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Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach

Introduction

The consideration of sensitivity analysis of integral functionals with respect to shape parameters arises in many situations where a geometrical domain plays a primary role; shape optimization and inverse problems are the most obvious, as well as possibly the most important, of such instances.

It is well known that, apart from resorting to approximative techniques such as finite differences, shape sensitivity evaluation can be dealt with using either the direct differentiation approach or the adjoint variable approach (see e.g. [START_REF] Burczyński | Recent advances in boundary element approach to design sensitivity analysis -a survey[END_REF], the present paper being focused on the latter. Besides, consideration of shape changes in otherwise (i.e. for fixed shape) linear problems makes it very attractive to use boundary integral equation (BIE) formulations, which constitute the minimal modelling as far as the geometrical support of unknown field variables is concerned.

In the BIE context, the direct differentiation approach rests primarily upon the material differentiation of the governing integral equations. This step has been studied by many researchers, from BIE formulation in either singular form [START_REF] Barone | A boundary element approach for recovery of shape sensitivities in three-dimensional elastic solids[END_REF][START_REF] Mellings | Flaw identification using the boundary element method[END_REF] or regularized form [START_REF] Bonnet | Regularized BIE formulations for first-and second-order shape sensitivity of elastic fields[END_REF][START_REF] Matsumoto | Optimum design of cooling lines in injection moulds by using boundary element design sensitivity analysis[END_REF][START_REF] Nishimura | Regularized boundary integral equations for an inverse problem of crack determination in time domain[END_REF][START_REF] Nishimura | Application of boundary integral equation method to various crack determination problems[END_REF]. Following this approach, the process of sensitivity computation needs the solution of as many new boundary-value problems as the numbers of shape parameters present. The fact that they all involve the same, original, governing operator reduces the computational effort to the building of new right-hand sides and the solution of linear systems by backsubstitution. The usual material differentiation formula for surface integrals is shown in [START_REF] Bonnet | Differentiability of strongly singular and hypersingular boundary integral formulations with respect to boundary perturbations[END_REF] to be still valid when applied to strongly singular or hypersingular formulations.

Thus, the direct differentiation approach is in particular applicable in the presence of cracks.

The adjoint variable approach is even more attractive, since it requires the solution of only one new boundary-value problem (the so-called adjoint problem) per integral functional present (often only one), whatever the number of shape parameters. In connexion with BIE formulations alone, the adjoint variable approach has been successfully applied to many shape sensitivity problems (see e.g. [START_REF] Aithal | Shape sensitivity analysis in thermal problems using BEM[END_REF]Bonnet, 1995a;Burczyński, 1993a;[START_REF] Burczyński | Boundary elements in shape design sensitivity analysis and optimal design of vibrating structures[END_REF][START_REF] Burczyński | Shape design sensitivity analysis via material derivative -adjoint variable approach[END_REF][START_REF] Choi | Boundary Integral Equation Method for Shape Optimization of Elastic Structures[END_REF][START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF]. This relies heavily upon the possibility of formulating the final, analytical expression of the shape sensitivity of a given integral functional as a boundary integral that involves the values taken by the primary and adjoint states on the boundary. However, obtaining this boundary-only expression raises mathematical difficulties when the geometrical domain under consideration contains cracks or other geometrical singularities; non-integrable terms associated with e.g. crack tip singularity of field variables appear in some expressions. This paper deals with the formulation of the adjoint variable method applied to sensitivity analysis, in connexion with the use of BIE formulations for the transient wave equation. Typical problems where this approach is useful are inverse problems of cavity or crack detection from transient wave measurements on a part of the external boundary, where the integral functionals considered express the gap between measured and computed data on the external boundary, e.g. in the form of a least-squares distance. However, the sensitivity results are derived for more general boundary integral functionals. The formulation of the adjoint problem and the corresponding boundary-only formula for the shape sensitivity of the functional are established for the case of an unknown cavity. The latter is then shown to become inconsistent in the limit when the cavity becomes a crack, due to the non-integrability of a certain domain integral, causing an integrationby-parts process to break down. However, resting on the analysis made for the case of a cavity, functional shape sensitivity expressions consistent with the use of BIE formulations and applicable to crack identification problems are derived in three different forms. Firstly, simple shape transformations (translations, rotations, expansion) are considered. Secondly, a sensitivity formula involving integrals on the crack, on an arbitrary tubular neighbourhood of the crack front and on its boundary is derived. Thirdly, the limiting case of the latter result when the tubular neighbourhood shrinks around the crack front is shown to yield a sensitivity formula involving the stress intensity factors of both the forward and the adjoint solutions. All sensitivity results presented here are obtained from the formulation of the continuous problem, i.e. are not directly obtained from the BIE formulations but are tailored for use in conjunction with the BEM. It is also possible to define adjoint problems and sensitivity results directly from the BIE formulations [START_REF] Bonnet | Boundary element based formulations for crack shape sensitivity analysis[END_REF].

Motivation for shape sensitivity analysis

Consider a bounded domain B with external boundary S which contains a defect in the form of either a cavity V of boundary Γ (Fig. 1a) or a crack with crack surface Γ (Fig. 1b); Γ is not assumed to be simply connected (i.e. multiple defects are not ruled out). Let Ω denote the actual body (i.e.containing the defect):

Ω = B \ V or Ω = B \ Γ.
The framework adopted in this paper is that of transient linear wave propagation. Both scalar and vector (elastodynamic) cases are considered. In the interest of clarity, the investigation is first carried out in detail for scalar wave problems (sections 3 to 7). The corresponding developments and results for elastodynamics are then presented in section 8. Three-dimensional configurations are assumed unless explicitly stated otherwise. the defect surface is flux-free, the primary physical variable of interest u (e.g. acoustic pressure), termed 'potential', and its normal derivative p = ∂u/∂n are related by the field equation:

∆u - 1 c 2 ü = 0 (in Ω) (1) 
(where c is the wave velocity), the boundary conditions:

u = ū (on S u ) p = p (on S p ) p = 0 (on Γ) (2) 
(where S u , S p define a partition of S), and the initial conditions:

u = u = 0 in Ω, at t = 0 (3)
In the case of a crack, the variable u is allowed to jump across Γ; [[u]] ≡ u + -u -= 0. The problem thus defined is usually referred to as the forward, or primary, problem.

