
HAL Id: hal-00092385
https://hal.science/hal-00092385

Submitted on 9 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boundary element based formulations for crack shape
sensitivity analysis

Marc Bonnet

To cite this version:
Marc Bonnet. Boundary element based formulations for crack shape sensitivity analysis. Engineer-
ing Analysis with Boundary Elements, 2001, 25, pp.347-362. �10.1016/S0955-7997(01)00025-X�. �hal-
00092385�

https://hal.science/hal-00092385
https://hal.archives-ouvertes.fr


Boundary element based formulations for crack shape sensitivity

analysis∗

Marc Bonnet
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Abstract

The present paper addresses several BIE-based or BIE-oriented formulations for sensitivity analysis

of integral functionals with respect to the geometrical shape of a crack. Functionals defined in

terms of integrals over the external boundary of a cracked body and involving the solution of a

frequency-domain boundary-value elastodynamic problem are considered, but the ideas presented

in this paper are applicable, with the appropriate modifications, to other kinds of linear field

equations as well. Both direct differentiation and adjoint problem techniques are addressed, with

recourse to either collocation or symmetric Galerkin BIE formulations. After a review of some basic

concepts about shape sensitivity and material differentiation, the derivative integral equations for

the elastodynamic crack problem are discussed in connection with both collocation and symmetric

Galerkin BIE formulations. Building upon these results, the direct differentiation and the adjoint

solution approaches are then developed. In particular, the adjoint solution approach is presented

in three different forms compatible with BEM analysis of crack problems, based on the discretized

collocation BEM equations, the symmetric Galerkin BEM equations and the direct and adjoint

stress intensity factors, respectively. The paper closes with a few comments.

∗Engineering Analysis with Boundary Elements, 25, 347–362 (2001)
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1 Introduction

The consideration of sensitivity analysis of integral functionals with respect to shape parameters

arises in many situations where (part of) a geometrical domain is either unknown or variable.

Shape optimization and inverse problems are the most obvious instances, but not the only ones;

for instance, the energy release rate, a basic concept of fracture mechanics, is mathematically

defined as (minus) the derivative of the potential energy at equilibrium with respect to crack front

perturbations. For these reasons, the numerical evaluation of sensitivities of functionals with respect

to shape perturbations is clearly an important issue. The present paper is specifically concerned

with boundary element-based methods for computing the sensitivity of integral functionals with

respect to crack shape perturbations.

This goal is achievable by resorting to either finite-difference methods, considering small but

finite domain perturbations, or analytical differentiation followed by discretization. The analytical

approach is a priori clearly superior in terms of both accuracy and efficiency. It relies on either

the adjoint variable approach or a direct differentiation of the field equations formulated in weak

or BIE fashion. A substantial research effort has been devoted in the last decade or so to various

formulations and applications of sensitivity analyses based on analytical differentiation with respect

to shape parameters, or on the related mathematical concept of domain derivative [41, 42]. As a

result, these concepts are successfully applied to more and more engineering problems (see e.g.

[21, 29, 30], among a quite abundant literature).

Further, since (the shape of) the boundary plays a key role in problems with variable or unknown

domains, it is often found convenient, or even essential, to resort to the boundary element method

(BEM). Both the adjoint problem [1, 4, 17–20, 34] and the direct differentiation approach [2, 5, 23, 32,

33, 36, 37, 39, 45] have been investigated in connection with BEMs (see also the journal special issue

[15]). Besides, defect identification problems are sometimes solved using successive linearizations

of measurement residuals [24, 25].

The present paper addresses several BIE-based or BIE-oriented formulations for sensitivity

analysis of integral functionals with respect to the geometrical shape of a crack. The functionals

considered here are defined in terms of integrals over the external boundary involving the solution of

a linear boundary-value problem in frequency-domain elastodynamics. Both direct differentiation

and adjoint problem techniques are addressed, with recourse to either collocation or symmetric

Galerkin BIE formulations. Following the statement of a generic direct elastodynamic problem

(section 2) and a review of some basic concepts about shape sensitivity and material differentiation

(section 3), integral identities in derivative form are established in (section 4). These results allow to
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formulate the derivative integral equations for the elastodynamic crack problem defined in section 2

in connection with collocation BIE (section 5) and symmetric Galerkin BIE (section 6). Building

upon these results, the direct differentiation and the adjoint solution approaches are discussed in

sections 7 and 8 respectively. In particular, the adjoint solution approach is presented in three

different forms compatible with BEM analysis of crack problems. The paper closes with a few

comments (section 9).

2 The direct problem

Let us consider, in the three-dimensional Euclidean space IR3 equipped with a Cartesian orthonor-

mal basis (e1, e2, e3), an elastic body Ω ∈ IR3 of finite extension, externally bounded by the closed

surface S and containing a crack Γ. The unit normal n to Γ is oriented along the Γ− → Γ+

direction, where Γ+,Γ− are the two crack faces (the outward normal to Γ± is thus ∓n). The

displacement u, strain ε and stress σ in Ω are related by the field equations:

divσ + ρω2u = 0

σ = C :ε (1)

ε =
1
2
(∇u+ ∇Tu)

where C denotes the fourth-order elasticity tensor, given in the isotropic case by:

Cabcd = µ

(
2ν

1− 2ν
δabδcd + δbdδac + δbcδad

)

S

S Ω
S

Γ+

Γ− ντ

nn_
_

_ _
_

p

_p

u
p

uSp

^
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Figure 1: Cracked elastic solid Ω and boundary conditions.
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where µ and ν denote respectively the shear modulus and the Poisson ratio. Besides, displacements

and tractions are prescribed on the portions Su and Sp = S \ Su of S, while the crack surface Γ is

stress-free:

u = û (on Su)

p = p̂ (on Sp) (2)

p = 0 (on Γ)

where p ≡ σ.n is the traction vector, defined in terms of the outward unit normal n to Ω. For a

given location of the crack, the field equations (1) and boundary conditions (2) define the direct

problem.

3 Material derivative in a shape perturbation

To investigate the effect of crack shape perturbations, the shape of the body Ω is assumed to

depend on a parameter t (a fictitious, non-physical ‘time’) through a continuum kinematics-type

Lagrangian description. The unperturbed, ‘initial’ configuration Ω is conventionally associated

with t = 0:

x ∈ Ω → xt = Φ(x, t) ∈ Ω(t) Φ(x, 0) = x (3)

All ‘time’ derivatives will be implicitely taken at t = 0, i.e. the first-order effect of infinitesimal

perturbations of Ω ≡ Ω(0) is considered. The geometrical transformation Φ(·; t) must possess

a strictly positive Jacobian for t ≥ 0. A given domain evolution considered as a whole admits

infinitely many different representations (3).

3.1 Material derivative of scalar or tensor fields

Differentiation of field variables and integrals in a domain perturbation is a well-documented sub-

ject, see e.g. Petryk and Mroz [40], Sokolowski and Zolesio [42]; a few basic concepts and results

are recalled now. The initial transformation velocity θ is defined by:

θ(x) =
∂Φ
∂t

|t=0 (4)

The ‘material’ (or ‘Lagrangian’) derivative at t = 0 of a field quantity f(x, t) in a geometrical

transformation, denoted by
?
f , is defined by:

?
f= lim

t↘0

1
t
[f(xt, t)− f(x, 0)] =

∂f

∂t
+ ∇f.θ (5)
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The material derivative of the gradient of a field quantity is given by:

(∇f)? = ∇
?
f −∇f ·∇θ (6)

3.2 Material derivative of surface integrals

The material derivatives of the unit normal n and the surface differential element dS on a material

surface St = Φ(S; t) are given (see e.g. [40]) by:

?
dS= divSθ dS = Drθr dS (7)

?
n= −n.∇Sθ = −nbDaθbea (8)

in terms of the surface gradient ∇S and the surface divergence divS :

∇Sf = ∇f − (∇f.n)n = (f,i − nif,n)ei ≡ (Dif)ei (9)

divSu = divu− (∇u.n).n = Diui (10)

Combining equations (7) and (8) then yields another useful property:

(na dS)? = (naDb − nbDa)θb dS = eabcRcθb dS (11)

where eabc is the permutation tensor and Rif denotes the i-th component of the surface curl of a

scalar function f :

Rif = eijknjf,k (12)

which is a tangential differential operator [35] associated to a variant of the Stokes formula, valid

for any piecewise regular surface S and continuous, piecewise differentiable f :∫
S
Rif dS =

∫
∂S
τif dS (= 0 if S is closed) (13)

(the unit tangent τ to dS is such that ν = n× τ points towards the exterior of S).

Then, for a generic surface integral I(p):

I(f, S; t) =
∫

S(t)
f(x, t) dS

one has, using (7):

dI

dt
=

?
I=

∫
S

{?
f dS + f( dS)?

