In the present development, a piecewise constant
interpolation is used for the unknown strains. Infinite cells in particular support the (unknown) limiting
strain values at infinity in the horizontal direction. Egs. (18) and (21) are collocated at the centers of all
rectangular bounded cells; one collocation point is also chosen on each infinite cell. For each collocation
point, the region(2, aroundP is taken as the cell containing; that together with the piecewise-constant

strain interpolation implies that all integrals ouv@g in Egs. (18) and (21) vanish.

The discretization of Eq. (13) along these lines andHot P, € I, (1 < s < N,) leads to:

Zt7/ N zk Psyq dF / zyabEl]k(PS’Q) d‘Q(Q)

1<p<M

Py / ALy Egh(PoQ)d2(Q) + 3 & / TP Q)dR(Q)  (22)

1<p<M 1<g<N
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where N,(¢q) denotes the interpolation function associated with¢tth boundary element node an,.
Similarly, Eq. (18), the strain representation formula, become®fer P,,, € 2¢:

€kt — Eab /m ALijarnj (@)U (Pmog)dl(q) — > Eib/g ALijabEfpij(Pm, Q) d2(Q)

1<p<M,p#m

Ng
_S o /F No(@)Uys (P, q) A1 (q) — €7 /8 L @Uia(P ) 8@
r=1 a

m

- e, /Z LBy (P @) d2 — 3 4 /Q St (P Q)AR(Q) =0 (23)

1<p<M,p#m 2 1<q<N

while (21), the strain representation formulafat P, € 2°, becomes:

- Y e, /Q ALy By (Pa. Q) 42(Q)

1<p<M

Na
—Zt;’/ Ny(@)Ukei (P, q) dI'(q) —52?)/82 Lijarnj(@)Usi (P, q) dI'(q)
= I 2,

- Z égb/Q ijabEI:&j(PmQ) dQ(Q) - Z éli]j/n El:[ij(PmQ) dQ(Q) =0 (24)

1<p<M 1<q<N,g#n

Again, note that Egs. (23) and (24) do not involve any singular integration, because the piecewise-
constant strain interpolation allowed one to recast all potentially singular integrals into (nonsingular) con-
tour integrals oved(2,, in Eqg. (23) and oved (2, in Eq. (24).

For the numerical evaluation of integrals on cells which extend horizontally to infinity (or on their

boundary), the following mapping is used for the horizontal coordinat€)):

ZEZQ(Q) =170

e (lses (25)

where the infinite element is such that eithgr< z42(Q) < 400 or —oco < x2(Q) < —r0, the= sign being

adjusted accordingly. In particular, this mapping is such that:

1 4
mdy(@ = {m +o(|1 —5\)}615

Since all kernels in the domain cell integrations g — P|*), all integrals over infinite cells are thus
converted into nonsingular integrals over a bounded region in the parameter space and thus can be evaluated
using ordinary Gaussian quadrature.

Egs. (23) and (24) have therefore the following respective matrix forms:
{0} = [Be{€°} + [Be{€°} + [Bed{e} + {f.) (26)
{0} = [BSC]{éC} + [BSS]{‘%S} + [Bscl{e} +{est +{f.} (27)

where subscriptg ands refer to the coating and the substratum, respectively.

For a finite step, Egs. (26) and (27) can, respectively, be replaced by the finite incremental forms
{0} = [B.J{Ae%} + [Be{Ae"} + [Be{Ae} + {Af } (28)

{0} = [BSC]{éC} + [Bss}{és} + [Bsc{Ae} + {Aes} + {Af,} (29)
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4.2 Euler backward algorithm for isotropic material

Euler backward method, for isotropic materials, acturally reduces to an elastic predictor-radial return method
(Simo and Taylor, 1985) in the context of rate-independent plasticity with the Von Mises yield criterion and

an associated flow rule. The yield criterion is, assuming linear isotropic hardening, is

f(s) = |s| = V/2/3(k + E"e") = 0 (30)

wheres = o — 1tr(o)1 is the deviatoric stresd( second-order unit tensor) ane| = (s:8)/2, eP is the
cumulated equivalent plastic strainis the shear yield strength aiitf the hardening modulus.

