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Abstract

The subject of this paper is the formulation of boundary integral equations for first- and second-order

shape sensitivities of boundary elastic fields in three-dimensional bodies. Here the direct differentiation

approach is considered. It relies on the repeated application of the material derivative concept to the

governing regularized (i.e. weakly singular) displacement boundary integral equation (RDBIE) for an

elastostatic state on a given domain. As a result, governing BIEs, which are also weakly singular, are

obtained for the elastic sensitivities up to the second order. They are formulated so as to allow a

straightforward implementation; in particular no strongly singular integral is involved. It is shown that

the actual computation of shape sensitivities using usual BEM discretization uses the already built and

factored discrete integral operators and needs only to set up additional right-hand sides and additional

backsubstitutions. Some relevant discretization aspects are discussed.



1 Introduction

The consideration of first and second variations of integral functionals with respect to a geometrical

domain arises in the study of many situations where a geometrical domain plays a major role. These

include shape optimization processes with respect to mechanical constraints, usually expressed in terms

of integrals involving the mechanical quantities (displacement, stress. . . ) which themselves depend on

the shape of the body. Geometrical inverse problems constitute a related area, where part of the domain

boundary is unknown (e.g. in crack or defect identification), its determination being attempted by

minimizing a distance between computed (for a given domain configuration) and known (for the actual,

unknown, domain configuration) values of some mechanical quantity. Also, free-boundary problems can

be dealt with using similar considerations. Finally, evolution problems in fracture or damage mechanics

often involve geometrical fronts which propagate according to a Griffith-like criterion, where the second

derivative of the potential energy at equilibrium with respect to front perturbations plays an essential

role. All these situations share the common feature of involving integral functionals having both direct

(through the geometrical support of the integral) and indirect (through mechanical fields which solve e.g.

elastic boundary-value problems) dependence on the geometrical domain under consideration.

For many reasons (be it only computational efficiency), it is essential to be able to evaluate first

and second variations of such functionals. Most usual optimization algorithms use first-order derivatives,

while Newton-type algorithms also use second-order derivatives. Moreover, accurate evaluation of second-

order derivatives may provide practical means of checking optimality conditions. Finally, as mentioned

before, second-order derivatives of potential energy govern evolution problems involving energy release

rates. Besides, it is also a known fact that finite-difference estimations of gradients (which would require

here finite perturbations of the geometrical domain) are both computationally expensive and prone to

inaccuracies due to the mathematically ill-posed nature of this problem. Hence it is natural to revert

to analytical differentiation with respect to a variable domain. This concept has been studied and used

by many authors (see e.g. Haug et al. [9], Petryk and Mroz [15]), up to now mainly in FEM-oriented

contexts. However, since in such problems the domain (and hence its boundary) is a primary unknown,

it is a natural idea to consider boundary integral formulations, because they offer in this context the

“minimal” modelling.

The formulation of shape sensitivities, in a BIE context or otherwise, may result from the adjoint

problem approach (APA) or the direct differentiation approach (DDA), applied either before and after

discretization of the initial elastic BIE. Continuous formulations using the APA to shape sensitivity in a

BIE context has been considered e.g. by Choi and Kwak [8] for 2D elasticity, Bonnet [3] for 3D geomet-

rical inverse problems in acoustics, Burczinski and Fedelinski for transient elastodynamics [7], Meric [11]

for thermal problems. The present paper deals with the analytical direct differentiation approach made

at the continuous level. It consists in applying to the relevant governing BIE the material differentiation

concept of continuum kinematics, the possibly non-material domain changes being described in terms

of a finite number of parameters (e.g. design parameters in shape optimization) instead of the physical



time variable. This leads to governing boundary integral equations for the shape sensitivities of elastic

boundary variables. The latter may be considered for their own interest or as auxiliary variables which

ultimately allow the computation of the shape sensitivities of domain- and state-dependent integral func-

tionals. Other references about DDA include e.g. Nishimura and Kobayashi [14] for crack identification,

Mukherjee and Chandra [12] for design sensitivities in nonlinear solid mechanics, Bonnet [4] for crack

front stability, among others. A taylor series approach having some similarity with the DDA is given by

Zeng and Saigal [20] for crack identification problems in potential theory. Also, the direct differentiation

of discretized BEM formulations is treated in e.g. Kane et al. [10].