}
=

∫
S

{?
f +fdivSθ

}
dS (14)

Using Eq. (11) yields an useful variant of the latter identity:

d

dt

∫
S
fna dS =

∫
S

{?
f na + feabiRiθb

}
dS (15)

Note that
?
f and

?
I depend linearly on θ if ∂f

∂t = 0.
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4 Strongly singular and hypersingular derivative integral identi-

ties

The material differentiation formulas are, at first glance, applicable only to nonsingular or at

most weakly singular integrals on moving surfaces. Since BIE formulations are either strongly

singular or hypersingular, one possibility is thus to first rewrite the integral equations using indirect

regularization, a technique which is now well-documented (see e.g. [10, 31] and the survey paper

[43]) and then apply material differentiation to the regularized BIE in a straightforward manner.

This approach is developed for displacement-type integral equations, up to second-order material

derivatives, in [5] for three-dimensional problems and in [45] for two-dimensional problems; see also

[32] and [39]. Moreover, the material differentiation of surface integrals has been shown in an earlier

work [7] to be valid even for the strongly- and hypersingular integral operators usually encountered

in non-regularized BIE formulations; this allows to work within the framework of so-called direct

approaches [26] and validates a posteriori the approach followed in e.g. [2, 23, 33].

To discuss the material differentiation of BIEs, one can thus start from BIE formulations in

either regularized or direct forms. In this paper, the latter choice is adopted, for two main reasons.

First, this will allow us to emphasize again the correctness of taking material derivatives of the

differentiability (in domain perturbations) of strongly singular or hypersingular integrals. Second,

since the regularization of hypersingular BIEs introduces many additional terms in the formulations,

the material differentiation leads to very lengthy equations, whereas the non-regularized viewpoint

yields somewhat more compact formulas at the material derivative level.

In sections 4.1 and 4.2 below, basic derivative integral identities arising from strongly singular

and hypersingular BIE formulations are stated for an uncracked domain Ω. The results established

therein will then be applied to formulate derivative BIEs for elastic solids with cracks, first in

collocation form (section 5), then in symmetric Galerkin form (section 6).

4.1 Material derivative of strongly singular BIE

Following the approach and notations of Guiggiani [26], let x̃ be a fixed point on the boundary ∂Ω

of a three-dimensional domain Ω. We consider an exclusion neighbourhood vε(x̃) of x̃, of radius

≤ ε (Figure 2). For any ε > 0, x̃ is always an external point for the domain Ωε(x̃) = Ω − vε(x̃)

whose boundary ∂Ω− eε is given by

∂Ω− eε = (∂Ω− eε) + sε = Sε + sε

where sε = Ω ∩ ∂vε, eε = ∂Ω ∩ v̄ε, and Sε = ∂Ω− eε.
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The usual strongly singular BIE formulation is the limiting form when ε→ 0 of the identity:∫
Sε+sε

{
T k

a (x̃,x)ua(x)− Uk
a (x̃,x)pa(x)

}
dSx = 0 (16)

where Uk
a (x̃,x) and Σk

ab(x̃,x) are the components of the elastodynamic fundamental solution (Ap-

pendix A.1) and T k
a (x̃,x) = Σk

ab(x̃,x)nb(x) is the fundamental traction vector.

Under the sufficient regularity assumption u ∈ C0,α at the singular point x̃, one has

lim
ε→0

∫
sε

[ua(x)− ua(x̃)]T k
a (x̃,x) dSx = 0 (17)

Carrying out the limiting process in the statements (16) using a spherical exclusion neighbourhood

vε then leads to the well-known strongly singular BIE formulation (see Guiggiani and Gigante [27]):

cka(x̃)ua(x̃) +−
∫

S
T k

a (x̃,x)ua(x) dSx −
∫

S
Uk

a (x̃,x)pa(x) dSx = 0 (18)

where the free-term is given by:

cka(x̃) = lim
ε→0

∫
sε

T k
a (x̃,x) dSx (cka(x̃) =

1
2
δka if S is smooth at x̃) (19)

and −
∫

denotes integration in the Cauchy principal value (CPV) sense. Recall that the choice of a

spherical shape for vε is convenient but by no means mandatory; this point has been discussed at

length in the BEM literature [27].

A governing ‘derivative BIE’ for the material derivatives
?
u,

?
p of the boundary variables can be

sought by applying the material derivative formula (14) to identity (16) with finite ε. This process

leads, as shown in Appendix A.2, to the identity:∫
Sε+sε

{
T k

a (x̃,x)
?
ua (x)− Uk

a (x̃,x)
?
pa (x)

}
dSx

=
∫

Sε+sε

{
Σk

ab(x̃,x)ecbiRiua(x)− ρω2Uk
a (x̃,x)ua(x)nc(x)

}
[θc(x)− θc(x̃)] dSx

+
∫

Sε+sε

{
Uk

a,c(x̃,x) [θc(x)− θc(x̃)] + Uk
a (x̃,x)Dcθc(x)

}
pa(x) dSx (20)

r x̃
eε(x̃)

sε(x̃)
vε(x̃)

Ω

∂Ω

Figure 2: Exclusion of the singular point x̃ by a vanishing neighbourhood vε(x̃).
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where f,c denotes the Cartesian partial derivative with respect to the c-coordinate of the integration

point x and Ri is defined by (12). Then, the limiting form of this identity when ε → 0 must

be established. Assume that the material derivative
?
u and the transformation velocity θ have

respectively C0,α and C0,1 regularity at x = x̃. The limiting process ε → 0 in the left-hand side

then reproduces that leading to Eq. (18). Moreover, the integrals over sε in the right-hand side

vanish while those over Sε are convergent, weakly singular integrals. The derivative BIE obtained

from Eq. (16) thus reads:

cka
?
ua (x̃) +−

∫
S
T k

a (x̃,x)
?
ua (x) dSx −

∫
S
Uk

a (x̃,x)
?
pa (x) dSx

=
∫

S

{
Σk

ab(x̃,x)ecbiRiua(x)− ρω2Uk
a (x̃,x)ua(x)nc(x)

}
[θc(x)− θc(x̃)] dSx

−
∫

S

{
Uk

a,c(x̃,x) [θc(x)− θc(x̃)] + Uk
a (x̃,x)Dcθc(x)

}
pa(x) dSx (21)

4.2 Material derivative of hypersingular BIE

Hypersingular BIE formulations arise in connection with the differentiation with respect to the

source point coordinates x` of Eq. (16), i.e. as the limiting form when ε → 0 of the exterior

representation formula for the displacement gradient:∫
Sε+sε

{
Σa

k`,b̄(x̃,x)n`(x)uk(x)− Ua
k,b̄(x̃,x)pk(x)

}
dSx = 0 (22)

where a C1,α regularity at x = x̃ is assumed for both S and u, implying σ ∈ C0,α (the overbar in

f,b̄ indicates that the partial derivative is taken with respect to the `-coordinate of the collocation

point x̃). Performing the limiting process ε → 0 and taking the inner product of the result with

Cijabnj(x̃) in Eq. (22) yields the well-known hypersingular BIE (see e.g. Guiggiani [26]):

1
2
pi(x̃) + =

∫
S
Dik(x̃,x)uk(x) dSx −−

∫
S
T k

i (x, x̃)pk(x) dSx = 0 (23)

having used the identity CijabU
a
k,b̄

(x̃,x)nj(x̃) = T k
i (x, x̃), introduced the new kernel

Dik(x̃,x) = CijabΣa
k`,b̄(x̃,x)nj(x̃)n`(x) (24)

and where =
∫

denotes the integration in the finite part (FP) sense, i.e.:

=
∫

S
Dik(x̃,x)uk(x) dSx ≡ lim

ε→0

{
uk(x̃)

∫
sε

Dik(x̃,x) dSx +
∫

Sε

Dik(x̃,x)uk(x) dSx

}
(25)

A short proof of Eq. (23) is given for completeness in Appendix A.3.

