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Abstract

In this paper, we consider the problem of identifying, by means of boundary element methods and

nonlinear optimization, a cavity or obstacle of unknown location and shape embedded in a linearly

acoustic or elastic medium. The unknown shape is classically sought as to achieve a best fit between the

measured and computed values of some physical quantity, which is here the scattered acoustic pressure

field. One is usually led to the minimization of a cost function J . Classical nonlinear optimization

algorithms need the repeated computation of the gradient of the cost function with respect to the

design variables as well as the cost function itself. The present paper emphasizes the formulation and

effectiveness of the adjoint problem method for the gradient evaluation. First the hard obstacle inverse

problem for 3D acoustics is considered. For a given J , the adjoint problem is established, and the

gradient of J is then formulated in terms of both primary and adjoint states. Next, the adjoint variable

approach is extended to the case of a penetrable obstacle in a 3D acoustical medium, and also for

a traction-free cavity in a 3D elastic medium. Explicit formulas for the gradient of J with respect

to shape variations, which appear to be rather compact and elegant, are established for each case. The

formulation is incorporated in an unconstrained minimization algorithm, in order to solve numerically the

inverse problem. Numerical results are presented for the search of a rigid bounded obstacle embedded

in an infinite 3D acoustic medium, where the measurements are taken to be values of the pressure

field on a remote measurement surface, the obstacle being illuminated by monochromatic plane waves.

They demonstrate the efficiency of the proposed method. Some computational issues (accuracy, CPU

time, influence of measurements errors) are discussed. Finally, for the sake of completeness, the direct

differentiation approach is also treated and new derivative BIE formulations established.

Keywords: Inverse problem in scattering, Direct differentiation method, Adjoint variable approach,

Domain derivative.
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1 Introduction

The consideration of variations of integral functionals with respect to a geometrical domain arises in the

study of many situations where a geometrical domain plays a major role. The present paper is focused on

some geometrical inverse problems, where part of the domain boundary is unknown (e.g. in defect or crack

identification). Its determination is usually attempted by minimizing a cost function J between computed

(for a given domain configuration) and known (for the actual, unknown, domain configuration) values of

some physical quantity.

Most usual optimization algorithms, such as conjugate gradient or BFGS variable metric methods, use

first-order derivatives. Besides, it is a known fact that finite-difference estimations of gradients (which would

require here finite perturbations of the geometrical domain), apart from being computationally expensive,

constitute an ill-posed mathematical problem (Tikhonov and Arsenin [24]) and then are prone to inaccuracy.

Hence one should seriously consider reverting to analytical differentiation with respect to a variable domain.

This concept has been studied and used by many authors (see e.g. Haug et al. [15], Petryk and Mroz [22]),

up to now mainly in FEM-oriented contexts. However, since in such problems the domain (and hence its

boundary) is a primary unknown, it is a natural idea to consider boundary integral formulations, which offer

in this context the “minimal” modelling.

The formulation of shape sensitivities, in a BIE context or otherwise, may result from either the adjoint

problem method or the direct differentiation approach, applied either before and after discretization of the

primary BIE. The adjoint problem approach to shape sensitivity in a BIE context has been considered e.g.

by Aithal and Saigal [1], Choi and Kwak [11], Burczinski [10], Meric [19] or in [4]. The direct differentiation

approach is treated, among others, in Barone and Yang [2] for strongly singular elastic BIE formulations

and in [6] for regularized elastic BIE and second-order derivatives; see also Zhang and Mukherjee [25].

The present paper deals with the application of BIE and domain differentiation to some obstacle inverse

problems, with emphasis on the use of the adjoint variable method. Given an incident wave and values

of the scattered wave on some measurement surface, one seeks to reconstruct an unknown obstacle with

given boundary conditions (rigid or penetrable obstacle in an acoustical medium or traction-free cavity in

an elastic medium). The surrounding medium is here assumed to be infinite but this assumption is used for

ease of exposition and is by no means essential. This kind of inverse problem has received attention in the

literature, from both the mathematical perspective (Colton and Kress [13], Colton [12], Kress [17], among

others) and the computational standpoint (see e.g. Nishimura and Kobayashi [20], [21]).

For this particular kind of problem, where a single functional is to be minimized, the adjoint variable

approach seems to be more efficient than the direct differentiation method, for one adjoint problem has to be

solved instead of D sensitivity problems, D being the number of parameters that describe geometry changes.

Then, in the present paper, we emphasize the formulation and effectiveness of the adjoint problem approach

in connexion with the minimization of the cost function J . First the hard obstacle inverse problem for 3D

acoustics is considered. For a given J , the adjoint problem is established, and the gradient of J is then

formulated in terms of both primary and adjoint states. Then, numerical examples using this formulation
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in conjunction with collocation BEM are presented for this problem. Next, the adjoint variable approach is

extended to the case of a penetrable obstacle in a 3D acoustical medium, and also for a traction-free cavity

in a 3D elastic medium. Explicit expressions for the gradient of J with respect to shape variations are given

in each case. Finally, for the sake of completeness, the direct differentiation approach is also treated for

Neumann boundary conditions on the obstacle.

2 Inverse problem for a hard obstacle

The identification of a 3D bounded rigid body Ω−, of regular boundary Γ, imbedded in an infinite acoustical

medium Ω = R3 − Ω−, is considered. The cavity is subjected to a known harmonic incident pressure

pI(y) exp(−iωt), which satisfies Helmholtz’ equation (∆ + k2)pI = 0 in R3 (k: wavenumber); following the

usual convention, the time-harmonic factor exp(−iωt) is implicit everywhere in the sequel.

Direct problem. In the presence of a known obstacle Ω−, the total pressure is pT = pI + p, where the

scattered pressure p solves the following direct problem, also called primary problem:
(∆ + k2)p = 0 in Ω

p,n + pI
,n = 0 on Γ

(radiation condition)

(1)

where the unit normal n is directed outside Ω, i.e. is interior to Γ. The solution p to (1) depends on Γ; it is

denoted pΓ to emphasize this fact.

Inverse problem. The unknown shape of Ω−, ie the surface Γ, is to be identified. Supplementary data is

necessary in order to compensate for the unknown geometry in the direct problem (1). For example p may

take known values p̂ on a measurement surface C exterior to Γ. The unknown Γ is thus searched so as to

minimize a distance between computed (pΓ) and known (p̂) values of p on C:

J (Γ) = J(pΓ) with J(p) =
∫

C

j(p− p̂) dS (2)

For example, 2j = |p− p̂|2 gives the usual least-squares distance. Since the measurement surface C is fixed,

J depends on Γ through pΓ only, while in other situations (e.g. in shape optimization), the geometrical

support of the integral itself may be part of the unknown boundary.

The minimization of J (Γ) is best solved, in terms of both computational efficiency and accuracy, using

gradient methods, such as Quasi-Newton or conjugate gradient (see e.g Fletcher [14]). These algorithms need

repeated computations of the derivative of J with respect to (the design parameters which define the current

location of) Γ. Using finite-difference evaluations is computationally expensive, because the evaluation of

each partial derivative needs a complete solution of (1) on a perturbed geometry (Γ+δΓ) and may be poor in

terms of accuracy. An alternative possibility, which is the main topic of this paper, is the use of the analytical

material differentiation concept, in either the adjoint problem approach (APA) or the direct differentiation

approach (DDA) forms.
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Governing acoustic BIE. The boundary Γ is itself the primary unknown of the inverse problem under

consideration, while information at interior points is of no particular use, except of course on the measurement

surface C. Then boundary integral equations (BIE) suggest themselves as the most appropriate discretization

tool.

