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Symmetric-Iterative Solution of Coupled BE and FE
Discretizations for Elastoplastics
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In this paper the symmetric-iterative method of coupled FE and BE discretizations is adopted to investigate elastoplastic problems.

In order to improve computational e�ciency, all degrees of freedom related to the BE region, except those degrees of freedom as-

sociated with interface, are condenced. The symmetric part of the sti�ness matrix from the boundary element region is assembled into

the sti�ness matrix of the FEM, but antisymmetric part is taken as the corresponding in¯uential load matrix. During the elastoplastic

solution process of the FEM, the numerical iterations which includes the in¯uence of the antisymmetry of the condensed sti�ness

matrix are being carried out until the convergent results are obtained. Numerical examples are presented to illustrate the performance

of the given algorithm and compared with the existing results.
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1. Introduction

The combination of boundary element and ®nite element methods has been extensively investigated by
many researchers and applied to various problems such as geomechanics, elastoplastic fracture mechanics,
electromagnetics, acoustics etc. From the viewpoint of simplicity of application, we will only consider one
of existing coupling methods, that is, the boundary element region is treated as a ®nite element. This ap-
proach can easily be incorporated into existing ®nite element codes.

The resulting sti�ness matrix derived from conventional BEM formulation is the nonsymmetric and full
populated. This nuisance makes the computational e�ciency in the solution of the global system matrix
equation to greatly be degraded when such nonsymmetric BEM sti�ness matrix is assembled with the
symmetric and banded FEM sti�ness matrix. For overcoming this shortcoming, many researchers have
made their e�orts and proposed various techniques. The basic idea of coupling of boundary element and
®nite element methods for solid mechanics goes back to [11] who combined the variational principles and
the integral equation to obtain the symmetric BE sti�ness matrix for computing the scalar potential ®eld of
a C-shaped depole magnet. [1] gave the same symmetric sti�ness matrix of the BE region by minimizing
the square of the errors in nonsymmetric o�-diagonal terms. [3] provided the theoretical background for the
symmetry of the sti�ness matrix of the boundary element region. [10] studied several di�erent forms of the
sti�ness matrices of the boundary element region for the purpose of checking the stability of these sti�ness
matrices for the coupling of the boundary element and ®nite element methods. They claimed that un-
symmetric sti�ness matrix of conventional boundary element method can produce the most accurate result.
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[7] provided a method for coupling of boundary element and ®nite element method which not only solves
the equations with a symmetric matrix, but also considers the in¯uence of unsymmetry of the boundary
element region's sti�ness matrix. This method was also extended to two dimensional elastoplastic problem
[6].

In this paper the basic idea proposed by [6] is adopted to investigate elastoplastic problems. The elastic
region is discretized by BEM, but the elastoplastic one done by the FEM. In order to improve computa-
tional e�ciency, all degrees of freedom related to the BE region, except those degrees of freedom associated
with interface, are condensed. The condensed sti�ness matrix is equivalent to the sum of the two parts
which are symmetric and antisymmetric matrices, respectively. The symmetric part is assembled into the
sti�ness matrix of the FEM, but antisymmetric part is taken as the corresponding in¯uential load matrix.
During the solution process of the FEM, the elastoplastic iterations which includes the in¯uence of the
antisymmetry of the condensed sti�ness matrix are being carried out until the convergent results are ob-
tained. Numerical examples are compared with corresponding results based on symmetry of the condensed
unsymmetric sti�ness matrix (here, we call it as the usual FE-BE method) for the interface of the boundary
element region, without considering the in¯uence of antisymmetry of interface sti�ness matrix, and with the
®nite element solutions.