Following the same path of reasoning as in section 4.1, the corresponding derivative BIE can be

established by first applying the material derivative formulas (14), (15) to identity (22) with finite
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ε: ∫
Sε+sε

{
Σa

k`,b̄(x̃,x)n`(x)
?
uk (x)− Ua

k,b̄(x̃,x)
?
pk (x)

}
dSx

+
∫

Sε+sε

uk(x)
{

Σa
k`,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Σa

k`,b̄e`ciRiθc(x)
}
dSx

−
∫

Sε+sε

{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)] + Ua
k,b̄(x̃,x)Dcθc

}
pk(x) dSx = 0 (26)

This identity can be recast into the following equivalent form, as shown in Appendix A.4:∫
Sε

{
Σa

k`,b̄(x̃,x)n`(x)
?
uk (x)− Ua

k,b̄(x̃,x)
?
pk (x)

}
dSx

+
?
uk (x̃)

∫
sε

Σa
k`,b̄(x̃,x)n`(x) dSx + (uk,b̄)

?(x̃)
∫

sε

T a
k (x̃,x) dSx

+
∫

Sε

{
ec`dRduk(x)Σa

k`,b̄(x̃,x)− ρω2uk(x)Ua
k,b̄(x̃,x)nc(x)

}
[θc(x)− θc(x̃)] dSx

−
∫

Sε

{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)] + Ua
k,b̄(x̃,x)Dcθc

}
pk(x) dSx

− e`bq(uk,d)?(x̃)
∫

cε

τq(x)Σa
k`(x̃,x)(yd − xd) dsx

+ e`bq
?
σk` (x̃)

∫
cε

τq(x)Ua
k (x̃,x) dSx

+ σk`(x̃)ec`q

∫
cε

τq(x)Ua
k,b̄(x̃,x) [θc(x)− θc(x̃)] dsx +O(ε) = 0 (27)

This result relies on both
?
u and θ having a C1,α regularity at x = x̃, in addition to the already

stated smoothness assumptions.

Now the limiting process ε → 0 is carried out in the above identity, using again a spherical

exclusion neighbourhood vε. Under this assumption, the last three contour integrals in Eq. (27)

vanish in the limit ε→ 0, and Eq. (19) applies. The limiting process in the first two integrals repro-

duces that leading to Eq. (23). The remaining integrals over Sε produce new FP and CPV integrals

over S. After taking the inner product of the result with Cijabnj(x̃), the resulting derivative BIE

associated to the hypersingular BIE finally reads (putting T k
i,c(x, x̃) = Σk

ij,c(x, x̃)nj(x̃)):

1
2

?
σij (x̃)nj(x̃) + =

∫
S
Dik(x̃,x)

?
uk (x) dSx −−

∫
S
T k

i (x, x̃)
?
pk (x) dSx

+ Cijabnj(x̃)−
∫

S

{
ec`dRduk(x)Σa

k`,b̄(x̃,x)− ρω2uk(x)Ua
k,b̄(x̃,x)nc(x)

}
[θc(x)− θc(x̃)] dSx

−−
∫

S

{
T k

i,c(x, x̃) [θc(x)− θc(x̃)] + T k
i (x, x̃)Dcθc

}
pk(x) dSx = 0 (28)

5 Collocation derivative BIEs for a cracked body

The results of sections 4.1 and 4.2, which were established a priori for domains without cracks, can

be extended to cracked bodies following a simple procedure. Indeed, introduce a partition of Ω into
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two fictitious subdomains Ω1 and Ω2 = Ω\Ω1, where Ω1 is chosen such that (i) Ω1 is embedded in Ω

and (ii) the boundary of Ω1 contains Γ. Writing the displacement integral equation (18) separately

for the two subdomains (and with x̃ ∈ S) and adding them yields the strongly singular BIE:

cka(x̃)ua(x̃) +−
∫

S
T k

a (x̃,x)ua(x) dSx −
∫

S
Uk

a (x̃,x)pa(x) dSx −
∫

Γ
T k

a (x̃,x)φa(x) dSx = 0 (29)

A similar procedure applied to the hypersingular BIE (23) leads to the equation:

1
2
p̂i(x̃) + =

∫
S
Dik(x̃,x)uk(x) dSx −−

∫
S
T k

i (x, x̃)pk(x) dSx −
∫

Γ
Dik(x̃,x)φk(x) dSx = 0 (30)

for x̃ ∈ Sp, and:∫
S
Dik(x̃,x)uk(x) dSx −

∫
S
T k

i (x, x̃)pk(x) dSx −=
∫

Γ
Dik(x̃,x)φk(x) dSx = 0 (31)

for x̃ ∈ Γ, the crack faces being assumed traction-free.

The collocation BIE approach for cracked solids (using the displacement discontinuity method)

consists in coupling the displacement BIE (29) for collocation points on S and the traction BIE (31)

for collocation points on Γ. The dual collocation BIE formulation could of course be obtained fol-

lowing a similar approach. Taking into account the boundary conditions (2) and the corresponding

partition of S, the resulting coupled system of integral equations has the structure: Hp(p) + Gu(u) + Gφ(φ) = −Hu(p̂)− Gp(û)

Sp(p) +Du(u) +Dφ(φ) = − Su(p̂)−Dp(û)
(32)

where (p̂, û) are the prescribed tractions (on Sp) and displacements (on Su); (p,u,φ) are the un-

known tractions (on Su), displacements (on Sp) and crack opening displacement (on Γ); (G,H) and

(S,D) denote the pairs of linear integral operators (including the free-term) acting on tractions

and displacements in Eqs. (29) and (31), respectively; the indices p, u, φ indicate that the corre-

sponding integral operator acts on functions defined on the geometrical support of (p,u,φ), i.e.

on Su, Sp,Γ, respectively. Eq. (32) refers to either the continuous system of integral equations in

symbolic (operator) notation or the set of BEM discretized linear equations.

The derivative BIEs for the cracked solid are obtained in the same manner from Eqs. (21) and

(28). Assuming that the external boundary S is not affected by the geometrical transformation,

the displacement derivative BIE (21) becomes (with x̃ ∈ S)):

cka(x̃)
?
ua (x̃) +−

∫
S
T k

a (x̃,x)
?
ua (x) dSx −

∫
S
Uk

a (x̃,x)
?
pa (x) dSx −

∫
Γ
T k

a (x̃,x)
?
φa (x) dSx

=
∫

Γ

{
Σk

ab(x̃,x)ecbiRiφa(x)− ρω2Uk
a (x̃,x)φa(x)nc(x)

}
θc(x) dSx (33)
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The traction derivative BIE (28) becomes:

−
∫

Γ
Dik(x̃,x)

?
φk (x) dSx + =

∫
S
Dik(x̃,x)

?
uk (x) dSx −−

∫
S
T k

i (x, x̃)
?
pk (x) dSx

− Cijabnj(x̃)
∫

Γ

{
ec`dRduk(x)Σa

k`,b̄(x̃,x)− ρω2uk(x)Ua
k,b̄(x̃,x)nc(x)

}
θc(x) dSx = 0 (34)

for x̃ ∈ Sp (using that
?
p̂= 0, θ = 0 and

?
n= 0 on Sp). Similarly, if x̃ ∈ Γ, Eq (28) becomes:

1
2
(

?
σij (x̃+)+

?
σij (x̃−))nj(x̃)−=

∫
Γ
Dik(x̃,x)

?
φk (x) dSx

+
∫

S
Dik(x̃,x)

?
uk (x) dSx −

∫
S
T k

i (x, x̃)
?
pk (x) dSx

− Cijabnj(x̃)−
∫

Γ

{
ec`dRduk(x)Σa

k`,b̄(x̃,x)− ρω2uk(x)Ua
k,b̄(x̃,x)nc(x)

}
[θc(x)− θc(x̃)] dSx

− θc(x̃)
∫

S

{
e`cdCijabnj(x̃)uk(x)Σa

k`,b̄c(x̃,x)n`(x)− T k
i,c(x, x̃)pk(x)

}
dSx = 0 (35)

Besides, the free surface condition on the crack faces must be maintained in any crack perturbation,

which implies:
?
σij (x̃±)nj(x̃) = −σij(x̃±)

?
nj (x̃) (36)

and σij(x̃±) can be evaluated using the hypersingular stress representation formula.

The derivative integral equations associated with the usual collocation method are the derivative

displacement BIE (33) for collocation points on S and the derivative traction BIE (35-36) for

collocation points on Γ. The resulting coupled system of integral equations has the structure:
Hp(

?
p) + Gu(

?
u) + Gφ(

?
φ) = − G?

φ(φ;θ)

Sp(
?
p) +Du(

?
u) +Dφ(

?
φ) = − S?

p (p;θ)−D?
u(u;θ)−D?

φ(φ;θ)

− S?
u(p̂;θ)−D?

p(û;θ)− Su(
?
p̂)−Dp(

?
û)

(37)

The blocks S?
p (θ), S?

u(θ), G?
φ(θ), D?

p(θ), D?
u(θ) and D?

φ(θ) depend linearly on θ. A set of derivative

equations could be established for the dual BIE formulation as well.