Recall that any solution p to the inhomogeneous Helmholtz’ equation (∆ + k2)p = F on the exterior

domain Ω with proper radiation conditions at infinity satisfies the following regularized BIE [3]:

p(x) +
∫

Γ

p(y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

[p(y)− p(x)]G0
,n(x,y) dSy −

∫
Γ

q(y)G(x,y) dSy +
∫

Ω

F (y)G(x,y) dVy = 0 (3)

in which G(x,y) = eikr/(4πr) and G0(x,y) = 1/(4πr) are the dynamic and static fundamental solutions,

while r = |x− y|, (·),n ≡ ns(·),s, q ≡ p,n; the comma denotes partial derivatives with respect to the field

point y: (·),j ≡ ∂(·)/∂yj . Equation (3) holds for interior as well as boundary points x. If p satisfies

p ∈ C0,α(Γ) at x ∈ Γ, the regularizing effect of the factor [p(y) − p(x)] is effective and all integrals in (3)

are weakly singular. From (3), the direct problem (1) is then equivalent to the following ‘primary’ BIE:

p(x) +
∫

Γ

p(y)[G,n(x,y)−G0
,n(x,y)] dSy +

∫
Γ

[p(y)− p(x)]G0
,n(x,y) dSy

= −
∫

Γ

pI
,n(y)G(x,y) dSy (4)

3 Material differentiation of integral functionals

To investigate the variations of J or other shape-dependent integral functionals, one has to consider the

effect of small perturbations of Γ. The latter can be described by means of a normal transformation velocity

θ on Γ, and using a small time-like parameter τ ≥ 0:

y ∈ Γ → y + θ(y)n(y)τ i.e. Γ(τ) = Γ + θnτ (τ ≥ 0, |θτ | � Diam(Γ)) (5)

Integrals over Ω− or Γ are then treated as functions of the scalar parameter τ and differentiated accordingly

at τ = 0. Indeed the material differentiation approach consists merely of the application of general results

of continuum kinematics to situations where τ is not the physical time: eq. (5) describes a geometrical,

non-physical, domain perturbation.

Several kinds of derivatives with respect to τ are available for fields u(y, τ) (‘eulerian’ description of u).

Owing to the BIE context, it looks appropriate to use ‘material’ derivatives on Γ, i.e. to ‘follow’ the value of

u(y, τ) while the field point y ∈ Γ moves according to (5), in order to keep things defined on the boundary

alone. When, as in eq. (5), the geometrical transformation is described by means of a normal velocity θn,

the material derivative of u reduces to the ’transformation derivative’
?

u (Petryk & Mroz [22]):

?

u (y, 0) = lim
τ→0

1
τ

[u(y + θnτ, τ)− u(y, 0)] = u,τ (y, 0) + u,n(y, 0)θ(y) (6)

where u,τ denotes the partial derivative of u with respect to τ , i.e. with y kept fixed. Obviously one has
?

J= dJ /dτ for functionals like (2). Various formulas are found in the literature [22] for the derivative of
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integrals with respect to volumes Ω(τ) or surfaces Γ(τ) varying according to (5), among which:

d

dτ

∫
Ω(τ)

a(y, τ) dVy =
∫

Ω

a,τ (y, τ) dVy +
∫

Γ

a(y, τ)θ(y) dSy (7)

d

dτ

∫
Γ(τ)

a(y, τ) dSy =
∫

Γ

{a,τ (y, τ) + (a,n(y, τ)− 2K(y)a(y, τ)) θ(y)} dSy (8)

=
∫

Γ

{
?

a (y, τ)− 2K(y)a(y, τ)θ(y)
}

dSy (9)

where K = 1
2divSn denotes the mean curvature at y ∈ Γ. Equations (8), (9) hold only for a closed smooth

surface, while in equation (7) θ refers to the unit normal n exterior to Ω. Generalization of above formulas

to piecewise smooth surfaces is available [22] but not needed here.

4 The adjoint problem approach.

Introduction of an augmented functional. The adjoint problem approach, known e.g. in the field of

structural shape optimization (see [15], and also [11], [19] for applications in BIE context), basically consists

in considering the minimization of J (Γ) as the minimization of J(p) subject to the constraint p = pΓ. The

latter admits the following weak formulation:

A(p, w; Γ) ≡
∫

Ωe

(∇p.∇w − k2pw) dVy +
∫

Γ

wpI
,n dSy = 0 (∀w ∈ V) (10)

using the space of test functions V = {w ∈ H1
loc(Ω)}. An augmented functional L is thus introduced:

L(p, w; Γ) = J(p) +A(p, w; Γ) (11)

where the test function w ∈ V acts as a Lagrange multiplier. Application of formulas (7), (8) to (11) gives:

?

L =
∫

C

p,τ ̄,p(p− p̂)dC +
∫

Ωe

(∇p,τ .∇w − k2p,τw) dV +
∫

Γ

θ(∇p.∇w − k2pw) dS

+
∫

Γ

{
w[(pI

,n)? − 2KpI
,nθ] + pI

,nw,nθ
}

dS +A(p, w,τ ; Γ) (12)

Some simplifications can be made on the right-hand side of (12). First, since w,τ ∈ V, (10) implies:

A(p, w,τ ; Γ) = 0 (13)

Next, splitting the gradients into tangential and normal parts (see Appendix A) gives:

∇p.∇w = ∇Sp.∇Sw + p,nw,n

Also, the following identity is established in appendix B:

(pI
,n)? =

(
2KpI

,n − k2pI
)
θ − divS(θ∇Sp

I) (14)

Upon substitution of the last two equations in the last two integrals of (12), one gets:∫
Γ

θ(∇p.∇w − k2pw) dS +
∫

Γ

{
w[(pI

,n)? − 2KpI
,nθ] + pI

,nw,nθ
}

dS

=
∫

Γ

θ(∇Sp.∇Sw − k2pw) dS +
∫

Γ

(p,n + pI
,n)w dS −

∫
Γ

{
divS(θ∇Sp

I) + θk2pI
}
w dS

=
∫

Γ

θ
{
∇S(p+ pI).∇Sw − k2(p+ pI)w)

}
dS (15)
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where the boundary conditions (1)2 has been used and identity (69) for integration by parts has been applied

with f ≡ wθ∇Sp
I . Finally, using (13) and (15) and taking into account the constraint p = pΓ, equation (12)

becomes:

?

L = L,pp,τ + L,Γθ (16)

L,pp,τ =
∫

C

p,τ ̄,p(pΓ − p̂)dC +
∫

Ωe

(∇p,τ .∇w − k2p,τw) dV (17)

L,Γθ =
∫

Γ

θ
[
∇Sw.∇S(pΓ + pI)− k2w(pΓ + pI)

]
dS (18)

Definition of the adjoint problem. Indeed one is interested here in the net effect of a domain pertur-

bation, and expects actual variations of L only when θ 6= 0. Hence the Lagrange multiplier w can be chosen

so that (θ = 0) ⇒ (
?

L= 0). This defines an adjoint state wΓ, solution to the variational problem:

L,p(pΓ, w; Γ)p,τ = 0, ∀p,τ ∈ V (19)

The strong formulation for the adjoint problem (19–17) above reads:
(∆ + k2)w = −̄,p(pΓ − p̂)δC in Ω

w,n = 0 on Γ

(radiation condition)

(20)

One notices that this is a homogeneous exterior Neumann problem for Helmholtz’ equation with a nonzero

internal source F = −̄,p(pΓ− p̂)δC proportional to the difference between measured and computed pressure

on the measurement surface. For example, one has F = −(pΓ − p̂)δC for the least-squares distance 2j =

|p− p̂|2.

Material derivative of J (Γ). Finally, from (16–19) the material derivative of J (Γ) is given in terms of

pΓ, wΓ, θ by:

?

J (Γ) =
?

L (pΓ, wΓ; Γ)

=
∫

Γ

θ
[
∇SwΓ.∇S(pΓ + pI)− k2wΓ(pΓ + pI)

]
dS (21)

The above formula gives explicitly, in an elegant fashion, the gradient of J (Γ) with respect to Γ, and thus

the value of the directional derivative of J (Γ) for a given obstacle perturbation velocity θ. In more abstract

terms, the domain derivative kernel J,Γ is explicitly known, so that one has:

?