A trial deviatoric stress is introduced as
Sp.1 = 8o +2GAe, (31)
wheree is the deviatoric strain. The deviatoric strass ; at the end of the step is then given by
Spt1 =811 —2(G+ EP/3)An (32)
where

n = Snt1/|Snt1]
eb  —eh=1/2/3)
Due tos, 11 = |s,+1|n, n is also determined in terms of the trial elastic streSs, according to
n = SZ—H/ |83;+1| (33)

From (31) and (32), it then follows that the enforcement of the consistency condition reduces to a simple

scalar equation, which yields:

_ ‘Sg+1| —\/2/3(k + EPer)
= (2G + 2E?/3) (34)

As aresult, the plastic strain increment induced by a given total strain increfaeist
Aé = An (35)
Besides, one can define a local tangent opetBxdnrough:

0Ae
@ = D(A€, S(]) (36)

whereS, symbolizes the values of the mechanical variables before application of the strain increment (i.e.

for Ae = 0). The tangent operatdD, obtained by differentiating Eq. (35) with respectde, is given by:

1 3G 1
. — D 5P _Z
D(Ae; Sp) o [3G+ SV2/3(k+ EPe)n@n + 2GAI ~ 319 1) (37)

An extension of this very common constitutive integration scheme to anisotropic plasticity is proposed

in De Borst and Feenstra (1990).
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a=m

a=m+1

b=n+1 b=n b=0 (infinite)

Fig. 5 Discretization into integration cells

4.3 Elastoplastic steady-state algorithm

The elastoplastic solution algorithm follows closely the adaptation of the Simo and Taylor (1985) approach
proposed in Bonnet and Mukherjee (1996): equations (28)—(29) are solved for the unknown increments of
total and plastic strains, using the consistent tangent operator.

In the steady-state case, the computational domain is horizontally infinite, and the infinite cells are
used. Collocation points with the same coordinate are numbered using two indiees which range in
the vertical and horizontal subdivisions of the rectangular mesh, respectively. Theitades increasing
consecutive values in the direction opposite to the motion (figure 5), and in particular the rightmost infinite
cells are labelled by = 0; this arrangement is similar to that made in Dang Van and Maitournam (1993)
in the context of finite element method, except that no infinite cells were used in the latter reference. The

horizontal widthAzx, of the cells is related to the time step through

At = AIQ/V

and in particular must therefore be constant over the mesh. As a consequence, the strain infegrment

becomes a differences between this cell and its left horizontal neighbour:

{Ae}y = {e}ps1 — {eh

(where the ‘vector{e}, gathers the values @f, ;, for a fixed indexb) and similarly for the increments of

plastic strains. Also, the initial distribution of plastic strdi}’ is prescribed through:

{e}v—o = {e}/
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To solve globally for the plastic and total strain increments, the Newton method is applied to the system

(28)~(29). The additive correctionse'| ") = Ac!’) + ') thus solve the linear system of equations
[Be{D°:6e} + [Bo,[{D*:06"} + [B.]{5e}
= —[Be{A&°} — [Bos]{A&°} — [B.J{Ae} — {Af.} (38)
(B J{D®:66°V} + [By J{D":6e" "V} + [Byo] {0} + {de,)}
= —[BJ{e°} — [Bis[{€°} — [BsJ{Ae} — {Ae,} — {AF,} (39)

and the iterate$de (¥} are computed until the system (28)—(29) is satisfied.
The solution algorithm for the steady-state case is:
(1) initialization: {&*¢="}, = {&}/ (b=0,1,...);
(2) Calculation of {e°(¥} and{e*(")} from Egs. (28) and (29), respectively;
(3) Calculation of {s(}: {s5®} = {L: (es® — "))} for the substratum
it f({s"@}) < {0} then
goto (5)
else
forb=0,1,...do
{ssH T = {s*D}, +2G{Ae*P} (b =0,1,...)
it f({s*C+D}T,) > {0} then
{0 = (&) + {Andga;
else
{Ss(z‘ﬂ)}bH _ {ss(z‘+1)}bT+1
end if
end for
end if
(4) Prepare for next iteration: 7 := i + 1, goto (2);