A difficulty with the DDA lies in the singular character of the governing BIE. Elastic BIE formulations

were classically expressed in terms of Cauchy principal value (CPV) integrals. Barone and Yang [1] apply

the material derivative concept to such CPV formulations. However, since the exclusion neighbourhood

used in the limiting process which defines a CPV integral is distorted by a domain perturbation, this

procedure raises the difficulty of whether the material derivative of a CPV integral equals the CPV of

the material derivative of the integrand. The implicite answer to this is affirmative in [1], although in

other instances erroneous results induced by misapplication of general techniques (change of variables,

integration by parts. . . ) to CPV integrals are well-known. Zhang and Mukherjee [21] circumvent this

potential objection by using a 2D elastic BIE formulated in terms of tangential gradient of displacements

(“derivative BIE”) and thus of a weakly singular nature; they obtain weakly singular BIEs for first- and

second-order elastic shape sensitivities. However, this kind of derivative BIE seems to be known only for

2D problems.

The present paper, of a theoretical nature, deals with BIE formulations for first- and second-order

elastic shape sensitivities for 3D situations. To this end, the starting point is the regularized version of

the conventional displacement BIE formulation (RDBIE), where only weakly singular integrals occur (see

e.g. Rizzo and Shippy [16] for elastostatics, Bui et al. [6], Rizzo et al. [17] for steady-state elastodynam-

ics, Bonnet [2] for transient elastodynamics). Applying the material derivatives to such formulations is

mathematically sound, and results in weakly singular BIE formulations for first- and second-order shape

sensitivities. The varying domains are mathematically described using diffeomorphisms between an “ini-

tial” configuration and the current one, using continuum kinematics approach. These diffeomorphisms

depend on a finite number of parameters, so that all domain evolutions ultimately reduce to variations

of those parameters. These parameters may either be actual design variables (for shape optimization) or

result from the discretization of infinite-dimensional domain perturbations (e.g. crack front propagation

in 3D fracture mechanics). This approach also allows to define and compute directional derivatives as-

sociated to any (sufficiently regular) boundary perturbation. As a result, first- and second- order shape

sensitivities are defined in terms of transformation “velocities” and “accelerations”, which are vector

fields on the boundary.

The presentation here is restricted to 3D elastostatics for expository purposes but the analysis con-

ducted extends to other situations as well: potential theory of course but also elastodynamics and acous-

tics. Firstly, some definitions are given regarding the material derivative concept, up to the second order,



for functions and surface integrals; a short discussion of difficulties related to the definition of second-order

domain derivatives is included. Then, starting from the RDBIE, the governing boundary integral equa-

tion for first-order shape sensitivity of an elastostatic state is established. The computation of first-order

stress sensitivities at boundary points is then discussed. Next, the governing boundary integral equation

for second-order shape sensitivity of an elastostatic state is derived. Finally, some relevant features of

the BE discretization process are treated.

2 First- and second-order material derivative of a surface inte-

gral

Let us consider, in the three-dimensional Euclidean space R3 equipped with a Cartesian orthonormal basis

(e1, e2, e3), a body Ωp whose shape depends on a finite number of shape parameters p = (p1, p2, . . .).

The latter are treated as time-like parameters using a continuum kinematics-type lagrangian description

and the “initial” configuration Ω0 conventionally associated with p = 0:

Y ∈ Ω0 → y = Φ(Y ;p) ∈ Ωp where (∀Y ∈ Ω0) Φ(Y ; 0) = Y (1)

Throughout this paper lower-case boldface letters x,y denote geometrical points on the current config-

uration Ωp. The diffeomorphism Φ(·;p), or geometrical transformation, must possess a strictly positive

Jacobian for any given p. A given domain evolution considered as a whole, as is the case e.g. in shape

optimization, admits many different representations (1), with different transformations Φ.

2.1 First-order material derivative

As far as first-order derivatives with respect to p are concerned, attention can be restricted to the

consideration of a single parameter shape parameter p without loss of generality.

Material derivative of scalar or tensor fields. The transformation velocity θ(y;p), defined by

θ(y;p) = Φ,p(Y ;p) for y = Φ(Y ;p) (2)

is the (eulerian representation for the) “velocity” of the “material” point wich coincides with the geomet-

rical point y at “time” p.

Next, let f(y;p) denote a scalar, vector or tensor field. The material derivative
?

f (y;p) in the domain

transformation y = Φ(Y ;p) is defined (see e.g. Salençon [18]) as:

?

f (y;p) = g,p(Y ;p) where g(Y ;p) = f(Φ(Y ;p);p)

= f,p(y;p) + ∇f(y;p).θ(y;p) (3)

where ∇ denotes the gradient with respect to “eulerian” coordinates (∇f = (f,yi
) ⊗ ei). The material

derivative of the gradient ∇f is thus given by:
?

∇̂f= ∇
?

f −∇f.∇θ (4)



while the material derivative of a material vector a attached to the moving point y = Φ(Y ;p) is given

by:
?

a= ∇θ.a (5)

Material derivative of the surface differential element Let Sp be a material (in the sense of (1))

surface, and denote by (a, b) a pair of material vectors attached to a material point y = Φ(Y ;p), chosen

so as to be unitary and orthogonal at a fixed value p0 of p and to belong to the tangent plane at y to Sp

for all p in a neighbourhood of p0. For any such p, the unit normal to Sp at y is thus given by

n(y;p) =
1

‖ a ∧ b ‖
(a ∧ b)

Moreover, the surface differential element dS at y is proportional to the norm ‖ a ∧ b ‖, so that:
?

d̂S=‖ a ∧ b ‖? dS (6)

The material derivative of the vector product a ∧ b is then taken for the particular value p0 of p, using

(5):

(a ∧ b)? = (∇θ.a) ∧ b + a ∧ (∇θ.b)

= [(∇θ)aa + (∇θ)bb]n− (∇θ)naa− (∇θ)nbb

= (divSθ)n− n.∇Sθ

where the fact that (a, b,n) is an orthonormal vector frame at p = p0 has been used. The surface gradient

∇S and divergence divS are defined by:

∇Sf = ∇f − (∇f.n)n = (f,i − nif,n)ei ≡ (Dif)ei (7)

divSu = divu− (∇u.n).n = Diui (8)

Moreover, one has:

‖ a ∧ b ‖?=
a ∧ b

‖ a ∧ b ‖
.(a ∧ b)? = n.(a ∧ b)? = divSθ

As a result, the material derivatives of n and dS at y ∈ Sp are given by:

?

dS= divSθ dS = Drθr dS
?

n= −n.∇Sθ = −nrDjθrej (9)

Material derivative of surface integrals The material derivative of an integral J(p) over a varying

surface:

J(p) =
∫

Sp

f(y, p)dSp

is given, using (9), by the following classical formula:

d

dp
J(p) =

?

J=
∫

Sp

{
?

f dS + f
?

d̂S

}
=

∫
Sp

{ ?

f +fdivSθ
}

dS (10)

Indeed
?

J could be expressed in several other ways (see Petryk and Mroz [15]), but the above formula

serves the purpose of the present paper.



2.2 Second-order material derivative

In order to consider mixed second-order derivatives w.r.t. two design parameters, attention can be

restricted to a generic pair p1, p2 of shape parameters without loss of generality. The transformation

velocities θ and µ, as given by (2) for p = p1 and p = p2 respectively, are introduced, together with the

second transformation derivative χ:

χ(y;p) = Φ,p1p2(Y ;p) for y = Φ(Y ;p) (11)

Moreover, the following property holds:

χ(y;p) =
?

µ (y;p) =
∨

θ(y;p) (12)

Let f(y;p) be a sufficiently regular (scalar or tensor) field, then we denote by
?

f,
∨

f the two distinct

material derivatives of f w.r.t. p1 and p2 respectively and by
?∨

f the second-order material derivative:

?∨

f (y;p) = g,p1p2(Y ;p) g(Y ;p) = f(Φ(Y ;p);p) (13)

With the above definition, the equality
?∨

f = (
?

f)∨ = (
∨

f )? holds, so that
?∨

f results from two successive

applications of (3).

