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Une approche non destructive pour l'identification de contraintes de contact

R ésum é.

Cette Note concerne une méthode non destructive d'identification de la distribution de contraintes de contact entre un poinc ¸on rigide et un massif élastique semi-infini au moyen de mesures du déplacement normal et des déformations tangentielles à la surface libre du massif. Les résultats numériques, obtenus pour des configurations axisymétriques, valident cette méthode, y compris en présence de données expérimentales inexactes et quand la zone de contact n'est pas a priori exactement connue (expérience d'indentation). c 2000 Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS identification non destructive /contact élastique / problème inverse / essai d'indentation

A Non-destructive Approach for the Identification of Contact Stresses

Abstract. This note presents a non destructive method for the identification of contact stresses between a rigid punch and an elastic half-space from measurements of normal displacements and tangential strains on the traction-free part of the surface. Numerical results obtained on axisymmetric sample problems validate the identification method, even in the presence of imperfect data and when the contact zone is not exactly known a priori. c 2000 Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS

non destructive identification / elastic contact / inverse problem / indentation test

Abridged English version

This Note addresses the identification of contact stress distributions p i (y 1 , y 2 ) (i = 1, 2, 3) between a rigid punch and an elastic half-space (defined by {x 3 ≤ 0} in terms of adequate Cartesian coordinates (Ox 1 x 2 x 3 )) using measurements of normal displacements u 3 (x 1 , x 2 ) and in-plane strains ε kℓ (x 1 , x 2 ) (k, ℓ = 1, 2) at sensor locations x away from the punch. Analysis of the reconstructed contact stress distributions is expected to provide valuable insight about the nature and characteristics of the friction law.

Note présentée par Everiste SANCHEZ-PALENCIA S1620-7742(01)0????-?/FLA c 2000 Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.

Well-known integral representation formulas allow to recast the identification problem in the form of a system of first-kind Fredholm integral equations [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF][START_REF] Bui | Introduction aux problèmes inverses en mécanique des matériaux[END_REF], which constitute a linear ill-posed problem [START_REF] Hansen | Rank-deficient and discrete ill-posed problems[END_REF] (U k i : components of the Boussinesq (k = 3) and Cerruti (k = 1, 2) fundamental solutions; S: contact zone under the punch). Eqs. [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF][START_REF] Bui | Introduction aux problèmes inverses en mécanique des matériaux[END_REF] are valid for a contact zone of arbitrary shape, but the present study is restricted to axisymmetric conditions about Ox 3 (so that S is a disk of radius a). Using cylindrical coordinates (y 1 = ρ cos θ, y 2 = ρ sin θ), an analytical angular integration reduces (1) to [START_REF] Golub | Matrix computations[END_REF][START_REF] Hansen | Rank-deficient and discrete ill-posed problems[END_REF] [START_REF] Johnson | Contact mechanics[END_REF], from which expressions for ε ρρ (r) = du ρ /dr and ε θθ (r) = u ρ /ρ are easily derived; one thus obtains a system of first-kind integral equations of the form [START_REF] Johnson | Contact mechanics[END_REF].

In practice, ε ρρ , ε θθ , u 3 are only known at discrete observation points r 1 , . . . , r m . The unknowns p ρ , p 3 must also be interpolated, here using continuous and piecewise linear functions on 0 ≤ ρ ≤ â (â: an upper bound of a if a is not known exactly). Hence, from [START_REF] Johnson | Contact mechanics[END_REF], the (2n -1)-vector p = {p 1 3 , p 2 ρ , p 2 3 , . . . , p n ρ , p n 3 } of unknowns and the 3m-vector d = {ε ρρ (r i ), ε θθ (r i ), u 3 (r i ), 1 ≤ i ≤ m} T of observations satisfy Gp = d, where the matrix G is found to be very ill-conditioned. Hence a Tikhonov-type regularized formulation [START_REF] Martin | Inversion bayésienne du problème non-linéaire de tomographie d'impédance électrique modélisé par une méthode d'éléments finis[END_REF] is used [START_REF] Tikhonov | Solutions to ill-posed problems[END_REF], the regularization parameter α being computed using the cross-validation method [START_REF] Golub | Matrix computations[END_REF][START_REF] Hansen | Rank-deficient and discrete ill-posed problems[END_REF].