Consider the problem of determining the shape and position of the defect using experimental data and physical quantity governed by problem (1,2,3), as in ultrasonic measurements. The lack of information about V and Γ is compensated by some knowledge about u on S (redundant boundary data). Assume for example that a measurement û(x, t) of u (resp. p(x, t) of p) is available for

x ∈ S p (resp. x ∈ S u ) and t ∈ [0, T ]. The usual approach for finding Γ is the minimization of some distance J between the computed and measured quantities, e.g.

J (Γ) = J(u Γ , p Γ , Γ) = 1 2 T 0 Sp (û -u Γ ) 2 dS dt + 1 2 T 0 Su (p -p Γ ) 2 dS dt (4)
where (u Γ , p Γ ) pertains to the solution of problem (1,2,3) for a given Γ. Using classical optimization techniques, the minimization of J with respect to Γ needs in turn, for efficiency, the evaluation of the functional J and its gradient with respect to perturbations of Γ.

Other kinds of sensitivity problems with different motivations (e.g. optimization) can be considered as well. Let us thus introduce the following generic objective function:

J (Γ) = J(u Γ , p Γ , Γ) = T 0 Sp ϕ u (u Γ , x, t) dS dt + T 0 Su ϕ p (p Γ , x, t) dS dt (5)
Since (i) functionals J of the type (5) depend only on boundary quantities, (ii) the forward problem

(1,2,3) is linear and does not involve sources distributed over the domain Ω, and (iii) variations of boundary shapes are of primary concern, the boundary element method (recent expositions of which are e.g. [START_REF] Aliabadi | The boundary element method: applications in solids and structures[END_REF][START_REF] Bonnet | Boundary integral equations methods for Solids and Fluids[END_REF][START_REF] Wrobel | The boundary element method: applications in thermo-fluids and acoustics[END_REF]) is adopted as the solution tool for the forward problem (1,2,3), and the adjoint problem as well later on.

3 Forward problem in terms of boundary integral equations

It is possible to distinguish two basic approaches for solving the forward problems formulated in the previous section by the boundary element method. One is based on the time-dependent fundamental solution (time-domain formulation), the other uses the time-independent fundamental solution together with the dual reciprocity technique. Both are abundantly documented, see e.g.

the review papers by [START_REF] Beskos | Boundary element methods in dynamic analysis[END_REF][START_REF] Beskos | Boundary element methods in dynamic analysis, part. II (1986-1996[END_REF] and the numerous references therein.

The first approach applied to the cavity problem leads to the following boundary integral equation in the time domain:

1 2 u(x, t) + - ∂Ω H(x, y, t) u(y, t) dS y - ∂Ω G(x, y, t) p(y, t) dS y = 0 (6)
where G(x, y, t) is a time-dependent fundamental solution of wave equation, i.e. solves: where G(x, y) is the time-independent fundamental solution of the Laplace equation:

∆G - 1 c 2 G + δ(y -x)δ(t) = 0, x, y ∈ R m , m = 2
∆G + δ(y -x) = 0, x, y ∈ R m , m = 2 or 3
and ũα (y, t) is a particular, known, solution to the field equation ∆ũ α = r α (y) and pα (y, t) is the corresponding flux at the boundary.

Either equations ( 6) or ( 7) can be applied to the cavity problem. If these equations are used to the crack problem with collocation points x on both crack faces Γ ± , then two identical equations would be formed, with the resulting set of equations being singular. In order to overcome this problem without the use of the subdivision technique, which is not convenient in geometrical inverse problems and variable domains, a new independent equation for the flux, obtained by evaluating the normal derivative of the potential equation at collocation points x ∈ Γ, is used. This flux BIE reads

p ± (x, t) + n ± i (x)= Γ H ,i (x, y, t) [[u]](y, t) dS y + n ± i (x) S H ,i (x, y, t) u(y, t) -G ,i (x, y, t) p(y, t) dS y = 0 (x ∈ Γ ± ) (8)
when obtained from the time-domain potential BIE (6), and

p ± (x, t) + n ± i (x)= Γ H ,i (x, y)[[u]](y, t) dS y + n ± i (x) S H ,i (x, y)u(y, t) -G ,i (x, y)p(y, t) dS y = 1 c 2 A α=1 pα (x, t) + n i (x) S H ,i (x, y)ũ α (y, t) -G ,i (x, y)p α (y, t) dS y sα (t) (x ∈ Γ ± ) (9)
when obtained from the dual-reciprocity potential BIE (7), having used that that the particular solutions ũα is continuous across the crack. Hence, the forward problem for the embedded crack is formulated as either (6) collocated on S and (8) collocated on Γ (using a time-domain BIE formulation) or ( 7) collocated on S and (9) collocated on Γ (using a dual-reciprocity BIE formulation).

Note that the primary crack unknown in both flux equations is the jump [[u]](y, t); this is sufficient for the present purposes. However one might also use the so-called dual formulation [START_REF] Portela | Dual boundary element method: efficient implementation for cracked problems[END_REF], whereby both the potential and the flux integral equations are considered for collocation points on Γ; in that case, u + and u -are recovered separately. The dual formulation can be considered for the BIEs in either time-domain or dual-reciprocity forms.

Irrespective of the specific BIE formulation being used, S and Γ are divided into boundary elements, and potentials and fluxes within each element are approximated using the same spatial interpolation functions. In the time-domain formulation, a time interpolation is introduced as well, which results in a system of linear equations having a discrete convolution structure. Alternatively, in the dual-reciprocity formulation, the coefficients sα (t) are expressed in terms of the unknown nodal accelerations. As a result, a system of ordinary differential equations in time is obtained. In all cases, a time-stepping scheme is finally performed.