Second-order material derivative of surface integrals. According to those definitions, the second-

order material derivative of the surface integral

J(p) =
∫

Sp

f(y;p) dS

considered as a function of p results from a further application of formula (10) (w.r.t. p2) to the material

derivative
?

J as given by (10):

?∨

J (p) = (
?

J)∨(p) = (
∨

J)?(p) =
∫

Sp

[
?∨

f +
?

f divSµ+
∨

fdivSθ + f(divSθ)∨ + fdivSθdivSµ

]
dS (14)

where
∨

d̂ivSθ is given (formula (68) of Appendix A.2) by :

∨

d̂ivSθ =
∨

D̂rθr = divSχ−∇Sθ : ∇Sµ + (n.∇Sθ).(n.∇Sµ) (15)

2.3 Comments about the concept of second-order material derivative

One has in fact to be very careful in defining a second-order material derivative. For example, one could

find natural to consider the action of two successive domain transformations, each associated with a scalar

shape paremeter p1, p2:

Y → z = Φ(Y , p1) → y = Ψ(z, p2)

with transformation velocities θ,µ associated respectively to Φ,Ψ according to (2). Then, a differenti-

ation in the transformation Φ followed by a differentiation of the result in the transformation Ψ would

in general give
∨

θ 6= ?

µ,
?∨

f 6=
∨?

f ,
?∨

J 6=
∨?

J . Thus such approach, although natural-looking, could prove to be



inadequate. This peculiarity is related to the fact that in general the compositions of two geometrical

transformations do not commute:

Ψ(Φ(Y , p1), p2) 6= Φ(Ψ(Y , p2), p1)

The presentation adopted for the present work is unambiguous in this respect since it defines material

derivatives using functions of a finite number of variables p; it is design variable-oriented in that it allows

to deal with second derivatives of integrals on domains depending simultaneously on a finite number of

parameters (the design variables).

Material derivative vs. domain derivative In an alternative approach, mathematically more so-

phisticated, to the concept of shape sensitivity, the domain derivative DJ (Simon [19]) of a domain-

dependent functional J(Ω) is introduced. In this framework, (small) perturbations θ of the domain Ω

itself are considered without reference to any finite set of parameters p:

y ∈ Ω → y + δy ∈ Ω + δΩ δy = θ(y)

where θ belong to an infinite-dimensional function space V. Then DJ is the linear operator over θ such

that:

〈DJ(Ω),θ〉 = J(Ω + θ)− J(Ω) + o(|θ|V) (16)

Not surprisingly, it turns out that expression (10), which is established for surfaces moving according

to (1), i.e. for surface integrals ultimately depending on a single parameter p, is identical for a small

variation θ of Ω to the directional derivative 〈DJ(Ω),θ〉 of J :

J(Ω + θdp)− J(Ω) =
?

J dp + o(|θ|V)

However, the two approaches are somewhat divergent at the second-order level. The second-order

domain derivative D2J(Ω) (Simon [19]), based on domain perturbations of the form:

y ∈ Ω → y + θ(y) + µ(y)

is accordingly defined as a bilinear form over the functional arguments θ,µ such that:

D2J(Ω)(θ,µ) = J(Ω + (θ + µ))− J(Ω)−
?

J (Ω;θ)−
∨

J(Ω; µ) + o(|θ|2V , |µ|2V) (17)

with θ,µ small, according to the general definition of the second-order variation of a functional. In

contrast, the present definition (14) relies on domain perturbations of the form:

y ∈ Ωp → y + θ(y;p)δp1 + µ(y;p)δp2 +
1
2
χ(y;p)δp1δp2

Hence the present second-order material derivative does not in general coincide with Simon’s second

domain derivative, except for the special case of transformations such that χ = 0. Also, note that since

Ω + (θ + µ) 6= (Ω + θ) + µ), the definition (17) does not result from two successive first-order domain

differentiations.