2. Boundary element formulation

The boundary integral equation for the analysis of an elastic body without body forces can be expressed
as (see, for example, [2]):

for plane problems,

Cab�p� _ub�p� �
Z

C
Uab�p; q�_tb�q�dC�q� ÿ

Z
C

Tab�p; q� _ub�q�dC�q� �1�

for axisymmetric problems,

Cab�p� _ub�p�r�p� �
Z

C
Uab�p; q�_tb�q�r�q�dC�q� ÿ

Z
C

Tab�p; q� _ub�q�r�q�dC�q� �2�

where a; b � 1; 2; p; q represents the source point and the ®eld point on the boundary C of the body, re-
spectively; Cab is the constant coe�cient whose value is de®ned by the tangent line at the point p; Uab; Tab are
the well-known singular kernels, and _ub; _tb the displacement and traction rates, respectively; r is the distance
from line of symmetry to the ®eld point or the source point.

After discretizing the boundary and using the collocation technique at each boundary node, Eqs. (1) and
(2) is written as:
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where _XB is the rate vector of non-interface unknowns, and _TC
B and _UC

B are interface traction and interface
displacement rates, respectively; _fB and _fC

B are the part of the right hand side vector in Eq. (3), which
contains the contribution of the known values.

The Eq. (3) may further be transformed into the following form by partly eliminating XB:
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So, the equation concerning interface boundary is extracted as:
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3. Finite element equations

Following the conventional method [8], the ®nite element analysis for elastoplastic problems produces
the following equation:

K _u � _f �6�
where K is the sti�ness matrix, _u is displacement rate vector and _f the applied force rate vector. Eq. (6) can
be written in patitioned form as follows:

K11 K12

K21 K22

� �
_UF

_UC
F

( )
� _FF

_FC
F

( )
�7�

where _UF and _UC
F denotes the rate vectors of non-interface and interface displacements, respectively. _FF and

_FC
F are the associated load vectors.

4. Sti�ness matrix of the coupled BE and FE discretizations

In order to couple Eqs. (5) and (7) to form the ®nal equation, one can reduce Eq. (5) to a ®nite elements
form by inverting �A4, i.e.
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The boundary tractions in Eq. (8), _TC
B , can be converted into the equivalent nodal force, _FC

B , of the type used
in ®nite elements by weighting the boundary tractions with the interpolation functions used for the dis-
placements. Therefore, _FC

B can be expressed in the form:
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where M is the converting matrix, KC
B , i.e. �M���A4�ÿ1��A6�, denotes a sti�ness matrix of the BE part, _�F

C

B , i.e.
�M���A4�ÿ1 _�f

C

B , follows from the speci®ed displacements on the displacement boundary and tractions on the
tractions on the traction boundary.

Along the common interface, displacement compatibility and force equilibrium must be satis®ed. Thus,
the ®nal coupled equation will be of the form:

K11 K12

K21 K22 � KC
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The matrix KC
B , which obtained form the BE part, is fully populated and asymmetric. Thus, it destroyed the

sparsity of the ®nal sti�ness matrix, shown in Eq. (7). To overcome this shortcoming, �KC
B � can be converted

into the sum of a symmetric matrix �KC
B �I and an antisymmetric matrix �KC

B �II
, i.e.

KC
B

� � � KC
B

� �I � KC
B

� �II �11�
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2
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Substituing Eq. (11) into Eq. (10), one can obtain the following equation:
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If the second vector of the right hand side in the above equation is canceled, the Eq. (12) is completely
equivalent to the usual coupling equation (see, for example, [1]) in which an antisymmetric matrix is not
included. The present equation can be obtained by the following iterative method:
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When n � 0; _U
C�0�
F is chosen as zero vector.

The Eq. (13) considers the in¯uence of the antisymmetric matrix from the interface part of BE region. In
numerical computation, the iterative process with a new right hand side load may be carried out until the
convegent solution is obtained. The convegent criterion is similar to equation (3.21) from [8]. In this paper,
one percent is found to be a good value for tolerance of the convegent criterion.