Sensitivity analysis

Consider in the m-dimensional Euclidean space R m , m = 2 or 3, a body Ω b whose shape depends on a finite number of shape parameters b = (b 1 , b 2 , . . . ). Shape parameters are treated as time-like parameters using a continuum kinematics-type Lagrangian description and initial configuration Ω 0 conventionally associated with b = 0 [START_REF] Bonnet | Regularized BIE formulations for first-and second-order shape sensitivity of elastic fields[END_REF][START_REF] Burczyński | Shape design sensitivity analysis via material derivative -adjoint variable approach[END_REF][START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF]:

x ∈ Ω 0 → x b = Φ(x, b) ∈ Ω b where (∀x ∈ Ω 0 ), Φ(x, 0) = x
The geometrical transformation Φ(•, b) must possess a strictly positive Jacobian for any given b.

Since only first-order derivatives with respect to b are considered in this paper, attention is, without loss of generality, restricted to the consideration of a single shape parameter b.

The initial transformation velocity field θ(x), defined by

θ(x) = ∂Φ(x, b) ∂b b=0
is the 'initial' velocity of the 'material' point which coincides with the geometrical point x at 'time' b = 0.

The following relations hold between the total (or 'lagrangian', or 'material') derivative f = df /db and the partial (or 'eulerian') derivative f = ∂f /∂b of any sufficiently regular function f (x, b):

f = f + ∇f.θ (∇f ) = ∇( f ) -∇f.∇.θ (10) 
The material derivatives of generic domain and boundary integrals are expressed by (see e.g. [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF]:

d db Ω f dΩ = Ω ( f +f div θ) dΩ Ω: any domain (11) d db S f dS = S ( f +f div S θ) dS S: any surface (12)
The surface divergence is defined by div S θ = div θn.∇θ.n, where n is the unit normal vector.

One assumes here that the external boundary S and its neighbourhood is unaffected by the shape transformation, so θ = 0 and ∇θ = 0 on S. However, this is not true when emerging cracks are considered: in this case, θ and ∇θ do not vanish on some neighbourhood of the emerging point (or edge in 3-D problems).

Shape sensitivity: adjoint problem and domain integral formulation

Introduce the following Lagrangian:

L(u, v, p, q, Γ) = J(u, p, Γ) + T 0 Ω ∇u.∇v + 1 c 2 üv dΩ dt - T 0 Su (u -ū)q dS dt - T 0 Su pv dS dt - T 0 Sp pv dS dt (13)
in which the weak formulation of the forward wave problem (1,2,3) appears as an equality constraint term added to the objective function J, the Lagrange multipliers being the trial potential v and flux q.

Taking into account Eqs. ( 10)-( 12), the total material derivative of the Lagrangian ( 13) with respect to a variation of the domain can be expressed as:

d db L(u, v, p, q, Γ) = T 0 Ω ∇ u .∇v + 1 c 2 ü v dΩ dt - T 0 Su q u dS dt - T 0 Su v - ∂ϕ p ∂p p dS dt + T 0 Sp ∂ϕ u ∂u u dS dt + T 0 Ω ∇u.∇v + 1 c 2 üv div θ -(∇u⊗∇v + ∇v⊗∇u) : ∇θ dΩ dt (14)
Note that the terms containing ( v, v) do not appear in this result: they merely reproduce the forward problem constraint on (u, p) and thus collectively vanish if (u, p) is the solution to (1,2,3).

For cracks, the partial derivative (∇u) has generally a r -3/2 singularity along the crack edge dΓ, while ∇( u) and ∇u have the same r -1/2 singularity, where r is the distance to dΓ. For this reason, the total derivative u has been introduced in ( 14) instead of the partial derivative u . The derivations made in this section are therefore valid for both cavity and crack problems.

At this point, it is useful to remark that since the initial conditions u(•, 0) = u(•, 0) hold for any location of the assumed defect, one should assume u (•, 0) = u (•, 0) as well. One then has:

T 0 üv dt = ( uv -vu) t=T + T 0 uv dt (15) T 0 ü v dt = ( u v -v u) t=T + T 0 u v dt (16)
In equation ( 14), the trial function v is now chosen so that the terms which contain u combine to zero for any u. Using Eq. ( 15), one gets:

T 0 Ω ∇v.∇ u + 1 c 2 v u dΩ dt + Ω ( u v -v u) t=T dΩ - T 0 Su q u dS dt - T 0 Su v - ∂ϕ p ∂p p dS dt + T 0 Sp ∂ϕ u ∂u u dS dt = 0 (∀ u, p) (17)
This last result is interpreted as the weak formulation of the adjoint problem, whereby the unknowns v, q solve the wave equation ( 1) together with the boundary conditions

u = ∂ϕ p ∂p (on S p ) q = - ∂ϕ u ∂u (on S u ) q = 0 (on Γ) (18)
and the final conditions

v = v = 0 (in Ω, at t = T ) (19) 
The adjoint problem (1,18,19) appears to be, as is generally the case, a backward evolution problem.

It can be solved in the same way as the forward problem (1,2,3), i.e. using either the time domain formulation (6) or the dual reciprocity formulation ( 7), but with time reversed.

Finally, noting that initial conditions (3), ( 19) imply:

T 0 üΓ v Γ dt = uΓ v Γ t=T t=0 - T 0 uΓ vΓ dt = - T 0
uΓ vΓ dt equation ( 14) allows to express the derivative of J in terms of the primary and adjoint solutions:

dJ db (Γ) = d db L(u Γ , v Γ , p Γ , q Γ , Γ) = T 0 Ω ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div θ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇θ dΩ dt (20)
6 Shape sensitivity: boundary integral formulation (cavity problem)

The formula (20) for the sensitivity of J is expressed by a domain integral. It is therefore not suitable for BEM-based computations. This section aims to show that Eq. ( 20) applied to the cavity problem can be converted into an equivalent, boundary-only, expression.