J (Γ) =
∫

Γ

J,Γ(y; Γ)θ dS

J,Γ(y; Γ) = ∇SwΓ(y).∇S(pΓ + pI)(y)− k2wΓ(y)(pΓ + pI)(y) (22)

Gradient evaluation using BIE. The general acoustic BIE (3) gives, in view of (20), the following BIE

formulation of the adjoint problem:

w(x) +
∫

Γ

w(y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

[w(y)− w(x)]G0
,n(x,y) dSy =

∫
C

̄,p(pΓ − p̂)(y)G(x,y) dCy (23)
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Note that, thanks to the presence of tangential derivatives, eq. (21) defines
?

J in terms of the boundary

values of pΓ, p
I , wΓ. Hence it is directly computable as soon as the primary and adjoint BIEs, resp. (4) and

(23), are solved for pΓ and wΓ respectively.

Generalization to N incident waves. In the case where Ω− is illuminated by N incident waves pI
i

(i = 1, . . . , N) in succession, generating N scattered pressure fields pi
Γ in Ω and N sets of measurements p̂i

on C, the cost function (2) becomes:

J (Γ) =
N∑

i=1

∫
C

j(pi
Γ − p̂i)2∂C (24)

The material derivative of J (Γ) is then given by:

?

J=
N∑

i=1

∫
Γ

θ
[
∇Sw

i
Γ.∇S(pi

Γ + pI
i )− k2wi

Γ(pi
Γ + pI

i )
]
dS (25)

where the wi
Γ solve the N adjoint problems:

(∆ + k2)wi = −̄,p(pi
Γ − p̂i)δC in Ω

wi
,n = 0 on Γ

(radiation condition)

(26)

Comments. The adjoint problem approach as presented here is clearly not specifically linked to BIE

methods. The result (21) pertains to BIE analysis only to the extent that the primary and adjoint states

can be formulated using BIE methods.

The adjoint state wΓ does not depend on θ. Therefore the kernel J,Γ (22), or equivalently any directional

derivative
?

J (21), is computable once the primary and adjoint states are known, i.e. at the expense of only

two BEM solutions (or, more generally, (N + 1) BEM solutions for the gradient of N distinct functionals)

over the same geometry. This is true whatever the number, finite or infinite, of design parameters. In

contrast, the direct differentiation approach needs (D + 1) BEM solutions, D being the number of design

parameters, whatever the number of functionals present.

Moreover, the primary and adjoint problems are associated with the same partial differential, or integral,

governing operator and boundary conditions of the same type (here, Neumann). Thus, the operator matrix,

which must be built and factored in order to compute the primary state pΓ and evaluate J (Γ), is then reused

to compute the adjoint state wΓ and the domain derivative kernel J,Γ.

5 Numerical implementation and examples

In this section, the numerical implementation for the solution of the 3D inverse problem using shape differ-

ention and the adjoint problem approach is presented. The regularized collocation BIE (3) is implemented in

our BEM research code Astrid. The usual BE discretization of Γ has been employed, using shape functions

Nk(ξ) associated with 8-noded curved elements and interpolation nodes yk. An isoparametric discretization
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for the boundary variables p, w has been used. To represent the varying boundary Γ the yk nodes are known

functions of D design parameters d = (d1, . . . , dD). Then, the BE parametrization of a point y on a typical

N -noded element E of parent element E0 has the form:

y =
N∑

k=1

Nk(ξ)yk(d) (ξ ∈ E0) (27)

This method amounts to monitoring the evolution of Γ by moving the mesh nodes according to their known

d-dependency. The discretized normal velocity θ associated with the variation of a single parameter dj is

then given by:

θj =
N∑

k=1

Nk(ξ)[yk
,dj

(d).n] (ξ ∈ E0) (28)

The partial derivative J,di
is then computed using (21) with θ = θj as defined in the above equation.

5.1 Example with geometrical parameters as unknowns

Parametrization of the unknown boundary. Here the unknown surface Γ is searched as a ‘superel-

liptic’, or ‘n-ellipsoidal’, shape defined by 10 geometrical parameters: the centroid coordinates xG, yG, zG,

principal axes a, b, c, Euler angles φ, θ, ψ of principal directions and the exponent n (1 ≤ n ≤ +∞) of the

unit n-sphere S of equation:

Y n
1 + Y n

2 + Y n
3 = 1

The current shape Γ is then defined as an affine distortion of S:

Y ∈ S → y ∈ Γ


y1 = xG + r11aY1 + r12bY2 + r13cY3

y2 = yG + r21aY1 + r22bY2 + r23cY3

y3 = yG + r31aY1 + r32bY2 + r33cY3

(29)

where rij = rij(φ, θ, ψ) are the components of the rotation matrix which maps the coordinate axes onto

the principal axes of the ellipsoid (several (φ, θ, ψ) triplets may define the same rotation). In the numerical

implementation, the analytical description (29) is used to define the dependency yk = yk(d) of the nodes in

eqs. (27), (28). For the special cases n = 1, n = 2 and n = +∞ S is respectively the regular octahedron of

vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1), the unit sphere and the unit cube of vertices (±1,±1,±1).

Minimization algorithm. Both conjugate gradient (CG) and BFGS Quasi-Newton algorithms have been

initially applied to the minimization of J , using software from Press et al. [23]. However, our first numerical

evidence suggested that:

• CG and BFGS perform similarly in terms of convergence and accuracy, but BFGS is generally faster.

• The computational efficiency of the algorithm, and sometimes the level of convergence, is found to

be strongly dependent on the line search algorithm imbedded in both CG and BFGS methods, and

especially on the initialization of its ‘bracketing’ [14], [23] step.
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Thus, in a second stage, the line search algorithm provided by [23] has been replaced by an implementation

of the method described in Fletcher [14]. The latter features a user-set parameter σ ∈]0, 1[, which allows

one to choose from high accuracy (σ ∼ 0) to low accuracy (σ ∼ 1) line searches. In our experience the

best results, in terms of both accuracy and computational speed, were obtained using BFGS Quasi-Newton

algorithm together with low-accuracy line search. It is interesting to note that a similar conclusion has

been reached independently in [18], which deals with crack identification using potential theory. All results

presented in this paper were produced using the latter algorithm, with σ = .9.

Description of the examples. Numerical results are presented below for six situations. The unknown

boundary is made of 24 eight-noded elements and 74 nodes. For all examples, synthetic data were created for

one (pI
3), two (pI

2, p
I
3) and three (pI

1, p
I
2, p

I
3) incident waves, where pI

i denotes the plane wave which propagates

along ei in the positive direction. In order to simulate the effect of measurement noise, the known values

p̂ have been multiplied by (1 + r), where r are random numbers uniformly distributed in [−ε, ε]. the values

ε = 0 (perfect data), ε = 10−3, 10−2, 10−1 were used. The measurement surface C is a sphere of radius 10

units, centered at the origin, meshed using 96 elements and 290 nodes. The known values p̂ of p at the

290 nodes were synthetic data, obtained from the solution of the direct problem (4) with the ‘true’ location

of Γ and then interpolated on C using the usual isoparametric 8-noded shape functions for the numerical

evaluation of integrals over C in (2) or (23).

The ‘true’ and initial values of the design parameters are shown in table 1. For examples 1,2 the exponent

n is not included in the search (9 unknowns) and is given the value n = 2 for both the ‘true’ and search

surfaces. For examples 3 to 6, the ‘true’ values of (d1, . . . , d10) are the same, but:

• The exponent n = d10 is excluded from the search in examples 3,4 and included in examples 5,6.

• The ‘true’ obstacle is an ellipsoid (n = 2) in examples 3,5 and a rectangular box (n = +∞) in examples

4,6.