Here, it should be mentioned that the �KC
B �I in Refs. [6] and [7], in which the condensation technique did

not be considered and only plane problem was studied, came from the global sti�ness matrix of BE region.
This means that the size of the Eq. (13) ties in with the size of all BE area, not only interface part, rep-
resenting an increase of the computational time.

5. Numerical examples

5.1. In®nitely long thick cylinder under internal pressure

In®nitely long thick cylinder under internal pressure is presented to demonstrate the validity of the
present algorithm and the results are compared for stresses with results obtained using analytical solution
and the usual coupled FE-BE methods.

In this example, the geometrical and material data are taken to be: R1 � 100 m, R2 � 200 m, elastic
modulus E � 20:58� 104 MPa, Poisson's ratio m � 0:3, uniaxial yields stress rs � 24:0 MPa, strain hard-
ening parameter H 0 � 0:0 and the internal pressure p is 14.0 MPa.

In numerical analysis, only a ®nite part of the cylinder with a height of 2H � 20m is considered. This
leads to the corresponding computational model shown in Fig. 1. The FE-BE meshes employed in the
calculation are shown in Fig. 2. The results for the stress distributions are given in Figs. 3 and 4, respec-
tively, and they are compared with the analytical solutions [4]. One can note that the numerical results from
the symmetric-iterative FE-BE method have been in good agreement with analytical solution.

Fig. 1. Axisymmetric computational model of the thick cylinder.

Fig. 2. Discretizations of ®nite element and boundary element areas.
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5.2. Thick hollow sphere

A thick hollow sphere (Fig. 5) with internal pressure load is investigated. The geometrical and material
data are taken as the following dimensionless parameters: R1 � 5; R2 � 10, elastic modulus E � 21000
MPa, Poisson's ratio m � 0:3, uniaxial yields stress rs � 50, strain hardening parameter H 0 � 0:0 and the
internal pressure p is 50.

The meshes (FE: 36 8-node quadrilateral elements; BE: 20 3-node boundary elements) employed in the
coupled FE-BE calculation are shown in Fig. 6. The numerical results together with the analytical solution
are shown in Figs. 7 and 8, respectively. One again note that the usual FE-BE method exists a large dis-

Fig. 5. Thick hollow sphere.

Fig. 6. Discretizations of ®nite element and boundary element areas.

Fig. 3. Radial stress distributions for in®nitely long thick cylinder.

Fig. 4. Hoop stress distributions for in®nitely long thick cylinder.
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crepancy with analytical solution [5], especially in the vicinity of the interface of FE and BE domains.
Conversely, the results from present method are in good agreement with analytical solutions.

5.3. A perforated plate in tension

A rectangular plate of dimensions 36� 18 mm with a hole of radius 10 mm at the center is investigated
here. Due to symmetry, only a quarter of the plate (Fig. 9) needs to be considered. The plate is assigned the
following material properties: modulus of elasticity, E � 7000 N=mm2; Poisson's ratio, m � 0:3; uniaxial
yield stress, rs � 24:3 N=mm2; work hardening parameter, H 0 � 0:0.

The FE and combined FE-BE models of the quarter plate are shown in Figs. 10 and 11, respectively. A
distributed load of p� 24.3 N mm2 was applied to the smaller sides and four load increments were used to
take the load factor up to 0.55 times the applied load. The obtained results about iterative steps are given in
Table 1. One notice that iterative step from present method is the same as usual FE-BE method. Fig. 12
shows the distribution of the stress rx along dashed line, which crosses Gauss points of each element, in
Fig. 11 for load factor 0.4. One can ®nd that the present method gives a reasonable result in the near of
interface of FE and BE domains, but usual FE-BE method has a discrepancy. Fig. 13 shows the devel-
opment of the plastic zones with increasing value of the applied load.

Fig. 7. Radial stress distributions for thick hollow sphere.

Fig. 8. Hoop stress distributions for thick hollow sphere.

Fig. 9. A perforated plate in tension.
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5.4. Notched plate

The example shown in Fig. 14 represents a notched plate subjected to a tension in the longer direction at
the smaller sides. The geometrical dimensions are assumed to be: L � 18 mm, W � 10 mm, C � 5 mm,
a � 45°. The material parameters are the same as the above example. The ®nite element and combined FE-
BE meshes are illustrated in Figs. 15 and 16, respectively. Five load increments were taken as load factor
values up to 0.7 times the applied load of 24.3 N/mm2. Fig. 17 shows the development of plastic zones with
increasing loading. The iterative steps needed from usual FE-BE method and present method are given in
Table 2. Figs. 18 and 19 shows the distribution of the stress rx along dashed line, which crosses Gauss
points of each element, in Fig. 15 for load factor 0.55 and 0.65, respectively. The same conclusion with the
above example was obtained.

Fig. 11. FE-BE mesh.

Fig. 10. FEM mesh.

Table 1

Iterative steps for usual FE-BE method and present method

load factor usual Fe-BE method present method

0.40 21 21

0.45 31 31

0.50 42 42

0.55 68 68
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5.5. Centre cracked plate

The problem considered (Fig. 20) is that of a plate under tension which contains a crack of length 2a
perpendicular to the direction of loading. The width of the plate is 2W and the thickness assumed to be

Fig. 12. Stress distribution of x-direction along dashed line shown in Fig. 11.

Fig. 13. Development of plastic zones with increasing loading.

Fig. 14. Notched plate in tension.
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Fig. 16. FE-BE mesh.

Fig. 17. Development of plastic zones with increasing loading.

Fig. 15. FEM mesh.

Table 2

Iteratives steps for usual FE-BE method and present method

load factor usual Fe-BE method present method

0.30 3 3

0.55 4 4

0.60 4 4

0.65 5 5

0.70 5 5
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unity. The length of the strip was assumed to be 5W. The initial crack length was chosen as a � 0:4W. The
material properties assumed for analysis are taken as the following dimensionless data: modulus of elas-
ticity, E � 1000; Poisson ratio, m � 0:3; uniaxial yield stress rs � 100; strain harding parameter H 0 � 0:0.
Three load increments was used as load factors up to 0.6 times the applied load of p � 100.

Fig. 21 shows the FE mesh consisting of 20 isoparametric quadratic elements and the J integral paths
used in the analysis of elastoplastic problem. The combined FE-BE mesh with 18 isoparametric ®nite
elements and 14 isoparametric boundary elements, respectively, is shown in Fig. 22. J-integrals obtained
by FEM [9], the usual FE-BE method and present method are given in Fig. 23. It can be observed from
Fig. 23 that J-integrals from present method and usual FE-BE method are in good agreement with the
FE results of [9]. Discrepancy between J-integrals from present method and usual FE-BE method is
quite small. The reason is that J-integral paths were taken as those close to crack tip, not near interface
between FE and BE parts. The development of yield surface with the increasing load is illustrated in
Fig. 24.

Fig. 18. Stress distribution of x-direction for load factor 0.55.

Fig. 19. Stress distribution of x-direction for load factor 0.65.

Fig. 20. Cracked plate.

10



Fig. 21. FE mesh.

Fig. 22. FE-BE areas.

Fig. 23. J-integrals for several load factors.

Fig. 24. Iterative steps for usual FE-BE method and present method.
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6. Conclusions

The main conclusion drawn are as follows:
1. Symmetric-Iterative FE-BE coupling method is extended to solve the axisymmetrically elastoplastic and

plane fracture problems;
2. The obtained results are in good agreement with analytical solution or corresponding FEM solutions;
3. In the near of interface of FE and BE areas, present method can give a better result than usual FE-BE

method;
4. The present method is more e�cient than solving for the unsymmetric matrices because only half of the

matrix is operated upon during Gauss elimination;
5. Present method can be extended to three dimensional elastoplastic, elasto-viscoplastic, soil-structure in-

teraction and other associated areas.
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