This step requires integrations by parts. First, it is easy to prove (for example using component notation) that, for arbitrary (sufficiently smooth) scalar fields u, v:

(∇u⊗∇v + ∇v⊗∇u) : ∇θ = div [(∇u⊗∇v + ∇v⊗∇u).θ] -[(∆u)∇v + (∆v)∇u + ∇(∇u.∇v)].θ
Hence, since (u, v) in fact satisfy the field equation ( 1) and the initial conditions (3), ( 19), one has:

T 0 [(∆u)∇v + (∆v)∇u].θ dt = - 1 c 2 T 0 [ u∇ v + v∇ u].θ dt
and hence:

T 0 ∇u.∇v - 1 c 2 u v div θ -(∇u⊗∇v + ∇v⊗∇u) : ∇θ dt = T 0 div ∇u.∇v - 1 c 2 u v θ -(∇u⊗∇v + ∇v⊗∇u).θ dt (21)
This identity is then substituted into Eq. ( 20). Under the condition that the integral of the righthand side of ( 21) is convergent (this provision will prove important for crack problems), application of the divergence formula yields the following boundary-only expression for dJ /db:

dJ db (Γ) = T 0 ∂Ω ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ θ n -(q Γ ∇u Γ + p Γ ∇v Γ ).θ dS dt (22) 
(having put θ n = θ.n). An alternative form of the above expression can be obtained by splitting gradients into tangential gradient ∇ S and normal derivative according to the definition ∇ S w = ∇w -(∇w.n)n. It reads:

dJ db (Γ) = T 0 ∂Ω ∇ S u Γ .∇ S v Γ -pq - 1 c 2 uΓ vΓ θ n -(q Γ ∇ S u Γ + p Γ ∇ S v Γ ).θ dS dt (23) 
Equation ( 22) and its variant form (23) hold for any domain Ω. For cavity identification problems, one has Ω = B \ V , θ = 0 on S (external boundary unperturbed) and p = q = 0 on the cavity boundary Γ, so that Eq. ( 22) reduces to:

dJ db (Γ) = T 0 Γ ∇ S u Γ .∇ S v Γ - 1 c 2 uΓ vΓ θ n dS dt (24)
Formula ( 24) allows the computation of the derivatives of any objective functional J of the type ( 5) with respect to shape parameters. In particular, since ∇ S u Γ , ∇ S v Γ are known from the knowledge of u Γ and v Γ on Γ only, the sensitivity ( 24) is computable directly from the BEM solution of the primary and adjoint problems.

7 Shape sensitivity: boundary integral formulation (crack problem)

Consider now the case where the unknown defect is a crack, i.e. the limiting case of a cavity bounded by two surfaces Γ + and Γ -identical and of opposite orientations (Fig. 2). It is tempting to still apply Eq. ( 24) to compute sensitivities with respect to crack location perturbations. However, Eq. ( 24) is not applicable to cracks. For instance, consider a domain shape transformation such that θ n = 0 on the crack surface Γ. This means that crack perturbations along the tangent plane at the crack front (i.e. crack extensions) are allowed. But then Eq. ( 24) gives dJ /db = 0, which is certainty not true in general. In contrast, when Γ is the piecewise smooth boundary of a cavity, This section aims at showing how these difficulties can be overcome. For special cases of domain transformations, the domain integral disappears or is easily transformed (section 7.1), whereas the general case is handled by isolating a neighbourhood of the crack front and performing either an additive decomposition of the transformation velocity field (section 7.2) or a limiting process (section 7.3). Both approaches yields a fully general three-dimensional sensitivity formula; the former is in integral-invariant form and involves a residual domain integral while the latter uses the primary and adjoint singularity factors without any domain integration.

θ n = 0 implies that the cavity is unperturbed. Γ Γ + - n = n -- _ _

Special cases of domain transformations

Isolate a neighbourhood D ⊂ Ω of the crack bounded by the surface ∂D = C (Fig. 3) and consider the transformation velocity fields θ associated with special shape transformations of the crack: 

η D (m -2)∇u Γ .∇v Γ - m c 2 uΓ vΓ dΩ = η(m -2) C p Γ v Γ dS - 2η c 2 D uΓ vΓ dΩ ( 
dJ db (Γ) = T 0 C 1 c 2 uΓ vΓ -∇u Γ .∇v Γ θ n + (∇u Γ .θ)q Γ + (∇v Γ .θ)p Γ dS dt + η(m -2) C p Γ v Γ dS - 2η c 2 D üΓ v Γ dΩ (25)
where θ is as defined in cases (a), (b), (c) above. The last two integrals in equation ( 25) appear only for the case (b).

The neighbourhood D of boundary S surrounding the crack is arbitrary. In case (b), due to the presence of the domain integral over D, the sensitivity of the functional J, as expressed by equation ( 25), is neither a true boundary-only expression, nor true path-independent integral, even if it does not depend on the choice of the surface C.

The special domain transformations considered here follow the idea introduced by Dems andMróz (1986, 1995) for elastostatics and harmonic problems. They proved that when the transformation of the problem domain corresponds to translation, rotation or scale change then the class of conservation rules and associated path-independent integrals can be derived. This idea was numerically implemented using boundary elements for sensitivity analysis of cracks [START_REF] Burczyński | Path-independent and boundary integral approach to sensitivity analysis and identification of cracks[END_REF] and cavities [START_REF] Burczyński | Boundary and path-independent integrals in sensitivity analysis of voids[END_REF] in static problems. The considerations presented in this section are then an extension of previous works to time-domain dynamical problems.