The displacement BIE and its material derivative BIE can be employed alone (i.e without

invoking a traction BIE) for crack problems using the multiregion approach: the cracked domain

Ω is split into two fictitious subdomains Ω1,Ω2 such that Γ belongs to the fictitious interface

separating Ω1 and Ω2. Thus, avoiding a hypersingular BIE requires the coupling of two BIE

formulations (except when the crack Γ lies on a symmetry plane of Ω) and the introduction of

supplementary degrees of freedom on the additional fictitious interface.
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6 Symmetric Galerkin derivative BIEs for a cracked body

6.1 Symmetric Galerkin BIE formulation

The symmetric Galerkin elastodynamic BIE governing formulation for a cracked solid can be ob-

tained as follows (see e.g. [6] and the review [12] for a more complete account of SGBEMs):

• Equation (29) is multiplied by a trial traction q(x̃) and integrated over x̃ ∈ Su;

• Equation (30) is multiplied by a trial displacement v(x̃) and integrated over x̃ ∈ Sp;

• Equation (31) is multiplied by a trial crack opening displacement ψ(x̃) and integrated over

x̃ ∈ Γ.

This results in a symmetric system of governing equations on (p,u,φ):
Bpp(p, q) + Bup(u, q) + Bφp(φ, q) = Fup(û, q) + Fpp(p̂, q)

Bpu(p,v) + Buu(u,v) + Bφu(φ,v) = Fuu(û,v) + Fpu(p̂,v)

Bpφ(p,ψ) + Buφ(u,ψ) + Bφφ(φ,ψ) = Fuφ(û,ψ) + Fpφ(p̂,ψ)

with q ∈ H−1/2(Su), v ∈ H1/2
0 (Sp), ψ ∈ H1/2

0 (Γ) and v = 0 on ∂Sp, ψ = 0 on ∂Γ (38)

in terms of the bilinear forms:

Bpp(p, q) = −
∫

Su

∫
Su

Uk
a (x̃,x)pa(x)qk(x̃) dSx dSx̃ (39)

Buu(u,v) = −
∫

Sp

∫
Sp

{
Bikqs(x̃,x)Rsuk(x)Rqvi(x̃) +Aik(x̃,x)uk(x)vi(x̃)

}
dSx dSx̃ (40)

Bφφ(φ,ψ) = −
∫

Γ

∫
Γ

{
Bikqs(x̃,x)Rsφk(x)Rqψi(x̃) +Aik(x̃,x)φk(x)ψi(x̃)

}
dSx dSx̃ (41)

which are symmetric, and

Bup(u, q) =
∫

Su

∫
Sp

T k
a (x̃,x)ua(x)qk(x̃) dSx dSx̃ = Bpu(q,u) (42)

Bφp(φ, q) = −
∫

Su

∫
Γ
T k

a (x̃,x)φa(x)qk(x̃) dSx dSx̃ = Bpφ(q,φ) (43)

Buφ(u,ψ) =
∫

Γ

∫
Sp

ψi(x̃)Dik(x̃,x)uk(x) dSx dSx̃ = Bφu(ψ,u) (44)
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and the linear forms:

Fup(û, q) = − 1
2

∫
Su

ûa(x̃)qa(x̃) dSx̃ −
∫

Su

qk(x̃)−
∫

Su

T k
a (x̃,x)ûa(x) dSx dSx̃ (45)

Fpp(p̂, q) =
∫

Su

∫
Sp

qk(x̃)Uk
a (x̃,x)p̂a(x) dSx dSx̃ (46)

Fuu(û,v) =
∫

Sp

∫
Su

{
Bikqs(x̃,x)Rsûk(x)Rqvi(x̃) +Aik(x̃,x)ûk(x)vi(x̃)

}
dSx dSx̃ (47)

Fpu(p̂,v) =
1
2

∫
Sp

p̂i(x̃)vi(x̃) dSx̃ −
∫

Sp

p̂a(x)−
∫

Sp

T k
i (x, x̃)vi(x̃) dSx dSx̃ (48)

Fuφ(û,ψ) = −
∫

Γ

∫
Su

ψi(x̃)Dik(x̃,x)ûk(x) dSx dSx̃ (49)

Fpφ(p̂,ψ) =
∫

Γ

∫
Sp

ψi(x̃)T k
i (x, x̃)p̂a(x) dSx dSx̃ (50)

Equations (40) and (47) together rely on the identity∫
S
vi(x̃)=

∫
S
Dik(x̃,x)uk(x) dSx dSx̃

=
∫

S

∫
S

{
Bikqs(x̃,x)Rsuk(x)Rqvi(x̃) +Aik(x̃,x)uk(x)vi(x̃)

}
dSx dSx̃ (51)

where Rif is defined by (12). The new kernels Bikqs(x̃,x) and Aik(x̃,x), given by Eqs. (88), (89),

are associated with the decomposition (87) of the kernel Dik(x̃,x) (given in [38] and generalized

to anisotropic elasticity in [3]), by virtue of which the Stokes formula (13) could be applied. An

identity similar to (51), with S,u,v replaced with Γ,φ,ψ, has been used to obtain (41).

6.2 Symmetric Galerkin derivative BIEs

The derivative BIEs in symmetric Galerkin form can be established in a straightforward fashion by

calculating the material derivative of the set of symmetric Galerkin equations (38). Before giving

detailed expressions, it is useful to point out that the material derivative of generic bilinear and

linear operators B(a, b) and F(â, b) (where a, â, b denote unknown, prescribed and trial functions,

respectively) must have the following form:

[B(a, b)]? = B(
?
a, b) + B?(a, b;θ)

[F(â, b)]? = F(
?
â, b) + F?(â, b;θ)

having omitted the terms involving the derivatives
?
b of the test functions (they merely repeat the

initial set of equations (38), so that
?
b= 0 can be assumed without loss of generality); the new oper-

ators B? and F? depend linearly on θ. In particular, the governing bilinear operators for (p,u,φ)

in (38) and for (
?
p,

?
u,

?
φ) in the derivative symmetric Galerkin equations are necessarily the same.
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Moreover, the operators Bpp,Buu,Bup, Eqs. (39,40,42) and Fup,Fpp,Fuu,Fpu, Eqs. (45,46,47,48)

are defined only in terms of integrals over Su and Sp, so that

B?
pp(p, q;θ) = B?

uu(u,v;θ) = B?
up(u, q;θ) = B?

pu(p,v;θ) = 0

and

F?
up(û, q;θ) = F?

pp(p̂, q;θ) = F?
uu(û,v;θ) = F?

pu(p̂,v;θ) = 0

The set of derivative symmetric Galerkin equations for (
?
p,

?
u,

?
φ) thus has the form:

Bpp(
?
p, q) + Bup(

?
u, q) + Bφp(

?
φ, q) = Fup(

?
û, q) + Fpp(

?
p̂, q)− B?

φp(φ, q;θ)

Bpu(
?
p,v) + Buu(

?
u,v) + Bφu(

?
φ,v) = Fuu(

?
û, q) + Fpu(

?
p̂, q)− B?

φu(φ,v;θ)

Bpφ(
?
p,ψ) + Buφ(

?
u,ψ) + Bφφ(

?
φ,ψ) = Fuφ(

?
û, q) + Fpφ(

?
p̂, q) + F?

uφ(û,ψ;θ) + F?
pφ(p̂,ψ;θ)

− B?
pφ(p,ψ;θ) + B?

uφ(u,ψ;θ) + B?
φφ(φ,ψ;θ)

with q ∈ H−1/2(Su), v ∈ H1/2
0 (Sp), ψ ∈ H1/2

0 (Γ) and v = 0 on ∂Sp, ψ = 0 on ∂Γ (52)

where the various new operators appearing in the right-hand sides are found to be given by:

B?
φp(φ, q;θ) =

∫
Sp

∫
Γ

Σk
ab(x̃,x)ebciRiφa(x)θc(x)qk(x̃) dSx dSx̃

+ ρω2

∫
Sp

∫
Γ
Uk

a (x̃,x)φa(x)nc(x)θc(x)qk(x̃) dSx dSx̃ (53)

B?
φu(φ,v;θ) = ec`d

∫
Sp

∫
Γ
Cijabnj(x̃)Σa

k`,b̄(x̃,x)θc(x)Rdφk(x)vi(x̃) dSx dSx̃

− ρω2

∫
Sp

∫
Γ
T k

i (x, x̃)nc(x)θc(x)φk(x)vi(x̃) dSx dSx̃ (54)

B?
pφ(p,ψ;θ) = B?

φp(ψ,p;θ) (55)

B?
uφ(u,ψ;θ) = B?

