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A general boundary-only formula for crack shape sensitivity of integral functionals.

Abstract. This Note presents, in the framework of three-dimensional linear elastodynamics in the time domain, a method for evaluating crack shape sensitivities of integral functionals, based on the adjoint state approach and resulting in a sensitivity formula expressed in terms of surface integrals (on the external boundary and the crack surface) and contour integrals (involving the direct and adjoint stress intensity factor distributions on the crack front). This method is well-suited to boundary element treatments of e.g. crack reconstruction inverse problems. 

Version franc ¸aise abr ég ée

Evaluer la sensibilité de fonctionnelles intégrales par rapport à des perturbations du domaine est notamment utile dans des situations à domaine inconnu (problèmes inverses), ajustable (optimisation) ou variable. Cette Note propose une formulation de la sensibilité à des perturbations de fissures, développée dans le cadre de l'elastodynamique linéaire tridimensionnelle en variable temporelle et fondée sur la méthode de l'état adjoint.

On considère ainsi un corps élastique borné Ω ∈ I R 3 , de frontière externe S et contenant une fissure Γ. Les déplacements u, déformations ε et contraintes σ vérifient les équations de champ (1) et les conditions aux limites et initiales (2), l'ensemble constituant le problème direct.

Introduction

The need to compute the sensitivity of integral functionals with respect to shape parameters arises in many situations where a geometrical domain plays a primary role; shape optimization and inverse problems are the most obvious, as well as possibly the most important, of such instances. In addition to numerical differentiation techniques, shape sensitivity evaluation can be based on either direct differentiation or the adjoint variable approach, this paper being focused on the latter.

The object of this Note is to present a method for evaluating crack shape sensitivities of integral functionals, in the framework of three-dimensional linear elastodynamics in the time domain. This method is based on the adjoint state approach and results in a sensitivity formula expressed in terms of surface integrals (on the external boundary and the crack surface) and contour integrals (involving the direct and adjoint stress intensity factor distributions on the crack front). This sensitivity formula is thus well-suited to the use of boundary element methods (BEMs), which are quite often used for solving e.g. crack reconstruction inverse problems, see e.g. [START_REF] Mellings | Flaw identification using the boundary element method[END_REF][START_REF] Nishimura | Application of boundary integral equation method to various crack determination problems[END_REF].

Consider an elastic body Ω ∈ I R 3 of finite extension, externally bounded by the closed surface S and containing a crack Γ. The displacement u, strain ε and stress σ are related by the field equations:

div σ -ρü = 0 σ = C : ε ε = 1 2 (∇u + ∇ T u) in Ω (1) 
(C: fourth-order elasticity tensor). Besides, displacements and tractions are prescribed on the portions S u and S p = S \ S u of S, the crack surface Γ is stress-free and initial rest is assumed:

u = u D (on S u ), p = p D (on S p ), p = 0 (on Γ), u = u = 0 (in Ω, at t = 0) (2)
where p ≡ σ.n is the traction vector, defined in terms of the outward unit normal n to Ω. The above conditions define the direct problem.

Let us introduce the following generic objective function:

J (Γ) = J(u Γ , p Γ , Γ) = T 0 Sp ϕ u (u Γ , x, t) dS dt + T 0 Su ϕ p (p Γ , x, t) dS dt + Γ ψ(x) dS (3) 
which is encountered for instance in minimization-based algorithms for solving the inverse problem of crack detection ((u Γ , p Γ ) refer to the solution of problem (1, 2) for a given crack configuration). A boundary-only expression for the derivative of J (Γ) with respect to crack perturbations is sought. Any sufficiently small perturbation of Γ can be described by means of a domain transformation which does not affect the external boundary S, i.e. of the form x η = x + ηθ(x) where η is a time-like parameter and the transformation velocity field θ(x) is such that θ = 0 on S. Denoting by ⋆ f = f ,η + ∇f.θ the Lagrangian derivative of some field variable f , the derivatives at η = 0 of integrals over generic domains V and surfaces Σ have the well-known form:

d dη V f dV = V ( ⋆ f +f div θ) dV d dη Σ f dS = Σ ( ⋆ f +f div S θ) dS (4) 
where div S θ = div θn.∇θ.n is the surface divergence of θ (n: outward unit normal vector). Also, recall that (∇u) ⋆ = ∇ ⋆ u -∇u.∇θ.