Additive decomposition of transformation velocity near the crack front

To accommodate the general three-dimensional case with arbitrary crack shape perturbations, let Introduction of this splitting into Eq. ( 20) yields:

dJ db (Γ) = T 0 Ω ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div θ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇θ dΩ dt + T 0 D ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div µ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇µ dΩ dt + T 0 D ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div θ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇ θ dΩ dt (26) having put µ =      θ in Ω θ -θ in D i (i = 1, 2) (27) 
where θ denotes an arbitrarily chosen extension over D of the restriction θ(s) of θ on ∂Γ. By construction µ = O(r), which makes the right-hand side of (21) integrable in that case. Hence, identity (21) followed with application of the divergence formula is used for the first two integrals in (26) above, resulting in:

dJ db (Γ) = T 0 Γ ∇ S u Γ .∇ S v Γ - 1 c 2 uΓ vΓ (µ.n) dS dt + T 0 Σ ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ ( θ.n) -(p Γ ∇v Γ + q Γ ∇u Γ ). θ dS dt + T 0 D ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div θ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇ θ dΩ dt (28)
Note that the integral over Σ, for which the normal n exterior to D is chosen, is the net result of two contributions arising from domain integrations over Ω (velocity θ, normal -n) and D (velocity µ, normal n) respectively. Besides, the integral on Γ is convergent since µ is built so as to vanish at the crack tips.

Equation ( 28) holds independently of the tubular neighbourhood D chosen, although it is not in general path-independent in the sense that a domain integral over D is involved as well and must be computed in practice.

For two-dimensional problems, Eq. ( 28) can be given a simpler form. The tubular neighbourhood D degenerates into disjoint neighbourhoods D i (i = 1, 2) of the two crack tips x i , bounded by curves Σ i (figure 5). One can then take θ = θ i on D i , where the constant vector θ i denotes the value θ(x i ) of the transformation velocity at crack tip i. With this choice, ∇ θ = 0 on D and the domain integral over D in Eq. ( 28) vanishes, yielding the sensitivity formula:

dJ db (Γ) = T 0 Γ du Γ ds dv Γ ds - 1 c 2 uΓ vΓ (µ.n) ds dt - 2 i=1 T 0 C i du Γ ds dv Γ ds -p Γ q Γ - 1 2 uΓ vΓ (θ i .n) -(q Γ du Γ ds + p Γ dv Γ ds )θ i .τ ds dt (29)
where µ is still defined by ( 27), s denotes the arc length coordinate along Γ or Σ i and τ is the unit tangent vector on Σ i oriented in the direction of increasing s.

The sensitivity expressions ( 28) and ( 29) are general in that they hold for any sufficiently smooth transformation velocity θ and are not restricted to simple shape transformations.

For the special case of a crack extension, one has θ n = 0 on Γ and the integral over Γ thus reduces to

- 2 i=1 T 0 Γ i ∇ S u.∇ S v - 1 c 2 u v (θ i .n) dS dt (30) 
(note that θ i .n = 0 vanishes at the tip x i , which makes the above integral convergent). If Γ i are straight, then θ i .n = 0 on Γ i and Eq. ( 29) looks like the usual J-integral; see section 10 for additional comments.

In three-dimensional situations, due to both the curvature of dΓ and the variability of θ along dΓ, any choice of θ will have nonzero gradient and divergence in D, hence no simple choice of θ is expected to make the domain integral in (28) vanish.

Sensitivity formulation in terms of singularity factors

Equation ( 28) holds irrespective of the tubular neighbourhood D chosen. In particular, in an effort to avoid the domain integration,one is led to to investigate the limiting form of Eq. ( 28) as D vanishes. To do so, let D ε = {x, dist(x, ∂Γ) ≤ ε} denote the tubular neighbourhood of ∂Γ having radius ε in any plane normal to ∂Ω, bounded by the tubular surface Σ ε . The domain Ω is thus

partitioned into Ω = Ω ε ∪ (D ε \ Γ),
where Ω ε = Ω \ Dε and Γ ε = Γ \ Dε . Upon introducing this splitting into Eq. ( 20), Eq. ( 26) is again obtained, with D and Σ replaced by D ε and Σ ε . Applying to that identity the divergence formula for the contribution of Ω ε (i.e. away from the crack front, where this is legitimate) and invoking boundary conditions (2 3 , 18 3 ), one obtains:

dJ db (Γ) = T 0 Γε ∇ S u Γ .∇ S v Γ - 1 c 2 uΓ vΓ θ n dS dt + T 0 Σε ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ θ n -(p Γ ∇v Γ + q Γ ∇u Γ ).θ dS dt + T 0 Dε ∇u Γ .∇v Γ - 1 c 2 uΓ vΓ div θ -(∇u Γ ⊗∇v Γ + ∇v Γ ⊗∇u Γ ) : ∇θ dΩ dt (31)
where n is the outward unit normal to Ω ε . Now, the limiting form when ε → 0 of Eq. ( 31) is sought. In order to do so, one recalls that near the crack front the potential v admits the expansion:

u = r 2π K u (s, t) sin φ 2 + O(d) = u s (r, φ, z) + O(d) (32) 
and similarly for v with singularity factor K v (s, t); (r, φ) denote local polar coordinates, attached to a point x(s) of ∂Γ characterized by its arc length s, in the plane orthogonal to ∂Γ and emanating from x(s), and z is such that (r, φ, z) define cylindrical coordinates. Since by virtue of these expansions ∇u.∇v = O(1/r), the integral over D ε vanishes in the limit ( dV = r(1 + O(r)) drdφ ds in D ε ). Moreover, it can be verified that [[∇u.∇v]] = O(r), and hence that the integral over Γ ε becomes in the limit ε → 0 the corresponding, convergent, integral over Γ. Finally, under mild smoothness assumptions on the closed curve ∂Γ and the velocity field θ, one has:

T 0 Σε ∇u.∇v - 1 c 2 u v θ n -(p∇v + q∇u).θ dS dt = T 0 ∂Γ π -π [∇u s .∇v s ]θ n (s) -(p s ∇v s + q s ∇u s ).θ(s) εdφ ds dt + O(ε 1/2 )
The integral in the right-hand side, which yields a finite contribution as the radius ε of the tubular neighbourhood goes to zero, can be evaluated in a straightforward way using expansions (32). This last calculation results in the following expression of dJ /db:

dJ db (Γ) = - 1 4 Γ θ n (s) T 0 K u (s, t)K v (s, t) dt ds (33)