(5) end

4.4 Elastic contact stress analysis

The elastic roller (Figure 6), ocupying the domd#i of boundaryl™ is modelled by means of ordinary
displacement boundary integral equations, using the Kelvin (full-space) fundamental solution. Introducing
a boundary element discretization and collocating the resulting integral equation at displacement nodes
yields the relation:

[H|{u} = [G]{t} (40)
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y
h
(oX r \

Fig. 6 Aroller over a coated half-space

where{u} and{t} are vectors of nodal displacements and tractions on the roller boundajifaeed|G|
are the BEM coefficient matrices. After introducing boundary conditions away from the area of potential
contact/’;, the system (40) is reduced by condensation into a system of equations for the displacements

{u!} and tractiongt, } onI'":

[Ho{ue} = [Go{ta} + {fa} (41)

where the superscriptindicates quantities defined on the rollg’. ;] and[G.. ] are the condensed BEM
coefficent matrices and the vectof’ } incorporates the contribution of known boundary data.
Assuming that both the coating and the substratum remain elastic, the discretized equations (22) and
(26) reduce to:
{ua} = [Gaal{ta} + [Cacl{e"}
[Beel{e“} = [Deal{ta}

The displacement§u, } can be expressed in terms of contact tractipfag by eliminating{e°} between

the two equations; one obtains:
{ua}t = [Ril{t.} with  [Ry] = [C\] [Bccrl[Dca] + [Gaal (42)
On the area of potential contact, we introduce the following equilibrium and compatibility conditions

{ua} —{uz} = {A} - {U} (43)
{ta} +{t.} = {0} (44)

where{U} stands for relative position vector between contact points pair§ Ajds the initial gap vector

of the relative contact point pairs. Using these two equations together with Egs. (41) and (42), the following
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matrix equation between the relative displacem{dit and the tractior{t,} on I, is obtained:
[Ro]{t.} — [H, J{U} = {F} (45)
where
[Ro] = [H,J[Ra] + [G]
{F} =[H, J{A} - {f.}

To solve the contact problem, Eq. (45) is supplemented with the Coulomb friction law and the non-
penetration conditiogU,,} > {0}. The contact solutioft, }, {U} is then found by means of an iterative
procedure (see, for example, Antes, Steinfeld, arihdlie (1991), Huesmann and Kuhn (1995) and many

others).

5 Numerical examples

In order to test numerically the proposed boundary-domain integral equation for a coated half-space in 2-D
plane strain, stress analysis in elastic contact state and elastoplastic implementations under statically Hertz

contact and steady-state elastoplastic rolling contact have been studied.

5.1 Example 1: elastic coated half-space indented by an elastic punch

The indentation of a coated half-space by an elastic punch, in 2-D plane strain conditions, is considered,
with the material and geometrical data as follows{punch) =F, (substratum) = 210 GPa,(punch) =z,
(coating) =v, (substratum}= 0.3, punch radiusk = 1m, total applied vertical load® = 2.2225 x 108N/m

(see figure 7, where the distributed loadvis= P/(2R)). The punch is not moving. Various values will

Y

X

Fig. 7 Indentation of a coated half-space by an elastic punch
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Fig. 8 Example 1: effect of the coating stiffness on normal contact stress

be considered for the thicknessthe Coulomb friction coefficient and the Young moduli of the coating.
The punch is modelled using 62 quadratic isoparametric boundary elements, including 20 on the potential
contact zone. The potential contact boundary on the coating is divided into 20 quadratic isoparametric
elements. The coating is divided into 28 rectangular cells, including 2 infinite cells,$08.1 m.

For h = 0.1 m and frictionless contaciu( = 0.0), normal contact stress distributions are shown in

Figure 8 for several values of the coating stiffndss For E. = E, the present results agree well with
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Fig. 9 Example 1: effect of the coating thickness on the normal contact stress
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Fig. 10 Example 1: effect of the friction coefficient on the normal contact stress
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the analytical solution. The maximum contact pressure is seen to increasg wittile the contact area

decreases. Figure 8 also shows the normal contact stress distribution obtained for an anisotropic coating

material with the following material constants, = 570 GPa,E, = E, = 140 GPa,G,, = 57 GPay,, =

0.068, vy, = 0.4, andv,, =

2e+08

0.277.
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Fig. 11 Example 1: effect of the friction coefficient on the tangential contact stress
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Fig. 12 Example 2: effect of the coating stiffness on plastic shear strain (plotted agdarsgt = 0.1a), with h = 0.2a.