Adjoint problem and domain integral formulation

For the present purposes, it is convenient to use an optimal control approach, whereby the variables in the objective function J(u, p, Γ) are formally considered as independent ones and the direct problem (i.e. the fact that one actually has u = u Γ , p = p Γ ) is treated as an explicit constraint. The following Lagrangian is thus introduced: ⋆ p arising in this calculation (they merely reproduce the direct problem constraint and thus vanish), the total derivative of L with respect to a given domain perturbation is given by:

L(u,
⋆ L (u, ũ, p, p, Γ) = T 0 Ω [ σ : ∇ ⋆ u +ρ ⋆ ü .ũ] dV dt - T 0 Su ũ - ∂ϕ p ∂p . ⋆ p dS dt - T 0 Su p. ⋆ u dS dt + T 0 Sp ∂ϕ u ∂u . ⋆ u dS dt + T 0 Ω [σ : ∇ ũ + ρü.ũ]div θ -[σ.∇ũ + σ.∇u] : ∇θ dV dt + Γ [∇ψ.θ + ψdiv S θ] dS (6) 
The partial derivative (∇u) ,η has generally a d -3/2 singularity along the crack edge ∂Γ, while ∇ ⋆ u and ∇u have the same d -1/2 singularity (d: distance to ∂Γ); this explains our using Lagrangian derivatives ⋆ u.

p now acting as test functions, is thus defined. Its adjoint solution ũΓ , pΓ is therefore found (by analogy to [START_REF] Bui | Mécanique de la rupture fragile[END_REF] to solve equations (1) together with the following boundary and final conditions:

p = - ∂ϕ u ∂u (on S p ) ũ = ∂ϕ p ∂p (on S u ) p = 0 (on Γ ± ) ũ = u = 0 (in Ω, at t = T ) (8)
Finally, Eq. ( 6) allows to express the derivative of J in terms of the direct and adjoint solutions:

⋆ J (Γ) = ⋆ L (u Γ , ũΓ , p Γ , pΓ , Γ) = T 0 Ω [σ Γ : ∇ũ Γ + ρü Γ .ũ Γ ]div θ -[σ Γ .∇ũ Γ + σΓ .∇u Γ ] : ∇θ dV dt + Γ [∇ψ.θ + ψdiv S θ] dS (9) 

Sensitivity in terms of boundary integrals

The next step is to find an equivalent form of Eq. ( 9) involving only boundary integrals. Any elastodynamic states (u, σ) and (ũ, σ) satisfying initial and final rest conditions, respectively, verify the identity: [START_REF] Fedelinski | Boundary element formulations for the dynamic analysis of cracked structures[END_REF] However, the well-known singular behaviour of strains and stresses at the crack front prevent a direct application of the divergence formula to Eq. ( 9) for the entire cracked domain Ω. To circumvent this difficulty, the body Ω is partitioned into Ω = Ω ε ∪ (D ε \ Γ), where D ε = {x, dist(x, ∂Γ) ≤ ε} for some sufficiently small ε > 0 is a tubular neighbourhood of the crack front ∂Γ bounded by the tubular surface Σ ε . Further, put Ω ε = Ω \ Dε and Γ ε = Γ \ Dε . Upon introducing this splitting into Eq. ( 9), applying the divergence formula for the contribution of Ω ε and invoking boundary conditions (2 3 , 8 3 ), one obtains:

T 0 [σ : ε + ρü.ũ]div θ -[σ.∇ũ + σ.∇u] : ∇θ dt = T 0 div [σ : ε -ρ u. u]θ -[σ.∇ũ + σ.∇u].θ dt
⋆ J (Γ) = T 0 Σε [σ Γ : ∇ũ Γ -ρ uΓ . uΓ ](θ.n) -[p Γ .∇ũ Γ + pΓ .∇u Γ ].θ dS dt + T 0 Γε [[σ Γ : ∇ũ Γ -ρ uΓ . uΓ ]](θ.n) dS dt + T 0 Dε [σ Γ : ∇ũ Γ + ρü Γ .ũ Γ ]div θ -[σ Γ .∇ ũΓ + σΓ .∇u Γ ] : ∇θ dV dt + Γ [∇ψ.θ + ψdiv S θ] dS (11) 

Discussion

Equation ( 13) holds true for general smooth crack shapes and transformation velocity fields. It provides an attractive computational tool, in conjunction with BEMs and gradient-based optimization algorithms, for solving inverse or optimisation problems for unknown or adjustable cracks. Both the direct and the adjoint problems stated in this Note can be solved by usual BEM techniques [START_REF] Bonnet | Boundary integral equations methods for Solids and Fluids[END_REF], including the evaluation of the direct and adjoint SIF distributions [START_REF] Fedelinski | Boundary element formulations for the dynamic analysis of cracked structures[END_REF]. Other applications of shape sensitivity analysis using the adjoint state approach in connexion with BEMs can be found in e.g. [START_REF] Aithal | Shape sensitivity analysis in thermal problems using BEM[END_REF][START_REF] Bonnet | BIE and material differentiation applied to the formulation of obstacle inverse problems[END_REF][START_REF] Burczy Ński | Application of BEM in sensitivity analysis and optimization[END_REF][START_REF] Burczy Ński | Shape design sensitivity analysis via material derivativeadjoint variable approach[END_REF][START_REF] Choi | Boundary Integral Equation Method for Shape Optimization of Elastic Structures[END_REF][START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF]. The present approach is certainly applicable to integral functionals somewhat more general than those of the form (3). Integral functionals defined in terms of domain integrals over the body Ω still lead to the boundary-only sensitivity expression (13) but body force distributions appear in the definition of the adjoint problem.