The inversion method is numerically tested for a Hertzian load (a = 15 mm) and a Coulomb friction law of coefficient f = 0.45, for which simulated data is computed using [START_REF] Johnson | Contact mechanics[END_REF]. Numerical inversions are made for n = 20 and m = 7 or 70 (the r i are regularly spaced, with 20 mm≤ r ≤50 mm). Simulated Gaussian random noise with zero mean and relative standard deviation e is added to the simulated data (e = 0, 0.01 or 0.03). Using first â = a (i.e. assuming a known contact radius), inversion results for m = 7 are fair with e = 0 but become poor in the presence of data noise; results for m = 70 are better (figure 1). Then, using only the upper bound â2 = δ(2R -δ) of a (δ: indentation depth, R: punch radius), inversion results for both m = 7 and m = 70 tend to oversmooth the solution and not to reflect very accurately the contact and adherence radii (figure 2).

To achieve more accurate reconstruction of contact stress distributions under the punch for indentation experiments, the inversion approach should be refined. The next step will consist of treating the contact radius as unknown (the inversion being non-linear with respect to a). More sophisticated regularization approaches, aiming at avoiding oscillating reconstructions while allowing for limited amounts of discontinuities [START_REF] Martin | Inversion bayésienne du problème non-linéaire de tomographie d'impédance électrique modélisé par une méthode d'éléments finis[END_REF], may also be considered in the future.

Introduction. Problèmes direct et inverse

On s'intéresse dans cette Note à l'identification de distributions de contraintes de contact entre un poinc ¸on rigide et un massif élastique semi-infini de caractéristiques élastiques connues. La connaissance de ces contraintes permettrait en particulier d'identifier la nature (locale ou non locale), le type (Coulomb, Tresca...) et les paramètres de la loi de frottement [START_REF] Bui | Introduction aux problèmes inverses en mécanique des matériaux[END_REF]. Ces contraintes ne sont toutefois pas directement accessibles à la mesure, la mise en place de capteurs sous le poinc ¸on étant généralement impossible. Leur identification nécessite alors l'exploitation de mesures extérieures, et devient un problème inverse. On se propose ici d'examiner l'exploitation de mesures de déplacement normal et de déformations tangentielles à l'extérieur de la zone de contact.

Le problème direct consiste donc à calculer les déplacements et les déformations à la surface d'un massif élastique semi-infini, de comportement élastique homogène et isotrope, connaissant la distribution des contraintes normales et tangentielles dans la zone de contact S. Un repère cartésien (Ox 1 x 2 x 3 ) est choisi de telle sorte que le massif occupe le domaine {x 3 ≤ 0} de frontière Γ = {x 3 = 0} ; e 3 en est donc la normale unitaire sortante. Les composantes u k (x 1 , x 2 ) du déplacement en un point x = (x 1 , x 2 , 0) de la surface sont explicitement reliées à la distribution du vecteur-contrainte dans la zone de contact (composantes p i (y 1 , y 2 ) = σ i3 (y 1 , y 2 )) par la formule de représentation intégrale [START_REF] Bonnet | Equations intégrales et éléments de frontière[END_REF] :

u k (x 1 , x 2 ) = S p i (y 1 , y 2 )U k i (y 1 -x 1 , y 2 -x 2 ) dy 1 dy 2 i, k ∈ {1, 2, 3} (1) 
où U k i (z 1 , z 2 ) désigne la composante i du champ de déplacement au point z d'un massif semi-infini à surface libre par l'application au point O d'une force ponctuelle unitaire dirigée selon x k (solutions fondamentales de Boussinesq pour k = 3 et de Cerruti pour k = 1, 2). Les composantes tangentielles du tenseur des déformations ε(x) à la surface sont alors données par :