Next, assumings, = 2F,, results for various coating thicknesses (meshes along-thieection kept
unchanged, and divisions along thedirection are 1§ = 0.1m), 2 (» = 0.15m), 2 (. = 0.2m) and 4
(h = 0.4m)) are shown in figure 9. The coating thickness is seen to have little effect on the results.

The influence of frictional coefficient on normal contact pressure and tangential contact traction is dis-
played in figure 10 and figure 11, respectively (wih = E,). The tangential contact stress is seen to be
much more influenced by the frictional coefficient than the normal contact stress. The stick area increases

with the frictional coefficient.

5.2 Example 2: elastic-plastic response of a coated half-space under a fixed Hertz load

Here, the influence of the coating material parameters, the coating thickness and the frictional coefficient on
the distribution of plastic strains in the substratum is considered. The elastic modulus of substi@fum is
210 GPa, Poisson ratia. = vs = 0.3. The shear yield limit in the substratumdg = 159.0 MPa; the Hertz
maximum contact pressure is choserPdé=4.5, and the contact half-width as= 1 mm. The coating has
been subdivided into 41h(= 0.05a), 82 (h = 0.1a), 123 ( = 0.15a) and 164 h = 0.2a) quadrilateral
elements, two, two, eight and eight of which are infinite elements and the remaining are constant elements
with size0.05a x 0.2a (a=1mm is the contact half-width). 315 elements were used in the substratum: 30
infinite elements and 285 quadrilateral constant elements ofislzex 0.2a.

Figure 12 illustrates the influence of the coating Young modulus (with0.2a): the plastic strains,,,,
plotted against: for y = 0.1a, are seen to decrease with increasing stiffness of the coating, as expected.

Similarly, figure (13) shows the decrease of plastic strains for a hard codiing (100E) as the coating
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thickness increases. In both cases, frictionless contacp(ie0) is assumed. Next, the influence jofs
shown (withE,. = 100E, h = 0.1a) in figure 14: plastic strains in the substratum are seen to increase with
. Finally, an anisotropic coating is considered, with the material param@tets 10E,, £, = E, = E;,

Vgy = Vg, = 0.3333, vy, = 0.3, = 115.118 MPa, a2 = 31 = 0.25, cues = 0.3333, a3 = 1.75 (Borst

and Feenstra, 1990) and with= 0.2a. Plastic strains ay = 0.2a and along thec-direction are shown

in figure 15 for two meshes characterized by subdivision paraméfgrs- 4 and M, = 8 respectively;

results for both meshes are very similar.

5.3 Example 3: elastic-plastic response of a coated half-space under a moving Hertz load

The third example is used to investigate elastoplastic steady-state rolling contact, with constitutive and
loading parameters as follows: Young modulis = 207 GPa, Poisson ratio, = v. = 0.3, shear yield

limit £, = 159.118 MPa, hardening moduluB? = 69 GPa. Hertz loading is assumed in this analysis,
with a maximum Hertz contact pressufe= 5.0k,. Various values are considered for the Young moduli

in the coating and the friction coefficient between the roller and the coating. Meshes with 1818 elements
(substratum), 36 of which are infinite elements (mesh 1) or with 738 elements, 36 of which are infinite
elements (mesh 2), and 101 elements (coating), 4 of which are infinite element (mesh 1) or 41 elements,
2 of which are infinite elements (mesh 2), are used. The cell size is 0.2a*0.2a (a=0.5mm is the contact

half-width). The coating thickness is first assumed as 0.2a.
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Fig. 13 Example 2: effect of the coating thickness on plastic shear strain (plotted agaiosty = 0.1a), with

E. =100E,
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Fig. 14 Example 2: effect of the frictional coefficient on plastic shear strais(0.0)

The special case of a homogeneous half-space (i.e. coating and substratum have same material parame-
ters) allows comparisons to other published results. Figure 16 displays the plastiegiragsinst: and
under the load. The results obtained using the present approach are larger than those of Bhargava, Hahn, and
Rubin (1988) and Dang Van and Maitournam (1993) obtained using the finite element method (FEM), but
reproduce well those of Lederer, Bonnet, and Maitournam (1998) who also used a boundary-domain inte-
gral equation approach. The results obtained using meshes 1 and 2 are nearly identical, and the coarser mesh