φu(ψ,u;θ) (56)

B?
φφ(φ,ψ;θ) =

∫
Γ

∫
Γ
B?

ikqs(x̃,x;θ)Rsφk(x)Rqψi(x̃) dSx dSx̃

+
∫

Γ

∫
Γ
A?

ik(x̃,x;θ)φk(x)ψi(x̃) dSx dSx̃ (57)

F?
uφ(û,ψ;θ) = e`cd

∫
Su

∫
Γ
Cijabnj(x̃)Σa

k`,b̄(x̃,x)θc(x)Rdûk(x)ψi(x̃) dSx dSx̃

+ ρω2

∫
Su

∫
Γ
T k

i (x, x̃)nc(x)θc(x)ûk(x)ψi(x̃) dSx dSx̃ (58)

F?
pφ(p̂,ψ;θ) = ecbi

∫
Sp

∫
Γ

Σk
ab(x̃,x)Riψa(x)θc(x)p̂k(x̃) dSx dSx̃

− ρω2

∫
Sp

∫
Γ
Uk

a (x̃,x)ψa(x)nc(x)θc(x)p̂k(x̃) dSx dSx̃ (59)
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Equations (55) and (56) are direct consequences of the symmetry properties Bpφ(p,ψ) = Bφp(ψ,p)

and Buφ(u,ψ) = B?
φu(ψ,u), respectively. The new kernels B?

ikqs and A?
ik in Eq. (57) are:

B?
ikqs(x̃,x;θ) = Dqθc(x̃)Bikcs(x̃,x) +Dsθc(x)Bikqc(x̃,x) + [θc(x)− θc(x̃)]Bikqs,c(x̃,x) (60)

A?
ik(x̃,x;θ) = µ2

{
Aijk`,c(x̃,x) [θc(x)− θc(x̃)]nj(x̃)n`(x)

+ [e`cdRdθc(x)nj(x̃) + ejcdRdθc(x̃)n`(x)]Aijk`(x̃,x)
}

(61)

where the coefficients Aijk` are defined by Eq. (90). The first two equations in (52) can in fact

be obtained simply by multiplying Eq (33) (resp. Eq (34)) by a trial traction q(x̃) (resp. a trial

displacement v(x̃)) and integrating the result over x̃ ∈ Su (resp. x̃ ∈ Sp). The third equation

in (52) is obtained by taking the material derivative of the third equation of the initial SGBIE

system (38). In particular, to establish Eq. (57), use is made of:

(Riu dS)? = RauDaθi (62)

(see proof in Appendix A.5).

7 Crack shape sensitivity of functionals using direct differentia-

tion

7.1 Objective function

Let us introduce the following generic objective function:

J (Γ) = J(uΓ,pΓ,Γ) =
∫

Sp

ϕu(uΓ,x) dS +
∫

Su

ϕp(pΓ,x) dS +
∫

Γ
ψ(x) dS (63)

where ϕu, ϕp and ψ are real-valued differentiable functions and (uΓ,pΓ) refer to the solution of

problem (1, 2) for a given crack configuration. A notable example of such functions occurs in crack

identification problems, where supplementary boundary data in the form of measured displacement

uexp on Sp and measured tractions pexp on Su is available and one wants to find Γ by minimizing

the cost function:

J (Γ) =
1
2

∫
Sp

|uΓ − uexp|2 dS +
1
2

∫
Su

|pΓ − pexp|2 dS + α

∫
Γ
ψ(x) dS (64)

(i.e. corresponding to the choice ϕu ≡ |u− uexp|2 /2 and ϕp ≡ |p− pexp|2 /2 in Eq. (63)) where

the last integral is chosen so as to express some a priori information of a geometrical nature about

the unknown crack, for instance by penalizing highly oscillatory shapes, and 0 < α � 1 is a

regularization parameter [28, 44].

The remainder of this paper is devoted to various BEM-oriented procedures allowing to evaluate

the derivative of J (Γ) with respect to crack perturbations.
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7.2 Direct differentiation approach

A direct application of formula (14) to (63) yields, taking into account that θ = ∇θ = 0 on Su

and Sp:
?
J (Γ) =

∫
Sp

∂ϕ̄u

∂u
.

?
u dS +

∫
Su

∂ϕ̄p

∂p
.

?
p dS +

∫
Γ
[∇ψ.θ + ψdivSθ] dS (65)

The direct differentiation approach consists in solving the derivative BEM systems, in either the

collocation form (37) or the Galerkin form (52), for the material derivatives
?
u,

?
p,

?
φ. In practice, the

crack shape will be defined in terms of a finite number Np of shape parameters tm, 1 ≤ m ≤ Np,

so that the geometrical transformation (3). Each shape parameter must then be associated to

a transformation velocity field θm(x) through the definition (4). Thus, this process leads to the

construction of Np distinct right-hand sides for the derivative BEM systems (37) or (52), and

therefore Np distinct derivative solutions (
?
p m,

?
u m,

?
φ m). Finally, substituting the derivative

solution (
?
pm,

?
um,

?
φm) into Eq. (65) yields the partial derivative of J with respect to the parameter

tm.

8 Crack shape sensitivity of functionals using an adjoint solution

As pointed out previously, the direct differentiation approach calls for building and solving Np

derivative problems, i.e. one for each geometrical parameter; this is true independently of the

number Nf of integral functionals of the form (63) considered (one often has Nf but this is not

mandatory).

On the other hand, it is possible to replace the computation of the Np derivative solutions

(
?
p m,

?
u m,

?
φ m) by that of Nf well-chosen adjoint solutions, i.e. one for each integral functional

(63). The basic argument, which has been used in many other works [1, 4, 17–20, 34], goes as follows:

to evaluate the derivative of J (Γ), the differentiation of J(u,p,Γ) is carried out by formally treating

(u,p,Γ) as independent variables and enforcing the fact that (u,p) depend on Γ through the state

equations in an explicit manner. A Lagrangian is thus introduced, where the state equations appear

as a constraint.

Three different approaches to the definition of adjoint solutions, all of them well suited to crack

shape sensitivity analysis in a BEM framework, are now going to be presented.

8.1 State equation in collocation BIE form

In this case, the state equation consists of the system (32), in matrix form, i.e. after a BEM

discretization has been introduced. The Lagrangian L is thus defined as follows, in terms of finite-
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dimensional vectors of Lagrange multipliers q and ψ:

L = J(u,p,Γ) +

qψ


T Hp(p) + Gu(u) + GΓ(φ) +Hu(p̂) + Gp(û)

Sp(p) +Du(u) +DΓ(φ) + Sp(p̂) +Du(û)

 (66)

(q,ψ are thus ‘vectors’ of dofs associated with the collocation points on S and Γ, respectively).

Putting the material derivative of J , Eq. (65), in the form

?
J= Jp(p)

?
p +Ju(u)

?
u +JΓθ (67)

and taking the material derivative of L gives:

?
L= Jp(p)

?
p +Ju(u)

?
u +JΓθ +

qψ


T Hp(
?
p) + Gu(

?
u) + Gφ(

?
φ)

Sp(
?
p) +Du(

?
u) +Dφ(

?
φ)


+

qψ


T G?
φ(φ;θ)

S?
p (p;θ) +D?

u(u;θ) +D?
φ(φ;θ) + S?

u(p̂;θ) +D?
p(û;θ) + Su(

?
p̂) +Dp(

?
û)

 (68)

As expected, this equation involves the derivatives
?
p,

?
u,

?
φ of the state variables. It is however

possible to select a particular value of the Lagrange multipliers {q,ψ}T which makes the overall

contribution of
?
p,

?
u,

?
φ in

?
L identically zero. This specific value of the multipliers, termed an adjoint

solution, thus results from the condition:

Jp(p)
?
p +Ju(u)

?
u +

qψ


T Hp(
?
p) + Gu(

?
u) + Gφ(

?
φ)

Sp(
?
p) +Du(

?
u) +Dφ(

?
φ)

 = 0 for all
?
p,

?
u,

?
φ (69)

and solves the adjoint problem: 
HT

p (
?
p) + ST

p (
?
p) = − Jp(p)

GT
u (

?
u) +DT

u (
?
u) = − Ju(u)

GT
φ (

?
φ) +DT

φ (
?
φ) = 0

(70)

It is important to note that the governing matrix of the adjoint problem is the transpose of that of

the state equations (32). The factorization (using e.g. the LU decomposition) made in the course

of solving the state BIE equations can thus be re-used to solve the adjoint problem (70).

Using the solution {qΓ,ψΓ}T of the adjoint problem (70), the material derivative of J in any

given crack perturbation can thus be computed by the formula:

?
J= JΓθ + qT

ΓG?
φ(φΓ;θ)

+ψΓ[G?
φ(φΓ;θ)S?

p (pΓ;θ) +D?
u(uΓ;θ) +D?

φ(φΓ;θ) + S?
u(p̂;θ) +D?

p(û;θ) + Su(
?
p̂) +Dp(

?
û)] (71)

where (pΓ,uΓ,φΓ) and (qΓ,ψΓ) denote the direct and adjoint solutions for the current crack

configuration Γ.
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8.2 State equation in Galerkin BIE form

It is also possible to define an adjoint problem from the continuous state equations, i.e. before

their discretization, and many examples of that can be found in the literature. For example, one

can think of taking the inner product of the collocation BIE equation (29) and (31) by continuous

Lagrange multipliers q(x̃) and ψ(x̃) and integrate the result over S and Sp respectively. But

this operation amounts to forming a set of (nonsymmetric) Galerkin BIEs. Similarly, taking the

inner product of equations (29), (30) and (31) by Lagrange multipliers q(x̃), v(x̃) and ψ(x̃) and

integrating the resulting expressions over Su, Sp and Γ, respectively, yields the system (38) of

symmetric Galerkin BIEs.