It is important to stress that Eq. ( 13) provides the sensitivity of an integral functional to a perturbation of a fixed crack configuration, not a crack propagation, hence the use of expansions [START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF], valid for a crack which does not physically propagate.

Equation ( 13) is also applicable, with straightforward modifications, to elastostatics and elastodynamics in the frequency domain. For instance, in elastostatics, J (Γ) is the potential energy at equilibrium for the particular choice ϕ u = -(p D .u)/2, ϕ p = (u D .p)/2 in Eq. [START_REF] Bonnet | Boundary integral equations methods for Solids and Fluids[END_REF]. For this special case, the adjoint solution turns out to be ũ = (1/2)u, i.e. KI = K I /2, etc. In equation ( 13), the factor of (θ.ν)(s) turns out to be, as expected, minus the energy release rate G(s), i.e. minus the J 1 -integral, whereas the factor of (θ.n)(s) is the 3-D generalization of the J 2 -integral [START_REF] Budiansky | Conservation laws and energy release rates[END_REF][START_REF] Bui | Mécanique de la rupture fragile[END_REF]. Finally, with the choice S p = S, s u = ∅ and ϕ p = p D .ûu.p, where û, p are the boundary traces of a pre-selected auxiliary elastodynamic state with final homogeneous conditions, one finds that ũ = û and that the factor of (θ.ν)(s) in ( 13) is the 3-D generalization of the so-called H-integral [START_REF] Bui | Facteur d'intensité dynamique des contraintes tiré des grandeurs mécaniques globales[END_REF].
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 0 ũ, p, p, Γ) = J(u, p, Γ) + T 0 Ω [σ : ∇ũ + ρü.ũ] dV dt -T Su (uu D ).p dS dt -Sp p D .ũ dS dt (5) where (ũ, p), the test functions of the direct problem in weak form, act as Lagrange multipliers. Using formulas (4), noticing that (C : ∇ ⋆ u) : ∇ũ = σ : ∇ ⋆ u and ignoring the terms containing ⋆ ũ,

Since the initial conditions u(•, 0) = u(•, 0) = 0 hold for any location of the assumed defect, one should assume ⋆ u (•, 0) = ⋆ u (•, 0) = 0 as well. Eq. (6) is thus altered by taking into account the identity:T 0 ⋆ ü .ũ dt = ( ⋆ u .ũ -u. ⋆ u) | t=T + T 0 ⋆ u . ü dt (7)Now, the multipliers ũ, p are chosen specifically so that all terms containing ⋆ u and ⋆ p in Eq. (6) combine to zero for any ⋆ u and ⋆ p. The weak formulation of an adjoint problem, of a form similar to the direct problem in (5) but with ⋆ u, ⋆

where n is the outward unit normal to Ω ε and [[f ]] ≡ f (x + )f (x -) (discontinuity of f across Γ). Now, the limiting form when ε → 0 of Eq. ( 11) is sought. Recall the well-known expansions of the mechanical fields near the fixed crack front, isotropic elasticity being assumed (ν: Poisson ratio, µ: shear modulus):

and similarly for ũ with stress intensity factors KI,II,III ; (r, θ) denote local polar coordinates, attached to a point x(s) of ∂Γ characterized by its arc length s, in the plane orthogonal to ∂Γ and emanating from x(s), and z is such that (r, θ, z) define cylindrical coordinates. The singular displacements defined by Eqs. ( 12) produce direct and adjoint strains and stresses, denoted (ε S , σ S ) and (ε S , σS ). Since by virtue of these expansions σ : ε = O(1/r), the integral over D ε vanishes in the limit ( dV = r(1

Besides, it can be verified that [[σ S : ∇ũ S ]] = O(d), and hence that the integral over Γ ε becomes in the limit ε → 0 the corresponding, convergent, integral over Γ. Finally, under mild smoothness assumptions on the closed curve ∂Γ and the velocity field θ, one has:

The integral in the right-hand side, which yields a finite contribution as the radius ε of the tubular neighbourhood goes to zero, can be evaluated in a straightforward way using expansions [START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF]. This last calculation results in the following expression of ⋆ J (Γ), which constitutes the main result of this Note:

where ν(s) denotes the unit outward normal to ∂Γ lying in the tangent plane to Γ at x(s). To ensure that formula (13) can actually be evaluated using only the boundary traces of the direct and adjoint solutions, the bilinear form σ : ∇ ũ must be expressed in terms of ∇ S u, ∇ S ũ, taking p = p = 0 into account in the process: