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Abstract--This paper presents boundary element method (BEM) formulations for usual and sen
sitivity problems in (small strain) elasto-plasticity using the concept of the local consistent tangent 
operator (CTO). "Usual" problems here refer to analysis of nonlinear problems in structural and 
solid continua, for which Simo and Taylor first proposed the use of the CTO within the context of 
the finite element method (FEM). A new implicit BEM scheme for such problems, using the CTO, 
is presented first. A formulation for sensitivity analysis follows. It is shown that the sensitivity of 
the strain increment, associated with an infinitesimal variation of some design parameter, solves a 
linear problem which is governed by the (converged value of the) same global CTO as the one that 
appears in the usual problem. Numerical results for both usual and sensitivity problems are shown 
for a one-dimensional example. They demonstrate the effectiveness of the present approach. In 
particular, accurate sensitivities with respect to material parameters (e.g., exponent of the power
type hardlening law) are obtained even with few integration cells and for large load increments. 

l. INTRODUCTION 

In this paper, we address two important topics within the context of boundary element 
method (BEM) analysis of (small strain) elasto-plastic problems. The first is an implicit 
BEM formulation for usual elasto-plastic analysis and the second is a sensitivity formulation 
for such problems. Both these formulations involve the consistent tangent operator (CTO
see Simo and Taylor, 1985). 

Sensitivity analysis of nonlinear (material and/or geometrical) problems in solid mech
anics is an a<:tive research area at present. In this context, design sensitivity coefficients 
(DSCs) are rates of change of response quantities, such as stresses or displacements in a 
loaded body, with respect to design variables. These design variables could be shape 
parameters, sizing parameters, boundary conditions, material parameters etc. DSCs are 
useful in diverse applications, a very important one being optimal design using gradient 
based optimization algorithms. Such analyses can be applied, for example, to optimal 
design of certain manufacturing processes. 

Currently, the direct differentiation approach (DDA) or the ad joint structure approach 
(ADA) are popular for accurate sensitivity analysis. Either of these can be applied in 
conjunction with general purpose numerical methods such as the finite element method 
(FEM) or the BEM. The FEM has been used for sensitivity analysis of nonlinear problems 
by, among others, Arora and his eo-workers (Arora and Cardoso, 1992; Yao and Arora, 
1992a, b), Choi and his eo-workers (Choi and Santos, 1987; Santos and Choi, 1988), Haber 
and his eo-workers (Vidal et al., 1991; Vidal and Habet, 1993), Kleiber and his eo-workers
(Kleiber, 1991; Kleiber et al., 1994, 1995), Michaleris et al. (1994) and Badrinarayanan
and Zabaras (1996). Haber, Kleiber and their associates were the first to point out that the 
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consistent (or algorithmic) tangent operator (CTO) (as opposed to the continuum tangent 
operator) plays a key role in nonlinear sensitivity analysis. The CTO was originally proposed 
by Simo and Taylor (1985) for FEM analysis of (usual) nonlinear problems. The sensitivity 
problem is always linear (even if the usual problem is not) and the global or system matrix 
related to the CTO is precisely the stiffness matrix for these problems. Use of the CTO, as 
pointed out by Kleiber, Haber and their associates, provides very accurate numerical results 
for sensitivities, while other approaches (e.g., using the continuum tangent) might lead to 
significant errors. These researchers present numerical results for materially nonlinear 
problems. Michaleris et al. (1994), in a recent paper, present sensitivity formulations for
general transient nonlinear coupled problems, together with an accurate numerical pro
cedure for the calculation of the CTO. Badrinarayanan and Zabaras (1995) present a 
consistent scheme for sensitivity analysis of nonlinear (both material and geometric) prob
lems in solid mechanics. This paper presents very accurate numerical results for sensitivities 
at the end of a large deformation (extrusion) process. 

All the researchers cited above have employed the FEM in order to obtain their 
numerical results. Mukherjee and his eo-workers have been active in solving nonlinear 
(both material and geometric) sensitivity problems by the BEM. Examples of the work of 
this group, using the explicit BEM, are Zhang et al. (1992a, b) and Leu and Mukherjee
(1993) (see also the forthcoming book: Chandra and Mukherjee, 1996). Wei et al. (1994)
have used sensitivities to carry out shape optimal design of an elasto-plastic problem. 

Most of the publications on BEM analysis of (usual) nonlinear problems in solid 
mechanics report on the use of the explicit approach for time integration of the appropriate 
rate equations. Banerjee and his eo-workers (Banerjee, 1994) have presented variable 
stiffness formulations for such problems. Implicit BEM formulations have been presented 
by Jin et al. (1989) and Telles and Carrer (1991, 1994). Mukherjee and his eo-workers have
been interested in implicit sensitivity calculations, using the BEM, during the last few years. 
Leu and Mukherjee (1994a, b) have presented implicit objective integration schemes for 
recovery of stress sensitivities at a material point. This work addresses large strain visco
plastic problems but only considers integration of the algorithmic constitutive model 
(analogous to the radial return algorithm) at a material point. They have coupled this 
analysis with the BEM (Leu and Mukherjee, 1995) to solve general boundary value prob
lems. The CTO, however, has not been employed in the work by Leu and Mukherjee cited 
above. It is observed (Leu and Mukherjee, 1995) that stress sensitivities at some material 
points, at the end of a large deformation process, can exhibit significant numerical errors. 

The remedy appears to be an implicit BEM formulation that employs the consistent 
tangent operator. Within the context of the BEM, this paper presents, for the first time, an 
implicit scheme that explicitly utilizes the CTO. Small-strain elasto-plastic problems, with 
isotropic and kinematic hardening behavior, are considered in this paper, but further 
generalizations present no conceptual difficulties. Next, the corresponding sensitivity for
mulation is derived. It is shown that the (converged value of) the "global" CTO appears, 
as expected, as the stiffness matrix for the linear system of equations that govern the 
sensitivity of the strain increment over a time step. Initial numerical results for sensitivities, 
using the formulation presented in this paper, are very accurate. 

2. THE GLOBAL CONSISTENT TANGENT OPERATOR USING FEM 

Let n denote the spatial region occupied by the elastic-plastic solid under consideration.
Attention is restricted to small-strain, quasistatic loading processes. 

Constitutive law 
Let u, a and s denote respectively the displacement, stress tensor and total strain tensor

(with 2s = (V+ V�u, where V is the gradient operator). Following Simo and Taylor (1985),
considering the evolution problem from a discrete incremental standpoint for a finite time 
step /'J..t (as opposed to continuous time), the elastoplastic constitutive law reduces to giving
a rule which outputs, an+ 1 consistent with the yield criterion, for any given strain increment
/'J..sn = 8n+ 1 -8n (input):

2



(1) 

Here, the notation a symbolically denotes the action of the radial return algorithm (RRA) 
of Simo and Taylor (1985) ; eP is the cumulated equivalent plastic strain:

where dP is the plastic strain rate, with tr(dP) = 0. Also, the subscript n in (tno . . . ) refers to 
time (or pseudo-time) tno tr is the trace of the tensor dP and

Radial return algorithm (RRA) 
The RRA, which we now briefly summarize, was given in Simo and Taylor (1985), in

the context of rate-independent plasticity with Von Mises pressure insensitive yield 
condition, atlid an associative flow rule. The yield condition is 

(2) 

where�= s--IX in terms of the deviatoric stress s = a-�(tra)l and the back stress IX. Here,

1 is the second order unit tensor. Also, eP-+ K(eP) is the hardening rule.
A trial deviatoric stress is introduced as 

(3) 

where e = t-·�(tr t)l and G is the shear modulus of the material.
If /(��+1, 1Xno Kn) � 0, i.e., ��+I is elastic, one has

(4) 

(with K the bulk modulus and ® denoting the tensor product) i.e., the elastic constitutive
equation in incremental form. On the other hand, if /(��+ 1, 1Xno Kn) > 0, it is given by the
following equations, which constitute the RRA: 

-p - -p + � [ At] en+ I - en V 3 YLl 

A 1 T 

0 
= 

11��+111 
�n+l

where [yAt] solves the nonlinear consistency equation

ll��+lll-v1K(e�+v1 [yAt]) -2G[yAt] -v1AHn = 0

(5) 

(6) 

(7) 

(8) 

with AHn = Hn+ 1-Hno Hn = H(e�), Kn = K(e�). The evolution of the back-stress 1Xn is
governed by 
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1Xn+l = 1Xn+v1AHnD (9) 

where H'(eP) is the plastic modulus. Here, a superposed "prime" indicates differentiation 
with respect to the argument. 

Equilibrium constraint 
In a FEM framework, the supplementary constraint provided by the need to satisfy 

the equilibrium equation at any time t (in e.g., the virtual work form) is then used to
determine which Aa exactly should be input in (1). The necessary condition for equilibrium 
at step n + 1 is, using (1) :

= 0 ('Vv E "//) (10) 

with 2Aan =(V+ VT) (u-un), and v is an admissible variation. Then, the displacement
increment Aum such that Un+l = un+Aun solves the nonlinear eqn (10), is sought for iter
atively using a Newton method: the additive correction bu� = Au�

+ 1 
- Au� to Au� solves 

with 2Aa� =(V+ VT)Au�. The local consistent tangent operator (CTO) is the fourth-order 
tensor en+ I = oiifoAan. It depends on the particular algorithm Asn--+ O"n+ I chosen. 
The global CTO is the stiffness operator associated with the bilinear form t5u, 
V--+ Jn(en+ 1: t5u: v) d V.

This is essentially the approach followed, in conjunction with the RRA, in Simo and
Taylor (1985), where the expression of en+ 1 associated with the RRA (5)-(9) is also given.
It is important to note that when ii(am am e�, Asn) is elastic one has 

(12) 

where e is the fourth-order tensor of elastic coefficients. 

3. THE GLOBAL CONSISTENT TANGENT OPERATOR USING BEM 

The virtual-work form (10) of the equilibrium equation is not suitable for boundary 
element-oriented formulations. In this section, it is shown how to build the global CTO 
when the equilibrium constraint is formulated in terms of boundary integral equations and 
internal representation formulas. 

BEM formulation for elastic problems with initial strain 
We consider the initial strain approach of elastic-plastic problems. For a given initial 

strain distribution sP, the elastic constitutive law reads:

(13) 

The boundary integral equation (BIE) 

I [u;(Z)-u;(x)]P7(x,z)dSZ- I p;(z)U7(x,z)dSZ = i uux,z)Cijabe�b(z)dVZ (14)J� 1n n 
where x is any fixed source point on the boundary an, holds for any elastic state with initial
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strain eP but otherwise no domain forces; U�, P � denote the components of the elastic
singular fundamental displacement and traction, i.e., those created in the infinite space IR3 

by a unit point force applied at x along the k-direction, p = a· n is the traction vector. The 
variable field point is denoted by z in the above equation. 