Following the same steps than before, one can then introduce a Lagrangian in which the direct

problem constraint is expressed in terms of the symmetric Galerkin BIE system (38), the Lagrange

multipliers being the test functions (v, q,ψ):

L(u,v,p, q,φ,ψ,Γ) = J(u,p,Γ)

+ Bpp(p, q) + Bup(u, q) + Bφp(φ, q)−Fup(û, q)−Fpp(p̂, q)

+ Bpu(p,v) + Buu(u,v) + Bφu(φ,v)−Fuu(û,v)−Fup(p̂,v)

+ Bpφ(p,ψ) + Buφ(u,ψ) + Bφφ(φ,ψ)−Fuφ(û,ψ)−Fuφ(p̂,ψ) (72)

The derivative
?
L is then expressed using Eq. (67) and the system (52) of derivative Galerkin BIEs,

and the adjoint problem, again defined to ensure that the contribution of (
?
p,

?
u,

?
φ) is identically

zero, is readily found to be defined by:
Bpp(q,

?
p) + Bup(v,

?
p) + Bφp(ψ,

?
p) = − Jp(p)

?
p

Bpu(q,
?
u) + Buu(v,

?
u) + Bφu(ψ,

?
u) = − Ju(u)

?
u

Bpφ(q,
?
φ) + Buφ(v,

?
φ) + Bφφ(ψ,

?
φ) = 0

for all
?
p,

?
u,

?
φ (73)

The material derivative of J in any given crack perturbation is then given by:

?
J =

?
L (uΓ,vΓ,pΓ, qΓ,φΓ,ψΓ,θ)

= JΓθ + B?
φp(φΓ, qΓ;θ) + B?

φu(φΓ,vΓ;θ) + B?
pφ(pΓ,ψΓ;θ)

+ B?
uφ(uΓ,ψΓ;θ) + B?

φφ(φΓ,ψΓ;θ) + F?
uφ(ûΓ,ψΓ;θ) + F?

pφ(p̂Γ,ψΓ;θ)

+ Fuu(
?
û,vΓ) + Fpu(

?
p̂,vΓ) + Fup(

?
û, qΓ) + Fpp(

?
p̂, qΓ) + Fuφ(

?
û, q) + Fpφ(

?
p̂, q) (74)

8.3 State equations are in domain form

This is usually the simplest way to formulate an adjoint problem associated with a given integral

functional, because the latter is then expressed as the weak (domain) form of a boundary-value
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problem which can then be solved using any method. However, this approach is not straightforward

when dealing with crack problems, for reasons related to the fact that the direct and adjoint

solutions have singular strains and stresses near the crack front. An appropriate answer to this

difficulty has been proposed in [8] for time-domain elastodynamics, the results of which are now

summarized for the sake of completeness.

The Lagrangian incorporates the state problem constraint in its usual domain weak form:

L(u,v,p, q,Γ) = J(u,p,Γ) +
∫

Ω
[σ(u) :∇v̄ − ρω2u.v̄] dV

−
∫

Su

(u− û).q̄ dS −
∫

Su

p.v̄ dS −
∫

Sp

p̂.v̄ dS (75)

Next, the derivative of the Lagrangian is found to be given by:

?
L (u,v,p, q,θ) =

∫
Ω
[σ(v̄) :∇ ?

u −ρω2v̄.
?
u] dV +

∫
Su

?
û .q̄ dS −

∫
Sp

?
p̂ .v̄ dS

−
∫

Su

(
v̄ − ∂ϕ̄p

∂p

)
.

?
p dS −

∫
Su

q̄.
?
u dS +

∫
Sp

∂ϕ̄u

∂u
.

?
u dS

+
∫

Ω

{
[σ(u) :∇v̄ − ρω2u.v̄]divθ − [σ(u).∇v̄ + σ(v̄).∇u] :∇θ

}
dV

+
∫

Γ
[∇ψ.θ + ψdivSθ] dS (76)

so that, following the now usual argument, the adjoint solution (v, q) is such that all terms involving

(
?
u,

?
p) in the formula above identically cancel out, and hence is found to be governed by the field

equations (1) and the boundary conditions:

q = −∂ϕu

∂u
(on Sp)

v =
∂ϕp

∂p
(on Su) (77)

q = 0 (on Γ±)

Then, the sensitivity
?
J is obtained as usual by:

?
J (Γ) =

?
L (uΓ,vΓ,pΓ, qΓ,Γ)

=
∫

Ω

{
[σ(uΓ) :∇v̄Γ − ρω2u.v̄]divθ − [σ(uΓ).∇v̄Γ + σ(v̄Γ).∇uΓ] :∇θ

}
dV

+
∫

Γ
[∇ψ.θ + ψdivSθ] dS +

∫
Su

?
û .q̄ dS −

∫
Sp

?
p̂ .v̄ dS (78)

which is unfortunately not in boundary-only form, and thus unsuitable for boundary element meth-

ods. A boundary-only sensitivity formula can be obtained by an application of the divergence

formula thanks to the following identity, valid for any pair (u,v) of solutions of the field equations
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(1):

[σ(u) :∇v̄ − ρω2u.v̄]divθ − [σ(u).∇v̄ + σ(v̄).∇u] :∇θ

= div
(
[σ(u) :∇v̄ − ρω2u.v̄]θ − [σ(u).∇v̄ + σ(v̄).∇u].θ

)
(79)

For smooth-shaped defects like voids, this manoeuvre is sufficient. Here, however, the singular

nature of the various strain and stress fields near the crack front calls for a careful treatment

whereby a tubular neighbourhood of the crack front, with small radius ε, is introduced. The domain

integral over this tubular neighbourhood, in the limit ε→ 0, is found to be entirely determined by

the distributions on ∂Γ of the stress intensity factors (Ku
j (s),Kv

j (s); j = I, II, III) of the direct

and adjoint solutions (s: arc length along ∂Γ). The final, boundary-only, sensitivity formula for

crack perturbations is:

?
J (Γ) =

∫
Γ
(θ.n)(s)[[σ(u) :∇v̄ − ρω2u.v̄]] dS +

∫
Su

?
û .q̄ dS −

∫
Sp

?
p̂ .v̄ dS

− 1
µ

∫
∂Γ

(θ.ν)(s)
{

(1− ν)[Ku
I K̄

v
I +Ku

IIK̄
v
II ] +Ku

IIIK̄
v
III

}
(s) ds

+
1− ν

µ

∫
∂Γ

(θ.n)(s)(Ku
I K̄

v
II +Ku

IIK̄
v
I )(s) ds (80)

where [[f ]] ≡ f+ − f− denotes the discontinuity of f across Γ. To ensure that formula (80) can

actually be evaluated using only the boundary traces of the direct and adjoint solutions, the bilinear

form σ(u) : ∇v̄ must be expressed in terms of ∇Su,∇S v̄, taking p = q = 0 into account in the

process:

σ(u) :∇v̄ = µ

{
2ν

1− ν
divSu divS v̄ +

1
2
(∇Su+ ∇T

S u) : (∇S v̄ + ∇T
S v̄)− (n.∇Su).(n.∇S v̄)

}
(81)

Some preliminary numerical results for two-dimensional time-domain elastodynamics using a dual

BEM formulation and the two-dimensional time-domain analog of Eq. (80) have been presented

in [11].

9 Discussion

• The derivative integral identities (21) and (28) are not new. Indeed, essentially the same

identities (or their obvious transpositions to e.g. elastostatics or potential problems) can be

found in many other references, either using CPV- and FP-singular integrals [2, 23, 33] or in

an equivalent regularized form [5, 32]. They are presented here in some detail because, in

addition to their being essential for the remainder of this paper, we believe that, in contrast

with some of the previously mentioned references where the material derivative formula is
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applied without justification to CPV- and FP-singular integrals, identities (21) and (28) are

established on a sound basis.

• To perform a shape sensitivity analysis using any one of the methods presented here, the

material derivative (
?
p̂,

?
û) of the prescribed boundary data should be known in advance. In

many situations, one can simply assume that

?
p̂= 0

?
û= 0

and the corresponding terms in Eqs. (71), (74) and (80) disappear. This is in particular the

case for crack identification inverse problems.

• The adjoint solution approach is usually the most efficient one when the direct problem is

linear (like here), because one usually consider one cost function, or perhaps a small number of

them in multi-objective optimization, whereas many geometrical parameters may be involved.