3 First- and second-order elastic shape sensitivity formulation

3.1 Governing regularized elastic BIE

Any elastostatic state on a given three-dimensional body Ω with zero body forces is governed by the

following regularized displacement boundary integral equation (RDBIE) (see Rizzo and Shippy [16], Bui

et al. [6]):

κuk(x) +
∫

∂Ω

[ui(y)− ui(x)]nj(y)Σk
ij(x,y) dSy −

∫
∂Ω

ti(y)Uk
i (x,y) dSy (18)

or, introducing for later convenience an abbreviated form:

I1(x,u)− I2(x, t) = 0 (19)

in terms of the displacement field u, the traction vector t = T n(u) ≡ σ(u).n associated with the elastic

stress σ, the Kelvin infinite-space fundamental displacement components

Uk
i (x,y) = − 1

16πµ(1− ν)r
[(3− 4ν)δik + r,ir,k] (20)

created at y ∈ R3 by a unit point force applied at x (the collocation point) along the ek-direction, the

Kelvin elastic stress tensor

Σk
ij(x,y) = − 1

8π(1− ν)r2
[(1− 2ν)(δikr,j + δskr,i − δijr,k) + 3r,isk] (21)

Also, r =‖ y − x ‖ is the Euclidian distance between y,x, µ, ν are the shear modulus and the Poisson

ratio, and κ = 0 (Ω bounded) or κ = 1 (R3 − Ω bounded); (),i denotes a partial derivative with respect

to yi. The Kelvin solutions possess the following well-known property:

Uk
i (x,y) = Uk

i (y − x) Σk
ij(x,y) = Σk

ij(y − x) (22)

The RDBIE (18) holds for any collocation point x ∈ R3. The pair of primary variables (u, t) |∂Ω is

termed “elastostatic state on Ω” in the sequel. The mathematical validity of (19) rests upon a Hölder

continuity requirement for the displacement u at x:

∃C > 0, ∃α ∈]0, 1] such that ‖ u(y) − u(x) ‖≤ C ‖ y − x ‖α (23)

which ensures the effectiveness of the regularizing effect of the term [u(y)−u(x)] in (18) (or equivalently

the existence of the CPV integral in the strongly singular version of (18)).

3.2 First-order sensitivity formulation

Elastic shape sensitivities. A small perturbation of the domain Ωp associated to a small increment

dp of a typical design parameter p induces a perturbation of the elastostatic state (u, t), which may be

expressed in terms of the first-order material derivatives
?

u,
?

t:

δu =
?

u dp + o(dp) δt =
?

t dp + o(dp)



This idea is consistent with the present BIE framework: the boundary ∂Ωp of a material domain Ωp is

itself material, hence (
?

u,
?

t) |∂Ωp
are completely determined by the knowledge of (u, t) |∂Ωp+dp

for the

neighbouring perturbed boundary configurations: the material derivatives (
?

u,
?

t) |∂Ωp
are taken while

“staying on the moving boundary”. Since the RDBIE (19) holds for any elastostatic state defined on Ωp

for any p, taking its material derivative using formula (10) leads to a governing equation for (
?

u,
?

t).

This operation is now carried out, with the assumption that the collocation point x also follows the

material transformation (1). First, a direct application of formula (10) to the integral operators I1, I2

gives :

?

I1 (x) = I1(x,
?

u) + J1(x,u;θ) (24)
?

I2 (x, t) = I2(x,
?

t) + J2(x, t;θ) (25)

with

J1(x,u;θ) =
∫

∂Ω

[ui(y)− ui(x)]
{

?

nj (y)Σk
ij(x,y) + nj(y)

?

Σ
k

ij (x,y)
}

dSy

+
∫

∂Ω

[ui(y)− ui(x)]Σk
ij(x,y)nj(y)Drθr(y) dSy (26)

J2(x, t;θ) =
∫

∂Ω

ti(y)
{

?

U
k

i (x,y) + Uk
i (x,y)Drθr(y)

}
dSy (27)

where, as a consequence of (22), the material derivatives of Uk
i ,Σk

ij are given by :

?

Σ
k

ij (x,y) = [θr(y)
∂

∂yr
+ θr(x)

∂

∂xr
]Σk

ij(x,y) = [θr(y)− θr(x)]Σk
ij,r(x,y) (28)

?