The above BIE symbolically reads: 

[H]{u}-[G]{p} = [Q]{C:sP} (15) 

In the standard boundary element method, the above equation is discretized and then recast 
as 

[A]{y} = {f}+[Q]{C:sP} (16) 

where {y} collects the boundary unknowns and { f} is the contribution of known boundary 
variables, i.e., values prescribed by the boundary conditions. 

BEM representation at internal points. The displacement at any point x not on the
boundary is then given in terms of the boundary variables u, p and initial strain eP by the 
representation formula: 

Differentiation of the above formula with respect to x1 yields the representation formula 
for the displa.cement gradient. A suitable regularization procedure which has been discussed 
elsewhere (Chandra and Mukherjee, 1996) is needed at this stage for the domain integral. 
As a result, one has 

uk,,(x) = I U;(z)D�(x, z) dSZ- I p;(Z) uz,(x, z) dSZJao Jao 

using the notation D� = CijahnjU!,ht· The total strain at xis then readily obtained from the
above equation. In symbolic form, one has, with {s}: "vector" of strains at all internal 
points: 

{s} = [G']{p}- [H']{u} + [Q']{C: sP} 

= - [A']{y} + {f} + [Q']{C: sP} 

Substituting for {y} from (1 6) into the above equation, we have: 

where 

{s} = {n}+[S]{C:sP} 

{n} = {f'}-[A'][A)-1{f} 

[S] = [Q']- [A'][ A] -I [Q]

(19) 

Note that { 111} denotes the purely elastic solution, i.e., the one obtained for the same 
loading but in the absence of initial strain. Then, (13)2 is incorporated (in the form 
{C:sP} = {C:s}-{a}) into (19), giving: 
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{a} = {n} + [S]({C: s}- {a}) 

Finally, the total strain and the stress are related through: 

[S]{ a - Cs} - { n} + [I]{ B} = { 0} (20) 

Following Telles and Carrer (1991), the above formulae for elastic problems with "initial" 
strain are given in accumulated form (as opposed to the rate form). 

Consistent tangent operator for the BEM elastic-plastic formulation 
A new implicit BEM formulation, using the CTO, is presented in this section. With sP 

the plastic strain, we consider the evolution of the structure between time tn and tn +  1• One 
has, from (20) and using the notation 8( )n = ( )n+ 1 - ( )n:

(21) 

which includes the equilibrium constraint. 
On the other hand, the radial return algorithm (1) relates ii = O"n+I = O"n+L\an to L\sn.

Combining the constitutive and equilibrium equations in the form 

(where L\an(L\sm · ·, · ·) comes from the BEM equation while ii(L\sm · ·, · ·) comes from the
RRA (1)), we obtain a nonlinear equation for L\sn of the form:

The Newton method can also be applied in this case, and it is readily seen that the consistent 
tangent operator c+ I appears here as well. The additive correction c5a� = L\a�

+ 
I - L\s� to 

L\a� solves : 

(23) 

The quantity ([S][C- C�+ d- [I]) = ([D�+ d- [I]) is hereafter called the global CTO (see 
Kleiber et al., 1994 for the FEM version). Once the nonlinear eqn (22) is solved for L\sm all 
the variables at time tn+ 1 are readily computed. It is interesting to note that the Newton 
step (23) involves the difference [C-C�+ d between the elastic constitutive law and the 
local CTO, rather than the local CTO itself; this is entirely consistent with the fact that 
eqn (21) accounts for equilibrium as well as the elastic constitutive law, while, for the FEM, 
eqn (10) from which the Newton step (1 1 )  stems accounts for equilibrium only.

Also, it is important to note that the elastic constitutive law and the local CTO differ 
only at points (referred to as 'incrementally plastic') where the current strain increment has 
a non-zero plastic component. Hence, the Newton step (23) admits the following block 
decomposition : 

(24) 

(25) 

Equations (24), (25) use the fact that 

(26) 

The subscripts E, P indicate vectors and matrices restricted to the currently elastic (E) or
plastic (P) internal nodes and collocation points. Thus, only the restriction to currently 
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plastic nodes of the global CTO [D�+ 1 - I] pp need to be factored. This shows that the global
CTO has to be set up and factored only at currently plastic nodes, the currently elastic part 

{ t:5s�} E being given explicitly by (25) once (24) is solved for { t:5s�} P 

4. SENSITIVITY ANALYSIS 

Now we are interested in computing the sensitivities of the mechanical variables 
associated with an infinitesimal perturbation of some design parameter b of an unspecified
nature. As a matter of fact, such sensitivities are expected to be undefined at some particular 
locations, e.g., on the transition interface between the current elastic and plastic zones. 
However, in the interest of simplicity, we elect to disregard this issue, so that sensitivities 
of mechanical variables are treated as continuous in the derivations that follow. The reader 
is referred to a very recent paper, Lee and Arora (1995), for a detailed discussion of this 
issue. 