Thus, in example 4, the ‘true’ obstacle cannot be reached exactly by the minimization process.

Table 1 should appear here.

As the same ‘n-ellipsoid’ can result from many combinations of Euler angles and permutations of prin-

cipal axes, the accuracy of the identification of Γ cannot be measured by merely comparing the identified

parameters dk with those defining the ‘true’ Γ and used to compute the simulated data. Instead, the relative

errors eV , eA, eI for the volume, boundary area and geometrical inertia tensor (with respect to a fixed

coordinate system having no particular relation to Γ) of Ω−, given by:

eV =
V (Γn)
V (Γ)

− 1 eA =
A(Γn)
A(Γ)

− 1 eI =

(∑
1≤i,j≤3(Iij(Γn)− Iij(Γ))2∑

1≤i,j≤3 I
2
ij(Γ)

)1/2

with

V (S) =
1
3

∫
S

yini dSy A(S) =
∫

S

dSy Iij(S) =
1
5

∫
S

yiyjyknk dSy
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have been computed (the indicator eI being very sensitive to the orientation of Γ in space), together with

the relative decrease Jfinal/Jinitial of the cost function achieved by the minimization process.

Numerical results and discussion. Our numerical results for Jfinal/Jinitial, eV , eA, eI obtained for

examples 1 to 6 are displayed in tables 2, 3, 4, 5, 6, 7, together with the number of cost function and

gradient evaluations spent during the minimization. Table 7 also shows the value of d10 = n reached (the

‘true’ value being n = ∞ for this example).

Table 2 should appear here.

Table 3 should appear here.

Table 4 should appear here.

Table 5 should appear here.

Table 6 should appear here.

Table 7 should appear here.

Examples 1, 2, 3, 5, 6 exhibit very good convergence and accuracy, especially for non-perturbed data, see

tables 2, 3, 4, 6, 7. This is a clear indication of the good performance of the adjoint problem approach for the

gradient evaluations. At least in the range ε = 10−3 to 10−1, the error indicators eV , eA, eI are often found

to vary linearly with ε in the results presented here, and Jfinal/Jinitial to vary quadratically. The numerical

solution of the inverse problem hence behaves well with respect to measurement noise. This is likely to be

a consequence of the strong assumption made on the unknown geometry, which is described using only 10

parameters.

The convergence and accuracy remains good for example 4 (table 5), where the ‘true’ cavity is a rectan-

gular box and exact convergence is hence impossible. The ‘final’ ellipsoid found by the algorithm has very

similar volume and inertia tensor than the box (see table 5) and slightly different area. Moreover, the results

appear to be less sensitive to data noise than in the other examples, where the exact shape can be reached

by the minimization.

Convergence is much slower when d10 ≡ n plays an active role and is included in the search, see table 7.

When only one incident wave is considered, the recovery of n in example 6 is very much affected by measure-

ment noise. Moreover, the recovery of n has been found to be sensitive to implementation details like how

the BFGS updating formula is written or the initialization of the line-search. This suggests that the recovery

of n is a more ill-posed problem than the recovery of Euler angles, principal axes and center coordinates.

Upon comparison of the convergence process for examples 4 and 6 (i.e. search of a box with n respectively

excluded and included), it has been noticed that they are almost identical until the example 4 termination.

In view of the respective function/gradient evaluation counts for examples 4 and 6, one concludes that a

large amount (about two-thirds) of computing effort in example 6 is spent to recover n alone.
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All numerical computations presented here have been done in double precision complex arithmetic, on

HP-Apollo 400-type workstations. The overall computer time spent for solving the inverse problem varies

from about 15 to 75 minutes. The determination of the exponent n is time-consuming. Every cost function

and gradient evaluation, using the procedure described in section 4, takes about 20 seconds, with about

15 seconds spent on J alone; thus gradient evaluations using the adjoint problem approach are relatively

inexpensive.

The efficiency of the line search is an important issue since here most computer time is spent on cost

function and gradient evaluation. Here, using low-accuracy line searches, most BFGS iterations used only

one evaluation.

5.2 Example with nodal coordinates as unknowns

The previous examples used a moderate number of design parameters, which implies obvious limitations on

the allowed shapes. One may think about using directly the mesh nodes as design variables. Ideally one

would have to introduce one scalar design variable per node (e.g. the value taken at each node by the normal

velocity θ). However this raises some technical difficulties for 3D geometries because Γ is only C0,α at the

nodes. One can also assume restrict the study to star-shaped obstacles and measure the node locations

along rays emanating from an origin point. A similar idea has been implemented by Kassab et al. [16];

Nishimura and Kobayashi also propose an interesting parametrization idea for crack inverse problems [21]

(both references deal with 2D problems).

An example (referred to as example 7) is now shown where the three coordinates of the BE mesh nodes

are used as design parameters, with no prior information on the unknown shape. In view of previous

comments this choice of representation is not good but has nonetheless be tried in view of its simplicity of

implementation. The true and initial data are those of example 1, see table 1. Note that this initial guess

is much closer to the solution than in the examples 2 to 6 previously discussed. The converged values of

Jfinal/Jinitial, eV , eA, eI , using the 222 nodal coordinates or the 9 parameters (yG
1 , y

G
2 , y

G
3 , a, b, c, φ, θ, ψ) as

unknowns, are given in table 8. It is seen that the values obtained for Jfinal/Jinitial, eV , eI with nodes as

unknowns are not as good as in the 9 unknowns example; they nevertheless are reasonable and show that the

location, size and orientation of the obstacle are correctly reconstructed. On the contrary, the final value of

about 34% taken by eA indicates strong oscillations of the reconstructed surface, which is typical of ill-posed

problems.

Table 8 should appear here.

6 Adjoint problem approach: extension to penetrable obstacles

Direct problem for a penetrable obstacle. The scatterer Ω− is now assumed to be an acoustical

medium characterized by a wave number k− 6= k and a mass density ρ− 6= ρ. The direct problem for the
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scattered pressure p induced by the presence of the penetrable obstacle Ω− is:

∆p+ k2p = 0 in Ω

∆p+ k2
−p = (k2 − k2

−)pI in Ω−

p− p− = 0 on Γ

p−,n = ap,n + (a− 1)pI
,n on Γ

(radiation condition)

(30)

where the known incident wave pI is such that (∆ + k2)pI = 0 in R3 and is assumed to be continuous

together with its gradient accross Γ. The notation f− refers to the limit on the boundary Γ ‘from inside’,

i.e. of variables f defined in the interior domain Ω−:

f−(y) = lim
ε↘0

f(y + εn) (y ∈ Γ)

while f refers to the limit on Γ ‘from outside’. The solution to the system (30) is denoted pΓ. The boundary

condition (30)4 expresses the velocity continuity accross Γ; a denotes the ratio ρ−/ρ.

Coupled BIE formulation. The direct problem (30) can be formulated, using (3), in terms of two coupled

regularized BIEs on the two independent boundary unknowns (p, p,n) |Γ which remain after accounting for

the boundary conditions (30)3,4, as follows:

p(x) +
∫

Γ

p(y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

[p(y)− p(x)]G0
,n(x,y) dSy −

∫
Γ

p,n(y)G(x,y) dSy = 0 (31)∫
Γ

p(y)[G−,n(x,y)−G0
,n(x,y)] dSy +

∫
Γ

[p(y)− p(x)]G0
,n(x,y) dSy

−
∫

Γ

(
ap,n + (a− 1)pI

,n

)
(y)G−(x,y) dSy + (k2 − k2

−)
∫

Ω−
G−(x,y)pI(y) dVy = 0 (32)

where G−(x,y) is the dynamic fundamental solution associated with the obstacle medium (wavenumber

k−).