On the other hand, the direct differentation approach, through the solution of the derivative

BIEs (37) or (52), yields the pointwise shape sensitivities of the elastodynamic field variables

as well. This information is needed in the successive linearization treatments of inverse

problems proposed in e.g. [24, 25], as well as for computing an approximation of the Hessian

based upon the first-order derivatives of residuals in the Marquardt-Levenberg or Gauss-

Newton methods for least squares.

• Reference [9] (which deals with the computation of energy release rates and the incremental

extension of cracks) essentially uses the adjoint solution approach based on the symmetric

Galerkin BIE formulation as presented in section 8.2 (the cost function being the potential

energy of elastic solids at equilibrium).

• Equation (80) is a generalization of some previously known identities. For instance, in elasto-

statics, J (Γ) is the potential energy at equilibrium for the particular choice ϕu = −(p̂.u)/2,

ϕp = (û.p)/2 in Eq. (63). For this special case, the adjoint solution turns out to be

v = (1/2)u, i.e. Kv
I = KI/2, etc. In equation (80), the factor of (θ.ν)(s) turns out to

be, as expected, minus the energy release rate G(s), i.e. minus the J1-integral, whereas the

factor of (θ.n)(s) is the 3-D generalization of the J2-integral [13, 14]. Finally, with the choice

Sp = S, su = ∅ and ϕp = p̂.û − u.p̂, where û, p̂ are the boundary traces of a pre-selected

auxiliary elastodynamic state with final homogeneous conditions, one finds that v = û and

that the factor of (θ.ν)(s) in (80) is the 3-D generalization of the so-called H-integral [16].
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• The numerical evaluation of the sensitivity formula (80) is not possible using the displacement

discontinuity BIE formulation alone, because the combination [[σ(u) :∇v̄ − ρω2u.v̄]] is not

expressible solely in terms of the jumps [[u]] = φ and [[v]] = ψ. Instead, one should either

solve the direct and adjoint problems by means of the dual BIE method or evaluate (say) u+

and v+ using a representation formula.
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A Appendix

A.1 Elastodynamic fundamental solution

The elastodynamic state created at x ∈ IR3 by a time-harmonic unit point force applied in an

infinite elastic body at the fixed point x̃ along the ek-direction is well-known; it is given below,

both for completeness and in a form suitable for the regularization of the hypersingular kernel. The

fundamental displacement Uk
i (x̃,x), stress tensor Σk

ij(x̃,x) and traction vector T k
i (x̃,x) are given
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by:

Uk
i (x̃,x) = 2(1− ν)[F,aa + k2

LF ]δik − F,ik (82)

Σk
ij(x̃,x) = µ

[ 2ν
1− 2ν

δijU
k
a,a + Uk

i,j + Uk
j,i

]
(83)

T k
i (x̃,x) = Σk

ijnj (84)

in terms of the Somigliana potential [22] F :

F (x̃,x) =
1

4πµk2
T

(eikLr − eikT r)
1
r

(85)

(k2
T = ρω2/µ and k2

L = κk2
T , with κ = 1−2ν

2(1−ν) : transversal and longitudinal wave numbers, r =

|x− x̃|: Euclidian distance between x, x̃). F satisfies the equation:

F,aabb =
k2

T

4πµ
(κ2eikLr − eikT r)

1
r

(86)

In addition, the kernel Dik(x̃,x) admits the following decomposition, which involves the surface

curl defined by (12):

Dik(x̃,x) ≡ CijabΣa
k`,b̄(x̃,x)nj(x̃)n`(x)

= Rx
qR

y
sBikqs(x̃,x) + k2

TAik(x̃,x) (87)

where the kernel functions Bikqs(x̃,x) and Aik(x̃,x) are given by:

Bikqs(x̃,x) = −eiepekgrµ
2[4νδpqδrs + 2(1− ν)(δprδqs + δpsδqr)]F,eg (88)

Aik(x̃,x) = µ2Aijk`(x̃,x)nj(x̃)n`(x) (89)

Aijk`(x̃,x) = k2
T

[ 4ν2

1− 2ν
δijδk`F,aa + 4ν(δijF,k` + δk`)F,ij

+ (1− 2ν)(δikF,j` + δj`F,ik + δjkF,i` + δi`F,jk)
]

+ [2(1− ν)(δikδj` + δjkδi`) +
2ν
κ
δijδk`]F,aabb (90)

and are both weakly singular in view of Eqs. (85) and (86).

A.2 Proof of result (20)

Applying the material derivative formulas (14), (15) to identity (16) gives:∫
Sε+sε

{
T k

a (x̃,x)
?
ua (x)− Uk

a (x̃,x)
?
pa (x)

}
dSx

+
∫

Sε+sε

ua(x)
{

Σk
ab,c(x̃,x) [θc(x)− θc(x̃)]nb(x) + ebciΣk

ab(x̃,x)Riθc(x)
}
dSx

−
∫

Sε+sε

{
Uk

a,c(x̃,x) [θc(x)− θc(x̃)] + Uk
a (x̃,x)Dcθc(x)

}
pa(x) dSx = 0 (91)
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where formulas (7), (8) have been taken into account, together with the relations:

?
Σab

k(x̃,x) = [θc(x)− θc(x̃)] Σk
ab,c(x̃,x) (92)

?
U k

a(x̃,x) = [θc(x)− θc(x̃)]Uk
a,c(x̃,x) (93)

Next, expression (91) can be conveniently rearranged using identity (100):∫
Sε+sε

ua(x)
{

Σk
ab,c(x̃,x) [θc(x)− θc(x̃)]nb(x) + Σk

ab(x̃,x)ebciRiθc(x)
}
dSx

=
∫

Sε+sε

{
Σk

ab(x̃,x)ecbiRiua(x)− ρω2Uk
a (x̃,x)ua(x)nc(x)

}
[θc(x)− θc(x̃)] dSx (94)

where the differential operator Ri is understood as acting on the variable x. Substitution of eq.

(94) into (91) finally yields Eq. (20).

A.3 Proof of the hypersingular BIE (23)

First, upon appropriately grouping terms, one finds (using the property (U,Σ),b̄ = −(U,Σ),b verified

by the infinite-space fundamental solutions) that:

uk,c(x̃)(yc − xc)Σa
k`,b̄(x̃,x)n`(x)− σk`(x̃)n`(x)Ua

k,b̄(x̃,x)

= −uk,c(x̃)e`bdRd

(
(yc − xc)Σa

k`(x̃,x)
)

+ σk`(x̃)e`bdRdU
a
k (x̃,x)

+ uk,b̄(x̃)T a
k (x̃,x) + ρω2uk,c(x̃)nb(x)(yc − xc)Ua

k (x̃,x)

− ua,b(x̃)nb(x)Σa
k`(x̃,x) + σk`(x̃)nb(x)Ua

k,`(x̃,x) (95)

Moreover, the symmetry of the elastic constitutive relation implies that the last two terms in the

right-hand side cancel each other.

One then has:∫
sε

{
uk(x)Σa

k`,b̄(x̃,x)n`(x)− pk(x)Ua
k,b̄(x̃,x)

}
dSx

=
∫

sε

[uk(x)− uk(x̃)− (yc − xc)uk,c(x̃)]Σa
k`,b̄(x̃,x)n`(x) dSx + uk(x̃)

∫
sε

Σa
k`,b̄(x̃,x)n`(x) dSx

−
∫

sε

[σk`(x)− σk`(x̃)]n`(x)Ua
k,b̄(x̃,x) dSx

+ σk`(x̃)e`bd

∫
cε

τdU
a
k (x̃,x) dsx + eb`duk,c(x̃)

∫
cε

τd(yc − xc)Σa
k`(x̃,x) dsx

+ ρω2uk,c(x̃)
∫

sε

Ua
k (x̃,x)nb(x)(yc − xc) dSx + uk,b(x̃)

∫
sε

T a
k (x̃,x) dSx (96)

To obtain this identity, the first two terms of the right-hand side of (95) have been integrated by

parts using formula (13).
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The first two integrals in the right-hand side of Eq. (96) vanish in the limit due to the assumed

smoothness of u and σ at x̃, and the next-to-last does because Ua
k = O(r−1). Moreover, if a

spherical exclusion neighbourhood vε is used, the two contour integrals are found to vanish in the

limit. Finally, the last integral of Eq. (96) is given by Eq. (19). One therefore has:∫
sε

{
uk(x)Σa

k`,b̄(x̃,x)n`(x)− pk(x)Ua
k,b̄(x̃,x)

}
dSx

=
1
2
ua,b(x̃) + uk(x̃)

∫
sε

Σa
k`,b̄(x̃,x)n`(x) dSx +O(ε) (97)

The hypersingular BIE (23) then readily follows from the previous argument and the definition

(25).