Since sensitivity in the present context means a comparison of two history-dependent 
mechanical processes, the sensitivity computation must also proceed in an incremental way, 
resulting in an accumulation of sensitivity increments, each of which is a solution to a linear 
problem. Th1� adjoint structure approach (ASA), very powerful for steady-state situations, 
leads to regre:ssive computations when applied to evolution problems. Applied to nonlinear, 
history-dependent problems, the ASA would require the storage of the whole mechanical 
history and of the converged tangent operators for all time steps, thus becoming rather 
impractical. An excellent reference for this area of research is a recent paper by Michaleris 

et al. (1994). In contrast, the direct differentiation approach (DDA) fits perfectly into the
progressive tlime-stepping computation scheme. The DDA is thus preferable for nonlinear 
evolution problems; it is used in the present work. 

The DDA: principle 
Differentiation of the boundary integral eqn (16) and internal strain representation 

(19) with respect to b for given sP is a well understood process (Chandra and Mukherjee,
1996). One n�adily sees that the evaluation of the derivative tP plays a key role. We now
concentrate on this particular task. 

Let us differentiate eqn (22) w.r.t. b, so that: (an* above a variable denotes a derivative
of that variable with respect to b) 

* * * * 
[S]{u(Bn, Un, e;, Asn) -Un -CAsn} + [I]{Asn} 

* *+[S]{it(8n, Un, e�, A8n)-un-CAsn}-{Ann} = {0} (27)

(assuming that b is such that the elastic coefficients do not depend on it). This derivation
* 

aims at finding a governing equation for Asn in terms of known variables at times tn and

tn+ 1 and sensitivities at time tn. Obtaining the derivatives [S] and {�n} usually requires quite
lengthy derivations and is thus by no means trivial. However, this aspect has been discussed, 
at length, in previous work on sensitivity analysis of elastic and elasto-plastic BEM for
mulations (e.g., in Chandra and Mukherjee, 1996), where the DDA has been applied on 
the appropriate integral eqns (14, 17 and 18). The focus in this paper is on obtaining 
{a( sm u m e�, Asn)} from the appropriate constitutive algorithm, and group the terms mul-

* 
tiplying Asn and the rest separately. Of course, one expects

where Y'n denotes the state at time tn. Note that the derivative of (22) w.r.t. b must be taken
for the converged state Y'n+ �>i.e., with the value of Asn such that G(sm um �. Asn) = 0. 
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Sensitivity of the RRA 
Let us first differentiate the consistency eqn (8) w.r.t. band with the converged value 

of [yAt]. Noting the following formulae: 

* T _ I . * * * 
�n+i- (l-3 1 ® 1). (an+2Gilen) -�n 

11�!+111* = ii: �tl
� * * * = n: (an+2Gilen-�n) 

�n+i = (��+v1 [)�At])K�+l

Xnn = ilH���+V1[yAt]H�+i (28) 

(where I is the fourth order symmetric unit tensor with components �(i5;ki5j1+i5;,.bjk)) one
gets, after grouping terms, the following scalar linear equation for [yAt] 

which readily gives 

* � *  * * T * 2G[yAt] = (l -15)n: (an+ 2Gilen -�n) -0(1-15)11�n+ 1lle�

where the abbreviated notation 

has been used. 

b = 
K�+l +H�+ I 

K�+i +H�+ I +3G

Then, differentiation of (6) with respect to b gives 

The sensitivity of ii is

* 1 * 0 = -T-(J-0 (8} D): �!+I
ll�n+lll 

(30) 

(31) 

= _T
l
_ {(1-� 1 (8) 1-fi (8) n): (;n+2G!en) -(l-n (8) o) :�n} (32) 

ll�n+lll 

Using eqns (28)3, (28)4, (30) and (32) in eqn (31) and grouping terms appropriately, one
gets 

t+l = [(1-P)I+(P-15)n®n]::n 

+ [p(I -� 1 ® 1)- (p -15)n ® n]: (;n + 2G!en) + 0(1- <5)�!+ I�� (33)

where the new parameter p (as in Simo and Taylor, 1985) is: 
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Also, P-� is called y in Simo and Taylor (1985). Combining the above equation with the
sensitivity version of (5), we obtain the sensitivity of the radial return algorithm as 

� = {P(I-� 1 ® 1) -(P-�)n ® n}: (t +K(l ® t):n 
* 

+{Kt® 1+2GP(I-� 1 ® 1)-2G(P-�)n ® n} : .1sn

+0(1-�g�+ � ��+ {(1-P)I+(P-�)n ® n} :�n (34)

Note that �n lis updated using:

(35) 

which results from a differentiation of (9) w.r.t. b. It is very important to note that the
* 

factor multiplying .1sn in (34) is equal to the converged value of the consistent tangent
operator en+ I as given in Simo and Taylor (1985).

As mentioned at the start of this section, sensitivity equations such as (34) are not 
strictly valid throughout a history dependent elasto-plastic process. For example, as 
expected, strain sensitivities suffer jump discontinuities at the onset of plasticity. This is 
clear from tht: numerical results presented in Section 6 of this paper. Usually, however, this 
is not a major problem in practical optimization applications because possible local errors 
are not expected to significantly affect sensitivities of global functionals (usually defined 
over a part of a body or its boundary). 