Adjoint problem. The method of section 4 is generalized to the penetrable obstacle case, using similar

notations. Following again the constrained minimization viewpoint, one introduces the augmented functional

L as follows:

L(p, w; Γ) = J(p) +A(p, w; Γ)

A(p, w; Γ) ≡
∫

Ω

(
∇p.∇w − k2pw

)
dV +

1
a

∫
Ω−

(
∇p.∇w − k2

−pw
)

dV

+
1
a
(k2 − k2

−)
∫

Ω−
pIw dV +

(
1− 1

a

)∫
Γ

pI
,nw dS

12



The test function w ∈ V is the Lagrange multiplier, with V = {w ∈ H1
loc(Ω), w = w− on Γ}. Following

calculations similar to those of section 4, one obtains:

?

L = L,pp,τ + L,Γθ (33)

L,pp,τ =
∫

C

p,τ (pΓ − p̂)dC +
∫

Ω

(∇p,τ .∇w − k2p,τw) dV +
1
a

∫
Ω−

(∇p,τ .∇w − k2
−p,τw) dV

L,Γθ =
(

1− 1
a

)∫
Γ

θ∇p.∇w dS − (k2 − 1
a
k2
−)
∫

Γ

θpw dS

− 1
a
(k2 − k2

−)
∫

Γ

pIwθ dS +
(

1− 1
a

)∫
Γ

{
(pI

,n)?w +
(
pI

,nw,n − 2KpIw
)
θ(y)

}
dS

=
∫

Γ

θ

{(
1− 1

a

)
∇S(p+ pI).∇Sw −

(
k2 − 1

a
k2
−

)
(p+ pI)w

}
dS (34)

where identity (14) and the boundary condition (30)4 has been used. Moreover the adjoint problem, still

defined by (19), has the following strong formulation:

∆w + k2w = −̄,p(pΓ − p̂)δC in Ω

∆w + k2
−w = 0 in Ω−

w = w− on Γ

w−,n = aw,n on Γ

(radiation condition)

(35)

The two independent unknowns (w,w,n) |Γ solve the following coupled BIE formulation:

w(x) +
∫

Γ

w(y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

[w(y)− w(x)]G0
,n(x,y) dSy −

∫
Γ

w,n(y)G(x,y) dSy = 0 (36)∫
Γ

w(y)[G−,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

[w(y)− w(x)]G0
,n(x,y) dSy −

∫
Γ

aw,n(y)G−(x,y) dSy = 0 (37)

Domain derivative. The domain derivative kernel J,Γ is given by:

?

J =
∫

Γ

J,Γθ dS

J,Γ =
(

1− 1
a

)
∇S(p+ pI).∇Sw −

(
k2 − 1

a
k2
−

)
(p+ pI)w (38)

Note that taking the limiting case ρ− →∞, i.e. a→∞, in the results (34), (35), (38) yields the corresponding

ones for the hard obstacle given in Section 4.

7 Adjoint problem approach: extension to elastodynamics

Elastodynamic direct problem. Here Ω− denotes a cavity embedded in an infinite elastic body (Poisson

ratio ν, shear modulus µ), with a traction-free boundary Γ = ∂Ω. The incident wave is an elastodynamic

displacement uI such that div σ(uI) + ρω2uI = 0. The scattered and total displacement fields u,uT are
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related by uT = uI + u. The governing equations for the primary state u are:
div σ(u) + ρω2u = 0 in Ω

T n(u) + T n(uI) = 0 on Γ

(radiation conditions)

(39)

where

σij(u) = µ

(
2ν

1− 2ν
δijuk,k + ui,j + uj,i

)
is the elastic stress tensor associated with u and T n(u) = σ(u).n denotes the traction vector on Γ. The

solution to the above system is denoted uΓ.

Inverse problem. Suppose that Γ is unknown but u has known values û on a measurement surface. The

reconstruction of Γ from the known values of û can be attempted by minimizing a best-fit functional J (Γ)

similar to (2):

J (Γ) = J(uΓ) with J(u) =
∫

C

j(u) dS (40)

Adjoint problem. Following again the approach developed in section 4, the following augmented func-

tional is introduced:

L(u,w; Γ) = J(u) +A(u,w; Γ) (41)

A(u,w; Γ) =
∫

Ω

[
σ(u) : ∇w − ρω2u.w

]
dV +

∫
Γ

T n(uI).w dS

The vector test function w ∈ V is the Lagrange multiplier, with V = {w ∈ {H1
loc(Ω)}3}. Then, taking the

material derivative of (41), one has:

?

L (u,w; Γ) = L,u.u,τ + L,Γ.θ (42)

L,u.u,τ =
∫

C

j,u.u,τ dS +
∫

Ω

[
σ(u,τ ) : ∇w − ρω2u,τ .w

]
dS (43)

L,Γ.θ =
∫

Γ

[
σ(u) : ∇w − ρω2u.w

]
θ dS

+
∫

Γ

{(
T n(uI)

)?
.w + θ

[
T n(uI).w,n − 2KT n(uI).w

]}
dS (44)

Equation (42) holds whatever the test function w ∈ V. Among those, the particular w which solves:

∀uτ ∈ V L,u(uΓ,w; Γ).u,τ = 0 (45)

is the adjoint state. In view of eq. (43) and since u ∈ V ⇒ u,τ ∈ V, the above variational equation defines a

well-posed elastodynamic problem, whose solution, the adjoint state, is denoted wΓ. The strong formulation

of the adjoint problem reads: 
div σ(w) + ρω2w = −j,uδC in Ω

T n(w) = 0 on Γ

(Radiation conditions)

(46)
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As a consequence, the derivative of J is given by:

?

J = L,Γ(uΓ,wΓ; Γ).θ

=
∫

Γ

[
σ(uΓ) : ∇wΓ − ρω2uΓ.wΓ

]
θ dS

+
∫

Γ

{(
T n(uI)

)?
.wΓ + θ

[
T n(uI).wΓ,n − 2KT n(uI).wΓ

]}
dS (47)

The above formula involves the complete gradients of uΓ,wΓ, which is impractical. We then derive an

alternative expression in terms of only the tangential gradients of uΓ,wΓ. This step makes use of the

decomposition:

∇v = ∇Sv + v,n ⊗ n (48)

Moreover, one has:

(
T n(uI)

)?
.n =

(
σ(uI)

)?
+ σ(uI).

?

n

=
(
{σ(uI)},τ + θ{σ(uI)},n

)
.n− σ(uI).∇Sθ (49)

Also, from the decomposition (48), one has for any stress tensor σ satisfying the dynamic equilibrium

equation (39)1 for some displacement u:

div σ = divSσ + σ,n.n = ρω2u

hence

σ,n.n = −divSσ − ρω2u (50)

Substitution of (50) into (49) then yields:

(
T n(uI)

)?
= {σ(uI)},τ .n− θdivSσ(uI)− σ(uI).∇Sθ − ρω2uI

= −divS(θσ)− ρω2uI (51)

where the fact that uI
,τ = 0 for the incident wave has been used. Next, the decomposition (48) and the

above formula are substituted in (47), which becomes:

L,Γ(uΓ,wΓ; Γ).θ

=
∫

Γ

[
σ(uΓ) : ∇SwΓ + T n(uΓ).wΓ,n − ρω2uΓ.wΓ

]
θ dS

+
∫

Γ

θ
[
T n(uI).wΓ,n − ρω2uI .wΓ

]
dS −

∫
Γ

[
divS(θσ(uI)) + 2KθT n(uI)

]
.wΓ dS

=
∫

Γ

[
σ(uΓ + uI) : ∇SwΓ + T n(uΓ + uI).wΓ,n − ρω2(uΓ + uI).wΓ

]
θ dS

=
∫

Γ

[
σ(uΓ + uI) : ∇SwΓ − ρω2(uΓ + uI).wΓ

]
θ dS (52)

Use has been made of the integration by parts formula (69) and of the boundary condition (39)2 associated

with the primary problem. The formula above is compact and very similar in structure to (38). Note that,

contrary to the similar results (22), (38) in acoustics, the above formula is still not directly expressed in terms

of boundary variables or their tangential derivatives due to the presence of the complete tensor σ(u + uI).
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However, expressing σ(u) in terms of u,n and T n(u) is a classical problem, which is briefly recalled in [6],

and after some manipulation one can show that:

σ(u) : ∇Sw

= n.∇Sw.T n(u) +
ν

1− ν
(divSw)T n(u).n

+ µ

{
2ν

1− ν
(divSu)(divSw) + (∇Su +T ∇Su) : ∇Sw − (n.∇Su).(n.∇Sw)

}
Then, accounting for the boundary condition (39)2, one has:

σ(u + uI) : ∇Sw = µ

{
2ν

1− ν
(divS(u + uI))(divSw) + (∇S(u + uI) +T ∇S(u + uI)) : ∇Sw

− (n.∇S(u + uI)).(n.∇Sw)
}

(53)

in which only tangential derivatives are involved. The derivative (52) can thus be easily computed from the

values of uΓ,u
I ,wΓ on the boundary Γ.