Extension to elastodynamics

The analysis conducted in the previous sections can be extended to linear elastodynamics in a straightforward way. The elastodynamic forward problem under consideration is such that the displacement u, strain ε and stress σ are related by the field equations:

div σ -ρü = 0 σ = C : ε ε = 1 2 (∇u + ∇ T u) (in Ω) (34) 
(C: fourth-order elasticity tensor), the boundary conditions:

u = ū (on S u ), p = p (on S p ), p = 0 (on Γ), (35) 
(where p ≡ σ.n is the traction vector, defined in terms of the outward unit normal n to Ω) and the initial conditions:

u = u = 0 (in Ω, at t = 0) (36) 
The generic objective function considered is of the form:

J (Γ) = J(u Γ , p Γ , Γ) = T 0 Sp ϕ u (u Γ , x, t) dS dt + T 0 Su ϕ p (p Γ , x, t) dS dt (37)

Adjoint problem and domain integral formulation

The elastodynamic countarpart of the Lagrangian ( 13) is given by:

L(u, v, p, q, Γ) = J(u, Γ) + T 0 Ω [σ : ∇v + ρü.v] dV dt - T 0 Su (u -ū).p dS dt - T 0 Su p.v dS dt - T 0 Sp p.v dS dt (38)
where (v, q), the test functions of the forward problem in weak form, act as Lagrange multipliers.

Then, the analysis of section 5 essentially repeats itself. The elastodynamic adjoint state (v, q) is found to solve the field equations (34), the boundary conditions:

q = - ∂ϕ u ∂u (on S p ) v = ∂ϕ p ∂p (on S u ) q = 0 (on Γ ± ) (39) 
and the final conditions:

v = v = 0 (in Ω, at t = T ) (40) 
The derivative of J, expressed in domain integral form, is given by:

dJ db = d db L(u Γ , v Γ , p Γ , q Γ , Γ) = T 0 Ω [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ]div θ -[σ(u Γ ).∇v Γ + σ(v Γ ).∇u Γ ] : ∇θ dV dt (41)

Shape sensitivity: boundary integral formulation (cavity problem)

The counterpart of identity ( 21), verified for any elastodynamic displacements u and v satisfying the field equation ( 34) and initial and final rest conditions, respectively, is:

T 0 [σ(u) : ∇v + ρü.v]div θ -[σ(u).∇v + σ(v).∇u] : ∇θ dt = T 0 div [σ(u) : ∇v -ρ u. v]θ -[σ(u).∇v + σ(v).∇u].θ dt (42)
This identity, when applied to (41) for the cavity problem, yields the following counterpart to ( 22):

dJ db = T 0 ∂Ω [σ(u Γ ) : ∇v Γ -ρ uΓ . vΓ ]θ n -[p Γ .∇v Γ + q Γ .∇u Γ ].θ dS dt (43) 
Since θ = 0 on S and p = q = 0 on Γ, the above equation reduces to:

dJ db = T 0 Γ [σ(u Γ ) : ∇v Γ -ρ uΓ . vΓ ]θ n dS dt (44) 
The general expression of the bilinear form σ(u) : ∇v in terms of ∇ S u, ∇ S v and p = q (assuming isotropic elasticity) is:

σ(u) : ∇v = 1 µ p.q - 1 2(1 -ν) (p.n).(q.n) + µ 2ν 1 -ν div S u div S v + 1 2 (∇ S u + ∇ T S u) : (∇ S v + ∇ T S v) -(n.∇ S u).(n.∇ S v) (45) 
where ν is the Poisson ratio and µ is the shear modulus. Since p = q = 0 on Γ, substitution of Eq. ( 45) into Eq. ( 43) produces an expression of dJ /db in terms of the fields (u, v) and their tangential derivatives, i.e. easily computable in a BEM framework.

Shape sensitivity: boundary integral formulation (crack problem)

Special cases of domain transformations. The treatment of Sec. 7.1 is then applicable to time-domain elastodynamics, using equation ( 41 

η D (m -2)σ(u Γ ) : ∇v Γ -mρ uΓ . vΓ dΩ = η(m -2) C p Γ .v Γ dS -2ρη D uΓ . vΓ dΩ
(c) Rotation: using the identity ∇w = 2ε(w) -∇ T w (where ε(w): linearized strain tensor), the domain integral over D becomes, in component notation

Ω aj D σ ij (u)v a,j + σ ij (v)u a,i -2[σ ij (u)ε ai (v) + σ ij (v)ε ai (u)] dΩ (46) 
For isotropic elasticity (λ, µ: Lamé constants), one has

σ ij (u)ε ai (v) + σ ij (v)ε ai (u) = λ[(div u)ε ja (v) + (div v)ε ja (u)] + 2µ[ε ij (u)ε ia (v) + ε ij (v)ε ia (u)]
which is symmetric with respect to the indices (a, j), so that the inner product of this quantity

with Ω aj vanishes. As a result, the integral over D, Eq. ( 46), becomes, after application of the divergence formula, integration in time over [0, T ] and using initial conditions on u and final conditions on v:

Ω aj T 0 C [p i (u)v a + p i (v)u a ] dS dt + Ω aj T 0 D [ ua vj + uj va ] dΩ dt
But the second integral in the above equation is symmetric with respect to the indices (a, j);

thus its inner product with Ω aj vanishes and only the first term remains.