Sensitivity analysis * 
Finally, substitution of (34) into (27) gives a linear equation for {.1sn} of the form 

(36) 

The function {F} is completely known at this stage. It depends on the converged values of 
the variables at states n and n + 1 and known sensitivities-those of the stress etc. at state
n and the known loading sensitivity {�n+ I}. The matrix multiplying Xsn is the converged
value of the "global (or system) consistent tangent matrix" (see eqn (23)). Here it is also 
advisable to use the block decomposition, so that the sensitivity increment computation at 
currently plastic and elastic nodes is uncoupled: 

(37) 

(38) 

As a result, the practical global CTO for both the usual mechanics and sensitivity problems 
is ([D�+ d- (1]1) PP· 

5. ALGORITHM 

Let us assume that a standard discretization has been adopted, using boundary 
elements and domain integration cells. The latter are associated to nodal DOFs for the 
total strains and stress a, using e.g. finite element type interpolations. Note, however, that 
the domain di:;cretization is restricted to the potentially plastic part ofQ. Then [A], [S], etc. 
and {s}, etc. fl!duce to ordinary matrices and DOF vectors, respectively. 
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The following algorithm is then proposed for solving the incremental elastic-plastic 
problem, from initial time t0 to final time tNr· The initial time t0 is assumed to correspond 
to the first yield load. 

ForO� n �(Nr-l): 
1. Compute { Llnn} (purely elastic internal strain).
2. Initialize {Ll£�} (e.g., to the elastic value).
Iterative solution of (22) : 

(a) i = 0. 
(b) Compute the residual { G(Ll£�)} . 
(c) Convergence test: if {G(Ll£�)} � EPS, GOTO 3.
(d) i:=i+l. 
(e) Compute the local CTOs C�+ 1 at all internal nodes; determine the sets of 

currently elastic (E) and plastic (P) internal nodes. 
(f) Set up and factor the global CTO [S(C-C�+ 1) - I) pp, set up

[S(C-c�+ 1 ) - I]EP· 
(g) Solve (24) for { &�} P and compute { b£�} E using (25). 
(h) Update: { Ll£�} := { Ll£�} + { b£�} . 
(i) GOTO (b) (start new iteration). 

3. Update: {eP}n+l = {e'}n+v1 {[yAt]}, {an+d = {a(Llll�+J)}, {lln+d = {lln} + {Lllln} ·
4. Sensitivity problem:

(a) Set up the right-hand sides {F} p, {F} E· 
* * 

(b) Solve (37) for { Ll£"} P and compute { LlBn} E using (38).

(c) Update: {t+d = {t}+{ABn} ,  {��+d = {�n+v1{[yAt]} (using eqn
(30)), {;n+d = { �} (using eqn (34)).

Continue. 

6. EXAMPLE-A SPHERICAL CAVITY IN AN INFINITE DOMAIN 

A one-dimensional numerical example is discussed in some detail in this section. The 
example chosen here has closed form solutions, for both the usual mechanics problem as 
well as the sensitivity problem, for the case of linear work hardening materials. The purposes 
of this example are to illustrate the main features of the present general formulation and to 
check the accuracy of (some of) the numerical solutions by comparing them with the 
available analytical ones. Also, the efficiency of obtaining numerical solutions, as well as 
their robustness, are examined for this particular example. 

Let n be the infinite three-dimensional domain exterior to a spherical cavity (radius a, 
center 0). A time-dependent uniform pressure p(t) is applied on the cavity surface:
p = -p(t)n. Usual and sensitivity elastic-plastic problems will be considered. 

We denote by (r, (), r/1) a system of spherical coordinates centered at 0, so that
n = [a,+ oo [ x Y and an = { r = a} x Y, Y being the unit sphere associated with the
spherical angles ((), r/1). Due to the spherical symmetry, the example is essentially one
dimensional: the only nonzero mechanical variables, namely Un em eee = eq,q,, am Gee= (}q,q,, 
depend only on the radial coordinate r. The strain and stress deviatoric tensors e and s then 
have the form 

· h 0. [2 I 11e = ea s = sa Wlt a= 1ag 3·-3·-3 

in terms of the scalar deviatoric strain e = arr-eee and stress s = arr-aee· The material has 
isotropic elastic properties and obeys a von Mises yield criterion with nonlinear isotropic 
hardening (H' (eP) = 0), which, since llall = v1, reduces to (see eqn 2):

(39) 

where k0, k1 and m are material parameters.
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For this problem, first yielding occurs at r =a at the yield pressure py = (4G/3)k0• A 
nondimensional load parameter A. is defined as 

(40) 

The exact solution of the problem, for the linear hardening case (m= I) is given in
the Appendix: for completeness. 

Integral equations and representations 
It is instructive to observe the one-dimensional counterparts of the key equations that 

are given in general form in the earlier sections of this paper. Some of these are given below 
and the rest are given in the Appendix. 

Let x(r, () = 0, <P = 0), with r � a, denote a fixed point of Q. Due to the spherical
symmetry of the problem and assuming the 'initial' strain sP to be purely deviatoric, the
integral representation (17) reduces to 

u,(r)+up(a) I P;(x,z(a,B,l/J))a2dw-rrpp(a) r U�(x,z(a,B,l/J))a2dwJg Jg 

with dw = sin cP d() d</J. Here U'(x, z), P'(x, z) are the Kelvin fundamental solutions for
isotropic elasticity, with the point force applied in the fixed r-direction at x, and E'(x, z) is 
the strain tensor associated with the displacement U'. Integrations w.r.t. (), ljJ can be carried 
out analytically, and as a result the above equation becomes 

u,(r) =(-u,(a)----'-' --(1-0r eP(p) -
a2 I-( a3 rr (a) f+oo dp 

r2 2 r2 2G ' p 
(42) 

where (is defined in the Appendix. 
Using the boundary condition rr"(a) = -p, one gets the explicit form 

{k f+oo dp} 
u,(a)=a 3°( l+A.) - Ja eP(p)p (43) 

The one-dimensional counterparts of eqns (19) and (20) are given in the Appendix. 