8 The direct differentiation approach

The direct differentiation approach is applicable to both the acoustic and elastodynamic situations; we now

briefly discuss it for the acoustic case. It basically consists of taking directly the material derivative of J (Γ)

using eqn. (9). Since the measurement area C is kept fixed, i.e. θ = 0 on C, this yields:

?

J=
∫

C

̄,p(pΓ − p̂)
?

pΓ dCy (54)

The derivative
?

pΓ in turn solves a governing derivative BIE, which is now established. First, note that the

incident wave pI satisfies (∆ + k2)pI = 0 inside Ω−, and hence the interior BIE:∫
Γ

pI(y)[G,n(x,y)−G0
,n(x,y)] dSy +

∫
Γ

[pI(y)− pI(x)]G0
,n(x,y) dSy

=
∫

Γ

pI
,n(y)G(x,y) dSy (55)

so that, adding the primary BIE (4) and the previous identity, one gets the following alternative primary

BIE in terms of the scattered wave pI and the total pressure pT :

p(x) +
∫

Γ

pT (y)[G,n(x,y)−G0
,n(x,y)] dSy +

∫
Γ

[pT (y)− pT (x)]G0
,n(x,y) dSy = 0 (56)

We elect to use the above alternative BIE instead of (4) for the purpose of material differentiation because

the derivation turns out to be simpler due to the absence of pI
,n in (56). The differentiation formula (9) is

now applied to (56), giving after some manipulations sketched in Appendix C the sought derivative BIE as

follows:

?

p (x) +
∫

Γ

?

p
T

(y)[G,n(x,y)−G0
,n(x,y)] dSy +

∫
Γ

[
?

p
T

(y)− ?

p
T

(x)]G0
,n(x,y) dSy

=
∫

Γ

{
ni(y)k2G(x,y)pT (y)−Dijp

T (y)G,j(x,y)
}

[(θni)(y)− (θni)(x)] dSy (57)
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where Drs is the tangential differential operator (66). The validity of the calculation leading to the above

result is a by-product of the weakly singular character of the acoustic BIE (56). The derivative BIE (57) is

valid for a smooth surface only, without edges or corners (but a similar derivative BIE can be formulated for

the more general case of piecewise smooth surfaces). All integrands in eqn. (57) are weakly singular due to

the regularizing effect of the factors
?

p (y)− ?

p (x), θ(y)ns(y)− θ(x)ns(x). The right-hand side is expressed

in terms of the primary state and in a reasonably compact manner; it shows linear dependence with respect

to θ. Note that one has
?

p
T
=

?

p +
?

p
I
=

?

p −pI
nθ

Then the required steps for evaluating the derivative (54) in any given geometrical transformation (5)

using the direct differentiation approach are as follows:

1. Solve the primary BIE (4) for pΓ (or, equivalently, (56) for the unknown pT
Γ .

2. Solve the derivative BIE (57) for the unknown
?

p
T

Γ .

3. Compute pΓ,
?

pΓ on the measurement surface C using (56), (57) as representation formulas.

4. Compute
?

J (54).

Performing the previous process for all possible θ |Γ yields the infinite-dimensional gradient of J . In practical

applications, one considers domain changes described by a finite number D of parameters. Then the finite-

dimensional gradient of J is computed using D distinct velocities θ adequately constructed and through the

solution of (57) for the D right-hand sides associated to the D velocities.

The right-hand side of (57) is explicit once the primary BIE (56) is solved. The successive solution of

(57) for various θs may look at first sight to be a heavy computational task. However, the same integral

operator governs p in (56) and
?

p in (57). The computation of the solution
?

p to (57) for a given θ reuses

the already build and factored matrix operator and needs only one right-hand side set-up followed by one

backsubstitution.

Extension to elastodynamics. Following the same lines as above, the governing BIE for elastic scattering

by a traction-free cavity can be formulated as:

uk(x) +
∫

Γ

uT
i (y)[Σk

ij(x,y;ω)− Σk
ij(x,y)]nj(y) dSy +

∫
Γ

[uT
i (y)− uT

i (x)]Σk
ij(x,y)nj(y) dSy = 0 (58)

where Uk(x,y;ω),Σk(x,y;ω) denote the fundamental elastodynamic displacement and stress fields at y

created in the infinite space by a unit time-harmonic point force applied at x along the k-direction,

Uk(x,y),Σk(x,y) being the corresponding static fundamental solution. It is then left to the reader to

show that, similarly to the acoustic case, the following derivative BIE holds:

?

uk (x) +
∫

Γ

?

u
T

i (y)[Σk
ij(x,y;ω)− Σk

ij(x,y)]nj(y) dSy

+
∫

Γ

[
?

u
T

i (y)− ?

u
T

i (x)]Σk
ij(x,y)nj(y) dSy

=
∫

Γ

ρω2Uk
i (x,y)uT

i (y)[θ(y)− nm(y)nm(x)θ(x)] dSy

−
∫

Γ

Djmu
T
i (y)[(θnm)(y)− (θnm)(x)]Σk

ij(x,y)(x,y) dSy (59)
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9 Concluding comments and perspectives

The approach presented here on particular classes of shape identification problems can be extended to many

other situations, involving bounded bodies, other kinds of cost functions, other physical contexts like heat

conduction,. . . It is essentially a numerical tool, in that it allows an optimal use of classical unconstrained

minimization methods using gradient evaluations, applied to the physical model and data at hand. On the

other side, it provides no insight on the fundamental characteristics of the identification problem, such as

existence or uniqueness of the solution for the available data.

The numerical results presented here show the efficiency of the adjoint problem approach for the compu-

tation of functional gradients. The very good results obtained on cases using a moderate number of design

parameters validate the good performance of the basic components of the inversion strategy. When a more

complex descriptions of the unknown surface, allowing in principle the recovery of more general shapes,

is used, results deteriorate and ill-posedness manifests itself in the form of highly oscillating reconstructed

surfaces. Hence the inversion methodology should ultimately include a regularization [24] of the inverse

problem, by means of a stabilizing positive functional P (Γ), so that the unknown surface Γ is searched as a

minimizer of R(Γ, α) = J (Γ) + αP (Γ) (0 < α � 1) instead of J (Γ) alone. A suggestion for the functional

P (Γ) is:

P (Γ) =
1
2

∫
Γ

(divSn)2 dS + β

∫
L

(1− n+.n−) ds (60)

where L denotes the set of all edges on Γ (including element edges), n+,n− are the unit normals adjacent

to an edge and β is an adjustable coefficient which ensures the dimensional consistency of P (Γ). The first

integral term allows the penalization of high curvatures, which may affect even the continuous reconstructed

shape as a result of data uncertainties, while the second is more specifically intended to damp numerical os-

cillations of the BE-discretized surface: the jump of unit normals between elements is expected to contribute

notably to the unwanted oscillations.