ε kℓ (x 1 , x 2 ) = - S p i (y 1 , y 2 ) U k i,ℓ (y 1 -x 1 , y 2 -x 2 ) + U ℓ i,k (y 1 -x 1 , y 2 -x 2 ) dy 1 dy 2 (i ∈ {1, 2, 3}, k, ℓ ∈ {1, 2}) (2) 
Le problème inverse objet de cette Note consiste à reconstruire la distribution d'efforts p(y 1 , y 2 ) sur S à partir de mesures de déplacement et de déformations en des points x situés à l'extérieur de la zone de contact, en exploitant les identités (1), [START_REF] Bui | Introduction aux problèmes inverses en mécanique des matériaux[END_REF]. Dans ces conditions, les noyaux

U k i (y 1 -x 1 , y 2 -x 2 ) et U ℓ i,k (y 1 -x 1 , y 2 -x 2
) sont de carré intégrable sur S. Les relations (1), ( 2) définissent un problème d'inversion linéaire mal posé [START_REF] Hansen | Rank-deficient and discrete ill-posed problems[END_REF] (résolution d'équations intégrales de Fredholm de première espèce), d'un type général rencontré dans une grande variété de problèmes inverses mais dont l'utilisation en mécanique du contact ne nous semble pas encore avoir été faite.

Mise en oeuvre dans le cas axisymétrique

Les équations (1), (2) sont applicables à des situations tridimensionnelles, mais on se restreint ici à l'hypothèse d'axisymétrie autour de l'axe Ox 3 ; en particulier la zone de contact S est supposée circulaire de rayon a. Après introduction de coordonnées cylindriques (y 1 = ρ cos θ, y 2 = ρ sin θ, y 3 = z) et une intégration analytique par rapport à θ ∈ [0, 2π], la formule (1) se réduit à [START_REF] Johnson | Contact mechanics[END_REF] :

u ρ (r) = 2(1 -ν) πµ a 0 t 2 + r 2 2r(t + r) K(k) - t + r 2r E(k) p ρ (t) dt - (1 -2ν) 2µr a 0 tp 3 (t) dt (3) 
u 3 (r) = 2(1 -ν) πµ a 0 t t + r K(k)p 3 (t) dt (4) 
où r > a est la distance du point d'observation au centre de la zone de contact et K(k), E(k) sont les intégrales elliptiques complètes de première et seconde espèce (avec k 2 = 4tr/(t + r) 2 ). Les déformations ε ρρ (r) = du ρ /dr et ε θθ (r) = u ρ /ρ étant facilement obtenues à partir de (3), on a donc un système d'équations intégrales de première espèce de la forme :

ε ρρ (r) ε θθ (r) u 3 (r) = a 0 g ρρ (r, t) g ρ3 (r, t) g θρ (θ, t) g θ3 (r, t) g 3ρ (r, t) g 33 (r, t) p ρ (t) p 3 (t) dt (5) 
Pour les applications, il faut supposer que ε ρρ , ε θθ , u 3 sont mesurés en un nombre fini de points d'observation r 1 , . . . , r m , et discrétiser les fonctions inconnues p ρ , p 3 . Les résultats d'inversion présentés ciaprès reposent sur une interpolation linéaire par morceaux et continue de p ρ et p 3 , le segment [0, â] étant découpé en n intervalles de longueurs égales (â est un majorant du rayon de contact a, ce dernier n'étant pas nécessairement connu). En introduisant le 3m-vecteur d = {ε ρρ (r i ), ε θθ (r i ), u 3 (r i ), 1 ≤ i ≤ m} T des observables et le (2n -1)-vecteur p = {p 1 3 , p 2 ρ , p 2 3 , . . . , p n ρ , p n 3 } des contraintes nodales inconnues (ayant posé p i ρ,3 = p ρ,3 ( (i -1)â/n ), imposé p ρ,3 (â) = 0 et remarqué que nécessairement p ρ (0) = 0), la relation (5) et la connaissance de la force de contact résultante conduisent à une relation matricielle de la forme Gp = d.