Local and global consistent tangent operators 
One of the primary contributions of this paper is the proposal to combine the BEM 

eqn (21) with the RRA to get eqn (22), and then to set up a Newton scheme to solve eqn 
(22). We feel that it is very important to illustrate this key procedure, in some detail, for 
the spherical cavity problem at hand. This is done below. 

Let us consider a loading process of the form (40), so that each load step is defined by 
a given increment LUm n � 0. Equation (A.5), taken at the beginning and the end of a load
step, gives the following relation, which has the structure of eqn (21): 

(44) 
with 
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S(v) = 3(- - -+(l-0-a3 f+oo v(p) dp v(r) 

r3 a 2G p 2G 

On the other hand, the value of As. output by the RRA for a given input Aem for the 
particular situation at hand, is 

where the coefficient Xn+ 1 is equal to unity if the trial stress sn + 2GAen violates the von
Mises criterion (39) and to zero otherwise, and [yAt) solves the consistency eqn (8), which 
reads here: 

�en+l(sn+2GAe.) -�Kn+l -2G[yAt] = 0

Kn+l = 2G{k0+k1 (e�+�[yAt])m} 

Then, the local CTO is readily obtained as 

(46) 

For the special case m= l ,  the consistency equation is linear and (46) holds with 
K�+l = 2Gkl. 

Accounting for the action (45) of the RRA, eqn (44) becomes

G(Aen ;r) = S(Asn(en, Sn, e�, Aen)-2GAen)-An.+Aen(r) = 0 (47) 

and the unknown Ae. is to be found using Newton iterations, i.e., by solving the following 
linear equation on the additive correction be� until convergence of the residual G: 

(48) 

Note that the integration range in the integral operators S, D is in practice limited to those 
points p E [a,+ oo [ at which the current s. +As� is plastic, i.e., X�+ 1 (p) = 1.

Governing equations for the sensitivity problem 
Sensitivities with respect to material parameters have been considered in this paper. 

Numerical results are given below for b = k1 or b = m. 
Straightforward calculations in the same spirit as in Section 4 lead to the following 

formulae: 

(49) 

(50) 

* 
The strain increment sensitivity Ae. then solves the linear problem 
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* * * * Dn+l (L\en)-L\en(r) = S(v), V= Xn+ldn+l {en+ I [(K,b)n+l +K�+Ie�] -sn} (51) 

The governing operator is the converged global CTO, which has already been set up and 
factored during the elastoplastic state solution step. 

Internal discretization 
The numerical treatment needs a discretization of the potential plastic zone [a, c] (c 

being arbitrarily chosen by the user) into integration cells. Here, a constant size 
L\r = (c - a)/N is used, together with a piecewise linear and continuous interpolation for the 
scalar deviatoric strain e and stress s. Substitution of this interpolation into eqns (44), (48) 
collocated a:t the radii r = rk = a +kl\r leads to the discretized nonlinear equation and
associated Newton step. 

Since the operator [D�+ d yields nonzero results only when applied to a currently
plastic { c5e�+ 1} , it is readily seen that the Newton step (48) takes the following matrix form, 
where the currently elastic and plastic nodal values are uncoupled: 

with 

Numerical results: linear isotropic hardening case 
In this ex:ample (referred to as 'example I'), the following material parameter values

were used: m= I (linear hardening), k0 = k1 = 0.001 (G, a were used as scaling parameters
in the implementation, so that their precise values have no influence on the results). A 
potential plastic radius cja = 4 has been used. 

First, an increasing loading process, with �nal = 3 (i.e., so that Pfinai = 4py), is considered.
Figure I shows the computed final values of the total strain e and accumulated plastic strain
e', compared against the analytical solution, while Figs 2 and 3 depict the final sensitivity with
respect to the hardening coefficient k1 of e and e', respectively. Two grid sizes were considered:
L\rja = 0.1 (coarse mesh, N = 30) and L\rja = 0.05 (finer mesh, N = 60). Both the elastoplastic
state and its k1-sensitivities compare well with the analytical solutions. The finer mesh gives 
very good sensitivity values, and catches accurately the sensitivity jump at the plastic-elastic 
transition radius r = b;:::; 2.70a. Figure 4, which shows the k1-sensitivities for 2.6a:::;; r:::;; 2.9a 
(zoom around r =b) and using two fine meshes (L\rja = 0.05 and L\rja = 0.01), highlights the 
convergence towards the analytical solution; the computed values for the finest mesh reproduce 
accurately the expected sensitivity jumps (see Fig. 4). 

Similar results have been obtained with the same data and domain grids as above but 
for a smaller final load ).final = I (pfinal = 2py). The accuracy for both state and sensitivity
variables improve for). = I compared to). = 3. The results for both cases are acceptable.