To the author’ best knowledge, the practically important issue of finding parametrized representations

allowing general shapes for 3D surfaces while keeping the number of design parameters as low as possible, and

also being preferably designed so as to avoid the appearance of oscillatory shapes, is not yet well understood.
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A Tangential differential operators and integration by parts.

Tangential differential operators. Let S be a twice continuously differentiable closed C2 surface, of

unit normal n (open surfaces can be considered as well, see e.g. [8]). Consider a scalar function u(y), y ∈ S,

which may be undefined outside S (e.g. u = ni or u = θ). In this case, the cartesian derivatives u,i are

generally meaningless, and one has to introduce tangential differential operators. The domain of definition

of u is extended in a neighbourhood V of S by introducing a continuation û of u outside S defined as:

∀(y ∈ V ), û(y) = u(P (y)), where P (y) is the orthogonal projection of y onto S. Clearly the restriction of

û to S is equal to u. Moreover the normal derivative of û is equal to zero, i.e. the vector ∇û is tangent to

S; therefore it may be used to define the tangential gradient ∇Su of u;

∇Su = ∇S û = ∇û (61)

If u is an arbitrary scalar function defined in V , one has, consistently with (61):

∇Su = ∇u− nu,n = erD̂ru = er(u,r − nru,n) (62)

which defines the tangential partial derivatives D̂ru (using the notation (·),n = ∂/∂n(·)). The symbol (ˆ)

will be omitted, keeping in mind if necessary the extension. Similarly, the surface divergence divS of a vector

or tensor field T is defined as:

divST = divT − T ,n.n (63)

so that, when T is a vector u or second-order tensor σ, one has, referring to a fixed orthonormal frame:

divSu = Djuj divSσ = Djσijei

An interesting consequence of (62) is the following identity for the Laplace operator:

∆u = u,nn − 2Ku,n + divS(∇Su) (64)

where K, the mean curvature of S, is also given by:

2K = −divSn (65)

The operator

Drsf = (nrf,s − nsf,r) (66)

is also introduced. From (62), Drsf = nrDsf − nsDrf : Drsf is a tangential differential operator.

Integration by parts along surfaces. The classical Stokes’ identity for a vector field U defined over V

reads:

eabc

∫
S

naUb,c dS = 0 (67)

Its application to the special choice Ub = erbsu yields the following integration by parts formula associated

to the operator Drs (66), which allows integration by parts on surfaces of combinations of n and ordinary

partial derivatives (i.e. without separation of tangential and normal derivatives):∫
S

Drsu dS = 0 for any fixed pair r, s, r, s = 1, 2, 3 (68)
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Then the special choice u = vrns in (68) gives in turn:∫
S

(2Kv.n + divSv) dS = 0 (69)

B Some auxiliary formulas

The following formulas are given e.g. in [22]:

?

n = −∇Sθ = −(Drθ)er

(∇u)? = ∇ ?

u −u,n∇θ − θ∇Su.∇Sn

Their combined application leads to the following formula for the transformation derivative (u,n)?:

(u,n)? =
?

u,n −u,nθ,n −∇Su∇Sθ (70)

Since the definition of the incident wave pI does not depend on the actual location of Γ, one has pI
,τ = 0 i.e.

?

p
I
= θpI

,n, so that (70) gives:

(pI
,n)? = θpI

,nn −∇Sp
I .∇Sθ

Moreover, since pI solves the Helmholtz equation, identity (64) gives:

pI
,nn = 2KpI

,n − divS(θ∇Sp
I)− k2pI

Equation (14) is then readily established from the last two equations.

C Proof of equation (57)

First, as the fundamental solutions G(x,y), G0(x,y) do not depend on τ , one has, in component notation:

(G,n)?(x,y) = G,ij(x,y)nj(y)[(θni)(y)− (θni)(x)]−DjG(x,y)Djθ(y) (71)

This result uses the fact that G(x,y) = G(y,x); the derivatives (),j , Dj are taken with respect to field point

coordinates yj . Upon application of (9), one has:

d

dτ

∫
Γ

p(y)[G,n(x,y)−G0
,n(x,y)] dSy

=
∫

Γ

?

p (y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

p(y)[G(x,y)−G0(x,y)],ijnj(y)[(θni)(y)− (θni)(x)] dSy

−
∫

Γ

{DjG(x,y)Djθ(y) + 2KG,n(x,y)θ(y)} dSy
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Next, one can rewrite the last integral above using the Dij operator (66) and the corresponding integration

by parts identity (68):∫
Γ

p(y)[G(x,y)−G0(x,y)],ijnj(y)[(θni)(y)− (θni)(x)] dSy

=
∫

Γ

p(y)
{
Dji[G(x,y)−G0(x,y)],j + ni(y)[G(x,y)−G0(x,y)],jj

}
[(θni)(y)− (θni)(x)] dSy

=
∫

Γ

{
Dijp(y)[G(x,y)−G0(x,y)],j − ni(y)p(y)k2G(x,y)

}
[(θni)(y)− (θni)(x)] dSy

+
∫

Γ

p(y)[G(x,y)−G0(x,y)],jDij(θni)(y) dSy

=
∫

Γ

{
Dijp(y)[G(x,y)−G0(x,y)],j − ni(y)p(y)k2G(x,y)

}
[(θni)(y)− (θni)(x)] dSy

−
∫

Γ

p(y)[G(x,y)−G0(x,y)],j [Djθ(y) + 2Knj(y) dSy

where the identities G,jj + k2G = −δ(y − x) and G0
,jj = −δ(y − x) were used, together with:

Dij(niθ(y)) = ni[niDjθ + θDjni]− nj [niDiθ + θDini]

= Djθ − 2Knjθ

Summing up, one has:

d

dτ

∫
Γ

p(y)[G,n(x,y)−G0
,n(x,y)] dSy

=
∫

Γ

?

p (y)[G,n(x,y)−G0
,n(x,y)] dSy

+
∫

Γ

{
Dijp(y)[G(x,y)−G0(x,y)],j − ni(y)p(y)k2G(x,y)

}
[(θni)(y)− (θni)(x)] dSy

A similar calculation also shows that:

d

dτ

∫
Γ

[p(y)− p(y)]G0(x,y) dSy

=
∫

Γ

[
?

p (y)− ?

p (x)]G0
,n(x,y) dSy

+
∫

Γ

Dijp(y)G0(x,y)],j [(θni)(y)− (θni)(x)] dSy

The result (57) then follows readily from the last two equations.
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Example no. xG yG zG φ θ ψ a b c

1 True 1.0 1.0 0.5 0.4 0.9 0.6 1.0 2.0 1.0

(k = 1) Initial 1.0 1.0 0.5 0.4 0.9 0.6 1.2 2.4 1.2

2 True 1.0 1.0 0.5 0.4 0.9 0.6 1.0 2.0 1.0

(k = .3) Initial 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0 4.0

3, 4, 5, 6 True 1.0 0.0 −2.0 0.4 0.9 0.6 1.0 3.0 1.0

(k = .5) Initial 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 1.5

Table 1: ‘True’ and initial (d1, . . . , d9) and wavenumber values: examples 1 to 6.
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Example 1 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 1.40 10−8 4.73 10−6 4.82 10−4 4.38 10−2