A.4 Proof of result (27)

After having applied identity (101) to the second integral of (26) and upon expanding and regroup-

ing terms in the resulting equality in anticipation of the final limiting process, one obtains:∫
Sε

{
Σa

k`,b̄(x̃,x)n`(x)
?
uk (x)− Ua

k,b̄(x̃,x)
?
pk (x)

}
dSx

+
?
uk (x̃)

∫
sε

Σa
k`,b̄(x̃,x)n`(x) dSx

+
∫

Sε

ec`dRduk(x)Σa
k`,b̄(x̃,x) [θc(x)− θc(x̃)] dSx

− ρω2

∫
Sε

uk(x)Ua
k,b̄(x̃,x) [θc(x)− θc(x̃)]nc(x) dSx

−
∫

Sε

{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)] + Ua
k,b̄(x̃,x)Dcθc

}
pk(x) dSx

+
∫

sε

Σa
k`,b̄(x̃,x)n`(x)[

?
uk (x)− ?

uk (x̃)− (yd − xd)
?
uk,d (x̃)] dSx (= O(ε))

−
∫

sε

Ua
k,b̄(x̃,x)[

?
σk` (x)− ?

σk` (x̃)]n`(x) dSx (= O(ε))

+
∫

sε

{
Σa

k`,b̄(x̃,x)(yd − xd)
?
uk,d (x̃)− Ua

k,b̄(x̃,x)
?
σk` (x̃)

}
n`(x) dSx

+
∫

sε

ec`dRduk(x)Σa
k`,b̄(x̃,x) [θc(x)− θc(x̃)] dSx

− ρω2

∫
sε

uk(x)Ua
k,b̄(x̃,x)nc(x) [θc(x)− θc(x̃)] dSx (= O(ε))

−
∫

sε

{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Ua
k,b̄(x̃,x)D`cθc

}
σk`(x) dSx = 0 (98)

where terms known to vanish in the limit ε→ 0 have been indicated.

In Eq. (98), the first five lines will lead to FP and CPV integrals over S and will not be modified

further, whereas the sixth and seventh vanish in the limit ε → 0. Let Ik`(x̃, ε) denote the sum of
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integrals over sε appearing in (98). The limiting value of Ik`(x̃, ε) remains to be investigated. From

Eq. (98), one has:

Ik`(x̃, ε) =
∫

sε

Ek`(x̃,x) dsx +O(ε)

with {
Σa

k`,b̄(x̃,x)(yd − xd)
?
uk,d (x̃)− Ua

k,b̄(x̃,x)
?
σk` (x̃)

}
n`(x)

+ ec`dRduk(x)Σa
k`,b̄(x̃,x) [θc(x)− θc(x̃)]

−
{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Ua
k,b̄(x̃,x)e`cdRdθc

}
σk`(x)

First, using property (6) of the material derivative and performing some subtractions and additions

aimed at taking advantage of the assumed C0,α smoothness of ∇u and σ at x = x̃, one finds:

Ek`(x̃,x) =
{

Σa
k`,b̄(x̃,x)(yd − xd)(uk,d)?(x̃)− Ua

k,b̄(x̃,x)
?
σk` (x̃)

}
n`(x)

+ [nc(x)[uk,`(x)− uk,`(x̃)]− n`(x)[uk,c(x)− uk,c(x̃)]]Σa
k`,b̄(x̃,x) [θc(x)− θc(x̃)]

(= O(εα−2))

+ [nc(x)uk,`(x̃)− n`(x)uk,c(x̃)]Σa
k`,b̄(x̃,x) [θc(x)− θc(x̃)] (= O(εα−2))

+ uk,c(x̃)θc,d(x̃)Σa
k`,b̄(x̃,x)(yd − xd)n`(x)

−
{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Ua
k,b̄(x̃,x)e`cdRdθc

}
[σk`(x)− σk`(x̃)]

(= O(εα−2))

−
{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Ua
k,b̄(x̃,x)e`cdRdθc

}
σk`(x̃)

=
{

Σa
k`,b̄(x̃,x)(yd − xd)(uk,d)?(x̃)− Ua

k,b̄(x̃,x)
?
σk` (x̃)

}
n`(x)

+ nc(x)σk`(x̃)Ua
k,`b̄(x̃,x) [θc(x)− θc(x̃)]− n`(x)uk,c(x̃)Σa

k`,b̄(x̃,x) [θc(x)− θc(x̃)]

+ uk,c(x̃)θc,d(x̃)Σa
k`,b̄(x̃,x)(yd − xd)n`(x)

−
{
Ua

k,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Ua
k,b̄(x̃,x)e`cdRdθc

}
σk`(x̃) +O(εα−2)

=
{

Σa
k`,b̄(x̃,x)(yd − xd)(uk,d)?(x̃)− Ua

k,b̄(x̃,x)
?
σk` (x̃)

}
n`(x)

− n`(x)uk,c(x̃)Σa
k`,b̄(x̃,x)[θc(x)− θc(x̃)− θc,d(x̃)] (= O(εα−2))

− σk`(x̃)e`cdRd

{
Ua

k,b̄(x̃,x) [θc(x)− θc(x̃)]
}

+O(εα−2)

where the assumption θ ∈ C1,α at x = x̃ has been used, as well as the condition u ∈ C1,α. Next,

using again identity (95) with uk,d(x̃), σk`(x̃) replaced by (uk,d)?(x̃),
?
σk` (x̃) (and in particular

noting that the symmetry of the elastic constitutive relation implies the equality (uk,`)?Σa
k` =

?
σk`
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Ua
k,`) yields:

Ek`(x̃,x) = −(uk,c)?(x̃)e`bdRd

(
(yc − xc)Σa

k`(x̃,x)
)
+

?
σk` e`bdRdU

a
k (x̃,x)

+ u?
k,b(x̃)T a

k (x̃,x)− σk`(x̃)e`cdRd

{
Ua

k,b̄(x̃,x) [θc(x)− θc(x̃)]
}

+O(εα−2)

Integrating this equality over sε, using the Stokes identity (13) and noting that since dSx ∼ ε2dA

(A: solid angle with origin x̃), the O(εα−2) remainder gives rise to a O(ε), one finds:

Ik`(x̃, ε) = −(uk,c)?(x̃)e`bd

∫
cε

τd(x)(yc − xc)Σa
k`(x̃,x) dsx+

?
σk` (x̃)e`bd

∫
cε

τd(x)Ua
k (x̃,x) dsx

− σk`(x̃)e`cd

∫
cε

τd(x)Ua
k,b̄(x̃,x) [θc(x)− θc(x̃)] dsx

+ u?
k,b(x̃)

∫
sε

T a
k (x̃,x) dSx +O(εα−2) (99)

Equations (98) and (99) finally yield the desired result, Eq. (27).

A.5 Some auxiliary identities

Identities involving integration by parts. Let S denote a piecewise smooth closed surface

and x̃ any point not located on S. Then, the equality:

uk(x)
{

Σa
k`,c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Σa

k`(x̃,x)e`ciRiθc(x)
}

= e`cduk(x)Rd

{
Σa

k`(x̃,x) [θc(x)− θc(x̃)]
}
− ρω2uk(x)Ua

k (x̃,x) [θc(x)− θc(x̃)]nc(x)

holds true by virtue of the governing equation Σa
k`,` + ρω2Ua

k = 0 verified by the fundamental

solution for any x 6= x̃. Upon integration over S and application of the Stokes formula (13) to the

first term, one obtains the identity:∫
S
uk(x)

{
Σa

k`,c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Σa
k`(x̃,x)e`ciRiθc(x)

}
dSx

=
∫

S

{
e`dcRduk(x)Σa

k`(x̃,x)− ρω2Ua
k (x̃,x)nc(x)

}
[θc(x)− θc(x̃)] dSx (100)

Repeating the same argument with Σa
k` replaced by Σa

k`,b̄
(and in particular using the equality

Σa
k`,b̄`

+ ρω2Ua
k,b̄

= 0), one obtains the identity:

∫
S
uk(x)

{
Σa

k`,b̄c(x̃,x) [θc(x)− θc(x̃)]n`(x) + Σa
k`,b̄(x̃,x)e`ciRiθc(x)

}
dSx

=
∫

S

{
e`dcRduk(x)Σa

k`,b̄(x̃,x)− ρω2Ua
k,b̄(x̃,x)nc(x)

}
[θc(x)− θc(x̃)] dSx (101)
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Proof of equation (62). Using Eqs. (6) and (11), one has:

(Riu dS)? = eijk(ejabRbθau,k − njuaθa,k) dS = (Riθk −Rkθi)u,k −Riθau,a

= −Raθiu,a = RauDaθi

i.e. Eq. (62). The last equality results from invoking again the definition (12) of the surface curl

and its consequence naRau = 0.
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