It should be emphasized that in both cases the numerical results obtained proved to 
be virtually independent on the number of load steps used. Indeed, all previous results as 
shown were computed using just one single load increment : .:\). = ).final· This fact has been
consistently observed in all numerical tests performed on this problem. For example, 
another run with ).final= 5 and L\rja = 0.05 also gave almost identical results; I load step
reached conwrgence after 6 Newton iterations on the equilibrium eqn (52), while 5 and 10 
equal load inc:rements consumed respectively 14 and 22 Newton iterations. 

On the other hand, for a fixed grid size L\rja, the final accuracy deteriorates as the final 
load increases; this trend has also been observed consistently in all tests performed. 
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Fig. 1. Example 1: total (e) and accumulated plastic (eP) strains, using 30 or 60 integration cells

l load step, ).final = 3. 
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Fig. 2. Example 1: k1-sensitivity of total strain (e), using 30 or 60 integration cells- l load step, 

Ajinal = 3. 

Tables 1 and 2 show clearly the convergence of the computed state and sensitivity 
variables towards the analytical solution with decreasing grid size !irja, for lfinat = 1 and
lfinat = 3 respectively. Consistent with previously mentioned observations, the error levels
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Fig. 3. Example 1 : k1-sensitivity of accumulated plastic strain (eP), using 30 or 60 integration cells-

1 load step, Afinal = 3. 
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Fig. 4. Exa.mple I : k1-sensitivity of total (e) and accumulated plastic (eP) strains: zoom around the 

plastic/elastic transition radius-I load step, }.final= 3. 

with a fixed mesh size are higher for ).final = 3 than for ).final = 1 ; however the convergence
is clear in both cases. Here also, one single load increment was used. The tables also show 
the total number of Newton iterations ( from 2 to 5) needed for convergence and report 
the bracketing of the elastic-plastic radius b. 
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Table I. Elastoplastic and sensitivity results : evolution of L2 relative error with decreasing 

integration cell size-I load step, A.finaL = I 

l'lr/a 0.1 0.05 0.01 0.005 

Total number of iterations 3 2 3 3 
bfa bracketing (bexact = l .39525a) [1.4, 1.5] [1.35, 1.4] [1.39, 1.4] [1.395, 1.4] 
L2 relative error (e) 7.64E-03 1.60E-03 3.76E-05 6.66E-7 
L 2 relative error ( IJ") 1.19E-2 2.55E-03 6.2\E-05 l . l1E-6 
L2 relative error (defdki) 7.5E-02 6.54E-03 5.95E-05 2.88E-5 
L2 relative error (diJ"/dk1) 5.9\E-02 4.2\E-03 5.95E-05 2.15E-5 

Table 2. Elastoplastic and sensitivity results : evolution of L 2 relative error with decreasing 
integration cell size-! load step, A.finaL = 3 

A.r/a 0.1 0.05 0.01 0.005 

Total number of iterations 4 4 5 5 
bfa bracketing (bexa" = 2.70296a) [2.8,2.9] [2.7, 2.75] [2.7, 2.71] [2.7, 2.705] 
L2 relative error (e) 3.34E-02 5.35E-03 9.3\E-05 l.64E-05 
L 2 relative error ( IJ") 3.55E-02 5.70E-03 9.96E-05 l.76E-05 
L2 relative error (defdk,) 1.32E-01 1.59E-02 3.66E-04 9.08E-06 
L2 relative error (diJ"/dk1) l.29E-Ol 1.56E-02 3.57E-04 8.77E-06 

Numerical results: non/inear isotropic hardening case 
This example (referred to as 'example 2') used the values k0 = k1 = 0.001 together with 

various values of the hardening exponent m. No exact solution is available for this example. 
Except when indicated otherwise, the results were computed using one load increment. 

Figure 5 shows the computed final values of the total strain e and accumulated plastic 
strain eP for several grid sizes ( final load: )..final = 3, potential plastic zone boundary:
c = 3a); the hardening exponent value is m = 0.1. The results for a very fine mesh (500 
cells), labelled "converged", are included so as to show the convergence behaviour with 
decreasing Arfa. Actual convergence clearly occurs, and the nodal values of e, eP obtained 

Q. Cl) 
Cl) 

0.015 

\ -- e (converged) 
._---. e (A.r/a = 0.04) 
o-- -oe (A.r/a = 0.1) 

\ !::r- -6. e (Aria = 0.25) 
\ -- eP (converged) 

._---+ eP (A.r/a = 0.04) 

I <>----<> eP (A.r/a = 0.1) 
0.010 v- - ....SV eP (A.r/a = 0.25) \ 

I 
\ 

0.005 

o.ooo L-�--�s�0-+=4�v--��;;:�::���� 
1.0 1.5 2.0 2.5 3.0 

r/a 
Fig. 5. Example 2: convergence of total (e) and accumulated plastic (e") strains-! load step, 

A.finaL = 3, m= 0.1. 
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Fig. 6. Example 2 : convergence of m-sensitivities of total (e) and accumulated plastic ( e") strains-
! load step, ;_final= 3, m = 0.1 .  

3.0 

using 10 radial cells (l:l.rja = 0.1) are quite close to the converged solution, despite the 
relatively large value of the load increment (!:lA.= A..tm,.1 = 3). Similar observations are true
for the m-sensitivity of e and ei', shown in Fig. 6, also for m= 0.1. Figure 7 shows the
computed m-sensitivities of eP for several values of the hardening exponent. 
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Fig. 7. Example 2: m-sensitivities of accumulated plastic strain if' for various values of exponent 

m-total load increment: ).final = 3; �rja = 0.05. 
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Fig. 8. Example 2 :  independence of m-sensitivities of total (e) and accumulated plastic (i!P) strains 
with respect to load step--total load increment : ).final= 5; 8r/a = 0.04. 