La matrice G est, comme attendu, très mal conditionnée : on a observé Cond(G) ≈ 6 10 -16 ou 2 10 -18 pour (m, n) = (7, 20) et (70,20) respectivement, et la valeur singulière de G de rang k se comporte approximativement comme exp(-k). La résolution directe de Gp = d étant impraticable, on introduit, suivant une démarche classique [START_REF] Tikhonov | Solutions to ill-posed problems[END_REF], le problème régularisé :

p α = arg min q R α (q) R α (q) = 1 2 (Gq -d) T (Gq -d) + αq T Dq (6) 
Le paramètre de régularisation α est déterminé par un procédé itératif (critère de validation croisée [START_REF] Golub | Matrix computations[END_REF]), et la matrice (positive et symétrique) D, choisie dans le but de pénaliser les solutions p très oscillantes, provient de la discrétisation de 

Résultats et discussion

Afin de tester la méthode d'inversion, on cherche à reconstruire un chargement hertzien, pour une zone de contact de rayon a = 15 mm et une loi de frottement de Coulomb (p ρ < f p 3 dans la zone d'adhérence, p ρ = f p 3 dans la zone de glissement) de coefficient f = 0.45 ;les données du problème inverse sont simulées par introduction de ce chargement dans [START_REF] Johnson | Contact mechanics[END_REF], avec une subdivision n = 200. Les m points de mesure sont régulièrement répartis sur l'intervalle 20 mm≤ r ≤50 mm. Les données sont parfois bruitées par l'addition de nombres aléatoires gaussiens, de moyenne nulle et d'écart-type relatif e = 0, 01 ou 0, 03. Les inversions reposent sur une subdivision n = 20.

Le rayon de contact est d'abord supposé connu (â = a). Les résultats obtenus par la procédure d'inversion régularisée pour m = 7 sont convenables en l'absence de bruit mais médiocres sinon ; ceux obtenus pour m = 70 sont nettement meilleurs (figure 1).

On considère ensuite le cas où le rayon de contact a n'est pas connu exactement mais estimé par excès à partir de la profondeur d'indentation δ, supposée mesurée ainsi que l'effort normal P (â 2 = δ(2R -δ) pour un poinc ¸on sphérique de rayon R). Les résultats d'inversion obtenus pour 7 ou 70 points de mesure (figure 2) présentent des profils de contraintes convenables. On remarque cependant que, du fait de la régularisation adoptée qui favorise des profils très lisses, les rayons de contact et, surtout, de séparation entre zones d'adhérence et de glissement, qui correspondent à des discontinuités de dérivée, n'apparaissent pas clairement si les données sont bruitées. Dans l'optique d'une reconstruction plus précise des distributions de contraintes de contact sous le poinc ¸on durant une expérience d'indentation (qui permettrait de déterminer l'existence d'une loi de frottement et, dans l'affirmative, d'en identifier les paramètres) il importe donc d'affiner la méthode d'inversion. Notre prochaine étape sera de traiter le rayon de contact a comme une des inconnues, et de discrétiser p ρ , p 3 sur l'intervalle variable 0 ≤ r ≤ a ; le problème d'inversion est alors bien entendu non-linéaire par rapport à a. On peut également envisager l'utilisation de techniques de régularisation plus sophistiquées, issues de la communauté du traitement du signal et de l'image [START_REF] Martin | Inversion bayésienne du problème non-linéaire de tomographie d'impédance électrique modélisé par une méthode d'éléments finis[END_REF] et conc ¸ues pour éviter les reconstructions oscillantes tout en permettant l'apparition d'un nombre limité de discontinuités.
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 2 FIG. 2 -Identification de contraintes de contact hertziennes avec frottement de Coulomb : rayon de contact connu exactement (â = a), 7 points de mesure (à gauche) et 70 points de mesure (à droite). Identification of Hertzian contact stresses with Coulomb friction contact radius known (â = a) : 7 measurement points (left), 70 measurement points (right).

  Identification de contraintes de contact hertziennes avec frottement de Coulomb : rayon de contact estimé par excès, 7 points de mesure (à gauche) et 70 points de mesure (à droite). Identification of Hertzian contact stresses with Coulomb friction : upper-bound estimation of the contact radius, 7 measurement points (left), 70 measurement points (right).
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