Collecting all results, we have respectively for cases (a), (b) and (c):

dJ db =                    I(u Γ , v Γ , θ 0 , C) (translation) 
I(u Γ , v Γ , ηx, C) + η(m -2) T 0 C p Γ .v Γ dS dt -2ρη T 0 D
uΓ . vΓ dΩ dt (expansion)

I(u Γ , v Γ , ω.x, C) + T 0 C [p Γ ⊗v Γ + q Γ ⊗u Γ ].ω dS dt (rotation) 
where

I(u, v, θ, C) = T 0 C [ρ uΓ . vΓ -σ(u Γ ) : ∇v Γ ]θ n + [p Γ .∇v Γ + q Γ .∇u Γ ].θ dS dt
Additive decomposition of transformation velocity near the crack front. In the same way as in section 7.2, and using the same notations, Eq. ( 41) can be split according to:

dJ db = T 0 Ω [σ(u Γ ) : ∇v Γ + ρü Γ ).v Γ ]div θ -[σ(u Γ ).∇v Γ + σ(v Γ .∇u Γ ] : ∇θ dV dt + T 0 D [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ]div θ -[σ(u Γ ).∇v Γ + σ(v Γ ).∇u Γ ] : ∇µ dV dt + T 0 D [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ]div θ -[σ(u Γ ).∇v Γ + σ(v Γ ).∇u Γ ] : ∇ θ dV dt (47)
and identity (42) followed by an application of the divergence formula to the first two integrals yields the elastodynamic counterpart of Eq. ( 28):

dJ db = T 0 Γ [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ](µ.n) -[p Γ .∇v Γ + q Γ .∇u Γ ].µ dS dt + T 0 Σ [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ]( θ.n) -[p Γ .∇v Γ + q Γ .∇u Γ ]. θ dS dt + T 0 D [σ(u Γ ) : ∇v Γ + ρü Γ .v Γ ]div θ -[σ(u Γ ).∇v Γ + σ(v Γ ).∇u Γ ] : ∇ θ dV dt (48)
having put θ ν = θ.ν, where ν(s) denotes the unit outward normal to ∂Γ lying in the tangent plane to Γ at x(s).

Numerical examples

To illustrate concepts developed in this paper, the computation of sensitivities with respect to shape perturbations of either a hole (example 1, Fig. 6a) or a crack (example 2, Fig. 7a) in an elastic plate are presented. In both cases, the plate has linearly elastic and isotropic constitutive properties (Young modulus E = 200 GPa, Poisson ratio ν = 0.3, mass density ρ = 5000 kg/m 3 ), plane strain conditions and dynamical loading are assumed. The forward problem is solved by a 2D time-domain dual-reciprocity elastodynamic BEM.

The objective function J is defined for both examples as:

J (Γ) = - 1 2 T 0 Sm u 2 1 (x, t) dS dt (52)
where u 1 (x, t) indicates displacements in x 1 direction of nodes on the boundary S m = ∪ OP at time t (Figs. 6 and 7). Sensitivities for example 1 and 2 are computed using equation ( 43) and ( 51), respectively, and compared with the first-order derivative of the second-degree polynomial approximation of J with respect to the relevant shape parameter b.

Example 1

The first-order derivative of the objective function ( 52) with respect to a transformation parameter p of the cavity is calculated for the rectangular plate shown in Fig. 6a. Two kinds of transformations of the cavity are condsidered: translation along the x 1 direction

Φ(x, b) = x + be 1 (53) 
(where e 1 is a unit vector along the x 1 -direction) and expansion 1).

Φ(x, b) = (1 + b)x ( 
The results are presented, together with the corresponding derivatives calculated from a polynomial approximation of J, in Table 1 for three cases of plate geometry and loading (using the geometrical notations of Fig. 6a).

Example 2

The first-order derivative of the objective function ( 52 1).

L = H = 20, B = 10, r = 1 (mm) p(t) = p0 H(t) (p 0 = 0.4 MN/mm) translation x 1 0.0280 0.0275 1.8% 0 ≤ t ≤ T = 80µs (∆t = 0.2µs) expansion -1.161 -1.223 0.5% II L = 40, H = 20, B = 30, r = 1 (mm) p(t) = p0 H(t) (p 0 = 0.4 MN/mm) translation x 1 0.932 0.911 2.3% 0 ≤ t ≤ T = 80µs (∆t = 0.2µs) expansion -1.916 -1.949 1.7% III L = 40, H = 20, B = 30, r = 1 (mm) p(t) = p0 sinωt + p0 translation x 1 2.6005E-6 2.6029E-6 1.0% (p 0 = 50 N/mm, ω = 79kHz) 0 ≤ t ≤ T = 80µs (∆t = 0.2µs) expansion -3.69E-6 -3.65E-6 0.9%
x 1 direction (again according to Eq. ( 53)) and a deformation into parabolic shape according to:

Φ(x, p) = x + b(a 2 -x 2 2 ) ( 55 
)
where a is the initial half-length of the crack. The external boundary of the plate was discretized using 32 (for case I) or 48 (for cases II and III) continous quadratic boundary elements of uniform length, where cases I to III refer to Table 2. In all three cases, 20 discontinuous quadratic boundary elements were used for the crack (with their lengths graded so that elements closer to the crack tips are shorter), as well as 100 domain points. The number of sensor points was 32 (case I) or 64

(cases II and III). The distribution of the boundary nodes and the domain points is depicted for case II in Fig 7b).

The results of derivatives are presented in of J (using the geometrical notations of Fig. 7a).

10 Discussion and concluding remarks

In the present work a shape sensitivity analysis for identification of internal cavities or cracks has been presented. The main motivation of this paper was to explore the adjoint variable approach, in the presence of cracks and in connexion with BIE formulations of the forward problem.

First, a general formulation for the sensitivity with respect to the shape of a cavity of objective functionals expressed as boundary integrals has been derived using the material derivative-adjoint variable approach. The sensitivity of the functional has been expressed as a boundary integral.