4.0 

Similar results have been computed for, respectively, the state variables and their m
sensitivities, in the same spirit as above, for a final load )..final= 1, a potential plastic zone
boundary: c = 1.5a and m= 0.1; the same grid sizes as in Figs 5 and 6 were used. One 
observes again, for a fixed grid size, some improvement in accuracy for )..final= 1 compared
to )..final = 3. The reader is referred to, for example, chapter 11 ofHaslinger and Neittaanmaki
(1988) for a discussion of finite element grid optimization based on optimization techniques. 

As expected, the supplementary CPU time consumed by the sensitivity calculation is 
very small compared with that necessary for the elastoplastic state calculation. This com
ment is true for all sensitivity calculations presented in this paper. For example, with 
N = 600 and 50 load steps, CPU times of about 153 and 147 seconds were observed,
depending on whether the sensitivities were evaluated or not. 

Finally, it is important to point out that even in the presence of nonlinear hardening 
the results for a given final load and grid size appear to be virtually independent of the 
number of load steps used. This is apparent in Fig. 8, in which the computed m-sensitivities 
are shown for a large final load (Afinat = 5) and a fixed grid size (Arja = 0.04): the final
results obtained using 1, 5, 10 or 50 load steps (and respectively 8, 24, 40 and 147 Newton 
iterations) are almost identical. 

All computations were carried out on an APOLLO/HP 735 workstation. 

7. CONCLUSIONS

Within the context of the finite element method, the value of the consistent tangent 
operator (CTO) for obtaining implicit solutions of elastoplastic problems has been dem
onstrated by, among others, Simo and Taylor (1985). It has been shown that use of other 
operators, such as the continuum tangent, leads to loss of quadratic convergence of the 
associated Newton method that is used for obtaining stepwise iterative solutions of the 
nonlinear problem. The associated sensitivity problem is stepwise linear. In this case, use 
of the CTO leads to a stiffness matrix which is the converged value of the global CTO for 
that load step (see, for example, the work of Haber, Kleiber and their associates cited in 
the references). Now, use of operators other than the CTO can lead to significant numerical 
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errors in the computed values of sensitivities. Thus, the consequences of using, for example, 
the continuUlm tangent operator, can be more serious for sensitivity analysis than for the 
usual analysis of the nonlinear mechanics problem. 

This paper presents, for the first time, the use of the CTO for solving usual and 
sensitivity problems in elastoplasticity by the boundary element method. An implicit BEM 
scheme is proposed in which one proceeds from step n to step n + 1 with the stress increment 
obtained from the BEM equations and the stress at step n + 1 obtained from the radial 
return algorithm (RRA). As expected, the global CTO appears when the Newton method 
is applied to solve the usual problem, and its converged value appears in the corresponding 
linear sensitivity equation for that step. Numerical results are presented for pressurization 
of a spherical cavity in an infinite elastoplastic medium. The results for all the examples are 
uniformly excellent. The algorithm proposed here appears to be both robust and very 
powerful. Very large load steps (up to 6pY, where py is the pressure for first yielding in the
body) can be accommodated by the iterative algorithm and accurate results are obtained 
within a few iterations. It is also interesting to observe that, for the numerical examples 
presented in this paper, the final converged results are almost independent of load step size. 
On the other hand, as expected, for a fixed spatial grid size !lrja, the final accuracy decreases 
as the final load increases. Thus, as is usual in numerical computations, the chosen mesh 
size must be fine enough for the problem being solved in order to assure an acceptable 
solution. 

The approach presented in this paper appears to be extremely promising for both the 
usual as well as sensitivity analysis of elasto-plastic problems. 
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APPENDIX 

Spherical cavity in an infinite elasto-plastic medium with linear work hardening. 

Exact solution 
In the linear hardening case (i.e., m =  1), the outer radius b = b(A.) of the plastic region r E  (a, b] for a given 

load A. ;;. 0 is given by the unique solution of the transcendental equation 

with X = (bfa) and 

( = � 
3(1 - v) 

The analytical solution in the plastic region a ::;; r ::;; aXis then given as follows : 

with the constants 

u(r) = a(Dx + Cx-2 + Bx ln x] 

e(r) = B - cx-3 

e"(r) = --0- - - 1 
2k [x3 J 3( + 2k1 x3 

(x = r/a) 

(A.l )  

(A.2) 

(A.3) 

In the absence of hardening, the previous solution still holds with k, = 0 ;  moreover the plastic radius is explicitly 
given by 

X =  bfa = exp(A./3) 

Exact solutions for various sensitivities, e.g., with respect to the hardening parameter k" can finally be obtained 
in a straightforward way. 

To the best of the authors' knowledge, no analytical solution is known for general power-law hardening, i.e., 
when m #  0, 1 in (39) . 

Integral representation 
The one-dimensional counterparts of eqns (19) and (20) are given below. 

a3 I+oo [ s J dp a3 s(r) 
0 = 3( - e- - (p) - -k0(l + A.) - -(e(r) - (1 - () - .  

r3 • 2G p r3 2G 

(A.4) 

(A.5) 
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