eV 2.91 10−6 6.21 10−5 6.44 10−4 6.23 10−3

eA 6.74 10−6 1.11 10−4 1.16 10−3 1.14 10−2

eI 1.57 10−5 3.08 10−4 3.12 10−3 3.17 10−2

Evaluations 68 38 37 37

pI
2, p

I
3 Jfinal/J0 2.65 10−9 6.97 10−6 7.01 10−4 6.42 10−2

eV 4.46 10−7 1.10 10−4 1.11 10−3 1.11 10−2

eA 3.71 10−7 7.77 10−5 7.81 10−4 7.83 10−3

eI 4.53 10−6 1.31 10−4 1.29 10−3 1.29 10−2

Evaluations 50 23 38 28

pI
1, p

I
2, p

I
3 Jfinal/J0 9.07 10−13 1.18 10−5 1.17 10−3 9.92 10−2

eV 1.21 10−8 5.73 10−5 5.73 10−4 5.62 10−3

eA 1.68 10−9 4.22 10−5 4.22 10−4 4.38 10−3

eI 1.94 10−8 4.16 10−5 4.16 10−4 4.84 10−3

Evaluations 42 19 18 72

Table 2: Results for example 1.
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Example 2 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 1.48 10−11 9.01 10−10 9.23 10−8 9.38 10−6

eV 1.04 10−5 1.17 10−5 3.86 10−4 3.20 10−3

eA 3.41 10−5 4.46 10−4 3.23 10−4 7.03 10−4

eI 2.33 10−4 1.21 10−3 5.64 10−3 2.28 10−1

Evaluations 139 122 129 67

pI
2, p

I
3 Jfinal/J0 3.33 10−11 8.59 10−10 8.87 10−8 8.30 10−6

eV 7.29 10−5 3.45 10−5 2.31 10−4 2.91 10−4

eA 1.19 10−4 4.18 10−5 4.45 10−4 2.36 10−3

eI 2.34 10−4 1.67 10−4 3.15 10−3 2.61 10−2

Evaluations 103 112 87 101

pI
1, p

I
2, p

I
3 Jfinal/J0 2.61 10−11 9.10 10−10 8.87 10−8 8.88 10−6

eV 1.93 10−6 2.48 10−5 2.31 10−4 2.26 10−3

eA 8.33 10−7 4.52 10−5 4.45 10−4 4.36 10−3

eI 5.19 10−5 3.07 10−4 3.15 10−3 3.13 10−2

Evaluations 78 88 87 80

Table 3: Results for example 2.
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Example 3 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 1.87 10−8 1.55 10−7 1.27 10−5 1.25 10−3

eV 1.37 10−5 4.98 10−5 5.83 10−4 5.43 10−3

eA 9.09 10−5 2.67 10−6 7.29 10−4 7.01 10−3

eI 3.66 10−4 1.34 10−4 1.97 10−3 2.14 10−2

Evaluations 75 74 81 76

pI
2, p

I
3 Jfinal/J0 1.47 10−7 4.18 10−7 2.49 10−5 2.45 10−3

eV 2.17 10−5 9.05 10−5 1.06 10−3 1.11 10−2

eA 6.02 10−5 1.97 10−4 1.42 10−3 1.35 10−2

eI 1.69 10−4 3.63 10−4 2.15 10−3 1.96 10−2

Evaluations 53 52 51 75

pI
1, p

I
2, p

I
3 Jfinal/J0 1.59 10−7 4.19 10−7 2.41 10−5 2.42 10−3

eV 8.50 10−7 1.56 10−4 1.56 10−3 1.52 10−2

eA 5.98 10−6 1.17 10−4 1.11 10−3 1.06 10−2

eI 7.46 10−5 1.67 10−4 1.01 10−3 8.80 10−3

Evaluations 37 37 35 40

Table 4: Results for example 3.
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Example 4 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 3.01 10−4 3.03 10−4 3.32 10−4 2.34 10−3

eV 1.70 10−2 1.70 10−2 1.75 10−2 2.22 10−2

eA 1.51 10−1 1.51 10−1 1.51 10−1 1.56 10−1

eI 5.74 10−2 5.76 10−2 5.87 10−2 7.24 10−2

Evaluations 62 62 63 51

pI
2, p

I
3 Jfinal/J0 4.09 10−2 4.11 10−2 4.57 10−2 3.88 10−1

eV 7.95 10−3 8.07 10−3 9.15 10−3 1.95 10−2

eA 1.51 10−1 1.51 10−1 1.52 10−1 1.61 10−1

eI 5.84 10−2 5.86 10−2 6.04 10−2 7.85 10−2

Evaluations 30 31 41 59

pI
1, p

I
2, p

I
3 Jfinal/J0 2.76 10−3 2.77 10−3 2.82 10−3 6.36 10−3

eV 1.00 10−2 1.02 10−2 1.16 10−2 2.54 10−2

eA 1.34 10−1 1.34 10−1 1.35 10−1 1.42 10−1

eI 2.60 10−2 2.61 10−2 2.69 10−2 3.39 10−2

Evaluations 41 30 42 60

Table 5: Results for example 4.
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Example 5 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 1.84 10−8 1.42 10−7 1.28 10−5 1.25 10−3

eV 1.68 10−5 8.21 10−5 1.55 10−4 4.83 10−3

eA 7.92 10−5 1.88 10−5 2.78 10−3 8.73 10−3

eI 3.58 10−4 1.40 10−4 2.17 10−3 2.15 10−2

Evaluations 138 125 81 93

pI
2, p

I
3 Jfinal/J0 1.47 10−7 4.17 10−7 2.48 10−5 2.43 10−3

eV 2.80 10−5 5.81 10−5 7.37 10−4 1.09 10−2

eA 1.00 10−4 3.88 10−4 2.92 10−3 1.44 10−2

eI 1.76 10−4 3.81 10−4 2.13 10−3 1.95 10−2

Evaluations 81 87 55 73

pI
1, p

I
2, p

I
3 Jfinal/J0 1.59 10−7 4.18 10−6 2.41 10−5 2.35 10−3

eV 8.87 10−6 1.69 10−4 1.63 10−3 1.40 10−2

eA 3.95 10−5 4.30 10−5 8.13 10−4 1.39 10−2

eI 5.57 10−5 1.35 10−4 8.91 10−4 1.07 10−2

Evaluations 71 63 76 60

Table 6: Results for example 5.
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Example 6 ε = 0. ε = 10−3 ε = 10−2 ε = 10−1

pI
3 Jfinal/J0 4.56 10−9 5.13 10−5 6.25 10−5 1.98 10−3

eV 2.33 10−5 5.40 10−3 5.45 10−3 1.24 10−2

eA 1.23 10−3 1.06 10−1 9.71 10−2 8.87 10−2

eI 2.72 10−4 3.19 10−2 3.02 10−2 4.91 10−2

n recovered 722. 6.27 7.19 9.45

Evaluations 220 109 119 109

pI
2, p

I
3 Jfinal/J0 2.40 10−8 3.69 10−7 3.29 10−5 3.30 10−3

eV 7.28 10−6 1.39 10−4 1.29 10−3 1.26 10−2

eA 1.21 10−3 1.12 10−3 1.91 10−3 1.10 10−2

eI 4.70 10−4 6.13 10−4 2.16 10−3 1.98 10−2

n recovered 1007. 1025. 1120. 1140.

Evaluations 220 240 216 145

pI
1, p

I
2, p

I
3 Jfinal/J0 7.58 10−8 4.46 10−7 3.35 10−5 3.35 10−3

eV 2.06 10−5 1.72 10−4 1.32 10−3 1.50 10−2

eA 9.39 10−4 1.03 10−3 1.88 10−3 1.03 10−2

eI 1.91 10−4 2.39 10−4 9.32 10−4 8.71 10−2

n recovered 1035. 1057. 1062. 1045.

Evaluations 126 121 123 98

Table 7: Results for example 6.
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eV eA eI Jfinal/Jinitial

222 unknowns 3.2 10−4 7.6 10−4 2.34 10−2 3.4 10−1

9 unknowns 9.07 10−13 1.21 10−8 1.68 10−9 1.94 10−8

Table 8: Converged values of eV , eA, eI , Jfinal/Jinitial for example 7: comparison between descriptions of

Γ using 9 geometrical parameters and 222 nodal coordinates.
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