In the case of a crack, the previous boundary-only expression is not applicable. However, revisiting the discussion of the cavity problem, it has been shown that for two classes of crack perturbations the adjoint variable approach to sensitivity analysis is still applicable in the presence of cracks. Firstly, when the domain transformations considered consist of translation, rotation or expansion of the crack, the functional sensitivity is expressed as an integral over an arbitrary surface surrounding the crack, supplemented for the case of crack expansion in dynamics by a domain integral over the crack front neighbourhood enclosed by this surface. This applies for arbitrary geometries, either three-and two-dimensional. Earlier works on path-independent integral approach to sensitivity analysis are thus revisited and generalized. Secondly, sensitivity formulas applicable to arbitrary shape perturbations were established by means of an additive decomposition of the transformation velocity over a tubular neighbourhood of the crack front. Thirdly, the limiting case of the latter results when the tubular neighbourhood shrinks around the crack front has been shown to yield a boundary-only sensitivity formula involving the stress intensity factors of both the forward and the adjoint solutions. All these results were obtained in connection with both scalar wave and elastodynamic problems formulated in the time domain.

The analysis conducted in this paper is applicable without difficulty to objective functions of where the last integral might for instance be used to formulate some a priori information about the defect (for instance by penalizing high curvatures to avoid recovering oscillatory shapes). Since this last integral depends on Γ in an explicit manner, one simply needs to invoke the differentiation formula (12). As a result, the contribution Γ [∇ψ.θ + ψdiv S θ] dS should be added to each of the sensitivity formulas (20), ( 22), ( 23), ( 24), ( 25), ( 26), ( 28), ( 29), ( 30), ( 31), ( 33), ( 41), ( 43), ( 44), ( 47), (48), 49), (51).

It is important to stress that Eq. ( 51) provides the sensitivity of an integral functional to a perturbation of a fixed crack configuration, not a crack propagation, hence the use of expansions (50), valid for a crack which does not physically propagate.

Equation ( 51) is also applicable, with straightforward modifications, to elastostatics and elastodynamics in the frequency domain. For instance, in elastostatics, J (Γ) is the potential energy at equilibrium for the particular choice ϕ u = -(p.u)/2, ϕ p = (ū.p)/2 in Eq. ( 5). For this special case, the adjoint solution turns out to be ũ = (1/2)u, i.e. K v I = K u I /2, etc. In equation ( 51), the factor of θ ν (s) turns out to be, as expected, minus the energy release rate G(s), i.e. minus the J 1 -integral, whereas the factor of θ n (s) is the 3-D generalization of the J 2 -integral [START_REF] Budiansky | Conservation laws and energy release rates[END_REF][START_REF] Bui | Mécanique de la rupture fragile[END_REF]. Finally, with the choice S p = S, s u = ∅ and ϕ p = p.ûu.p, where û, p are the boundary traces of a pre-selected auxiliary elastodynamic state with final homogeneous conditions, one finds that ũ = û and that the factor of θ ν (s) in ( 51) is the 3-D generalization of the so-called H-integral [START_REF] Bui | Facteur d'intensité dynamique des contraintes tiré des grandeurs mécaniques globales[END_REF].

Figure 1 :

 1 Figure 1: A body with internal defects: (a) cavities, (b) cracks
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 2 Figure 2: A crack bounded by two almost identical surfaces Γ + and Γ -.

  (a) translation of D, (b) expansion of D and (c) rotation of D. These shape transformations are continuously extended so that θ = 0, ∇θ = 0 on S.Then, Eq. (22) is valid for the subdomain Ω \ D while advantage is taken of the special form of θ in D:(a) Translation: θ = θ 0 (constant) in D, hence ∇θ = 0, div θ = 0 in D;(b) Expansion with respect to the origin: θ = ηy (η: expansion coefficient) so that ∇θ = ηI, div θ = mη (m: space dimensionality) in D. In this case, the domain integral over D becomes:
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 3 Figure 3: A crack Γ with a neighbourhood D
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 4 Figure 4: Crack Γ and tubular neighbourhood D of ∂Γ.
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 5 Figure 5: Two-dimensional case: geometrical notation; local polar coordinates (r, φ) associated with the crack tips x 1,2 .

  ) together with the special form of θ in D and equation (43) in Ω \ D. (a) Translation: the domain integral over D vanishes; (b) Expansion: the domain integral over D becomes:
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 6 Figure 6: Example 1 (plate with a cavity): (a) geometrical configuration and notation; (b) boundary element model (case I in Table1).

  ) with respect to a transformation parameter p of the crack is calculated for the rectangular plate shown in Fig.7a, which contains an initially straight crack. Two kinds of transformations of the crack are condsidered: translation along the Case Geometry and load Transformation Sensitivity analysis dJ /db ∆J/∆b error I
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 7 Figure 7: Example 2 (plate with a crack): (a) geometrical configuration and notation; (b) boundary element model (case II in Table1).
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 2 Example 2: sensitivity results for various crack perturbations.

This apparent paradox is due to the fact that, for cracks, u and v behave like r 1/2 in the vicinity of the crack front (r: distance to the nearest point on the crack front). Hence, the divergence in the right-hand side of (21) is integrable only away from the crack front, so that the divergence formula cannot be applied for the entire domain Ω.

Sensitivity formulation in terms of stress intensity factors. Using the same notations as in section 7.3, the limiting case for ε → 0 of

is sought. In order to do so, the well-known expansions of the forward displacement field near the crack front (assuming isotropic elasticity) is used:

and similarly for v with stress intensity factors K v I,II,III and leading term v S . Since by virtue of these expansions σ(u) : ∇v and σ(v) : ∇u are O(1/r), the integral over D ε vanishes in the limit ( dV = r(1 + O(r)) drdφ ds in D ε ). Besides, it can be verified that [[σ S : ∇v S ]] = O(d), and hence that the integral over Γ ε becomes in the limit ε → 0 the corresponding, convergent, integral over Γ. Finally, under mild smoothness assumptions on the closed curve ∂Γ and the velocity field θ, one has:

The integral in the right-hand side, which yields a finite contribution as the radius ε of the tubular neighbourhood goes to zero, can be evaluated in a straightforward way using expansions (50). This last calculation results in the following expression of dJ /db, counterpart of Eq. ( 33):