2 will be used in the sequel. In addition, the results obtained for elastic shakedownl (15a,y = 0.0)
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Fig. 15 Example 2: plastic distribution along thedirection ¢ = 0.1a) for P/k = 4.5 andy = 0.0
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Fig. 16 Example 3: stressyy along ther-axis

and plastic shakedown: (= 0.85a,y = 0.0) shown in Figs. 19 and 20, respectively, reproduce very well
those of Lederer, Bonnet, and Maitournam (1998).

In an attempt to explain this discrepancy between FEM and BEM, the stjgsgenerated along the
x-axis by constant initial straing{, = 1., £,, = —0.5, £, = 0.0) on two symmetrical infinite inclusions
defined by! < x < 2¢ andr{ < |y| < 400 (see Fig. 17, wheré = 1) have been calculated. The results
for o, (z,y = 0) shown in Fig. 18 for various values ofshow that the stress created by constant plastic
inclusions going to infinity is significant unlessis quite large, i.e. the inclusions are quite remote. Here
and in Lederer, Bonnet, and Maitournam (1998), the introduction of infinite cells allow to account properly
for the possibility of nonzero (and asymptotically constant) plastic strain at infinity, which is seen here to
have a significant impact on the overall results, whereas this is not the case in Bhargava, Hahn, and Rubin

(1988) and Dang Van and Maitournam (1993).

1 1 y
infinity infinity

- 1 1

( Lo ro | )
\ \
zone l zone 2

X

Fig. 17 Example 3: constant plastic strain zones in half-plane
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Fig. 18 Example 3: stressyy along thez-axis from two unlimited constant plastic strains

Fig. 21 indicates that plastic shear strains decrease as the coating stiffness increases. The influence
of friction coefficient and of coating thickness (féil = 50E2, i.e. a very hard coating) on plastic shear
strains are presented on Figs. 22 and 23, respectively; plastic shear strain is seen to increase with the friction

coefficient and to decrease as the coating thickness increases.
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Fig. 19 Example 3: stress-strain loops produced by successive passes atdepthl5a (y = 0.0) for P/k = 5.0
andy = 0.0
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Fig. 20 Example 3: stress-strain loops produced by successive passes atdepit85a (y = 0.0) for P/k = 5.0

andy = 0.0

6 Conclusion

An integral boundary-domain formulation for steady-state elastoplastic contact over a coated half-space has
been obtained. Since the homogeneous half-space fundamental solution was used, new singular domain in-
tegrals over the coating arise. Their regularization is addressed, resulting in overall weakly singular integral

equations. The presented formulation has been demonstrated on numerical examples involving elastic con-
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Fig. 21 Example 3: normalized plastic shear strain versus depth fer0.0
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Fig. 22 Example 3: normalized plastic shear strain versus depth fe10.0

tact and elastoplastic analysis for both fixed or moving Hertz loads. Numerical results compare satisfactorily
with other published results when available. Some discrepancies with FEM computations on truncated do-
mains appear to be attributable to the significant influence on stresses of the presence of nonzero strains up
to infinity, which are not taken into account in the FEM simulations.

At this point, emphasis has been put on modelling a coated half-space, under either elastic or elastic-
plastic conditions. In particular, care has been taken in implementing a constitutive integration algorithm
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Fig. 23 Example 3: normalized plastic shear strain versus depth fer0.0
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in the case of loads moving on elastic-plastic media. On the other hand, contact conditions in the case of
moving loads are, as of yet, treated under symplifying assumptions (e.g. Hertzian loads assumed). Likewise,
at present, the redistribution of contact loading induced by plasticity is not taken into account. Future work
aimed at improving the accuracy of our approach includes implementing a treatment of contact similar to
that proposed in Kalker (1990) and Gonzalez and Abascal (1998) for elastic rolling and incorporating the
coupling between contact and plasticity effects. In addition, the integral formulation presented may also be

implemented for three-dimensional steady-state elastoplastic rolling/sliding analyses.
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