U
k

i (x,y) = [θr(y)
∂

∂yr
+ θr(x)

∂

∂xr
]Uk

i (x,y) = [θr(y)− θr(x)]Uk
i,r(x,y) (29)

Next, taking (28) together with identities (9) into account in (26), one obtains:

J1(x,u;θ) =
∫

∂Ω

[ui(y)− ui(x)][θr(y)− θr(x)]nj(y)Σk
ij,r(x,y) dSy

−
∫

∂Ω

[ui(y)− ui(x)]Σk
ij(x,y) {nr(y)Djθr(y)− nj(y)Drθr(y)} dSy

=
∫

∂Ω

[ui(y)− ui(x)][θr(y)− θr(x)]nj(y)Σk
ij,r(x,y) dSy

−
∫

∂Ω

[ui(y)− ui(x)]Σk
ij(x,y)Drjθr(y) dSy (30)

where the tangential differential operator Drj is defined as:

Drjf = nrDjf − njDrf = nrf,j − njf,r = ersjeabjnaf,b (31)

Once the assumption u ∈ C0,α is made, the mathematical validity of expression (30) for J1(x,u;θ) relies

upon the following additional requirement:

∃C > 0 such that ‖ θ(y)− θ(x) ‖≤ C ‖ y − x ‖ (32)

Note that (32) does not require θ to be C1-continuous at x; for instance the appearance of an edge out

of an initially smooth ∂Ω is allowed.



Finally, it is convenient to rearrange expression (30) for J1(x,u;θ) further. To this end, one notes

the following variant of Stokes’ formula:∫
S

Drjf dS = ersj

∫
S

eabjnaf,b dS = 0

which is valid for the case of a piecewise regular closed surface S and provided f is continuous at the

edges of S, if any. Then the following integration by parts pattern holds:∫
∂Ω

[ui(y)− ui(x)][θr(y)− θr(x)]nj(y)Σk
ij,r(x,y) dSy

= −
∫

∂Ω

[ui(y)− ui(x)][θr(y)− θr(x)]
{
DrjΣk

ij(x,y) + nr(y)Σk
ij,j(x,y)

}
dSy

= −
∫

∂Ω

[ui(y)− ui(x)][θr(y)− θr(x)]DrjΣk
ij(x,y) dSy

=
∫

∂Ω

Drj{[ui(y)− ui(x)][θr(y)− θr(x)]}Σk
ij(x,y) dSy (33)

the differential operator Drj being understood as acting on the variable y. Use has been made of the

equilibrium equation Σk
ij,j = 0 (y 6= x). Then, due to (33) and

Drj {[ui(y)− ui(x)][θr(y)− θr(x)]} − [ui(y)− ui(x)]Drjθr(y) = [θr(y)− θr(x)]Drjui(y)

one obtains an alternative expression for J1(x) as follows :

J1(x,u;θ) =
∫

∂Ω

[θr(y)− θr(x)]Drjui(y)Σk
ij(x,y) dSy (34)

which is more compact than, and should be used instead of, (30) in BE implementations.

First-order sensitivity formulation. The previous calculations lead to the main result of this section,

which states that the material derivatives
?

u,
?

t associated with any elastostatic state (u, t) on Ω = Ωp are

governed by the following boundary integral equation (“(first-order) rate BIE”), in abbreviated form:

I1(x,
?

u)− I2(x,
?

t) = −J1(x,u;θ) + J2(x, t;θ) (35)

where J1, J2 are given by eqns. (34), (27). This result holds for any collocation point x ∈ R3, hence it

defines an integral equation (if x is chosen on the boundary ∂Ωp) or an integral representation of
?

u (x;p)

(if x is chosen interior to Ωp). Its right-hand side is an explicit linear expression of the transformation

velocity θ. The BIE (35) is weakly singular provided u and θ meet the requirements (23), (32) respectively.

This is also true for all intermediate calculations used for the derivation of (35).

3.3 Shape sensitivity of stress at a regular boundary point

Using (4), one has:
?

σ (u) = (C : ∇u)? = σ(
?

u)−C : (∇u.∇θ) (36)

where Cabcd = µ[γδabδcd + δacδbd + δadδbc] are the coefficients of Hooke’s elastic tensor (γ = 2ν/(1− 2ν)).

One approach for the evaluation of
?

σ, along the lines given in [21] for 2D problems, needs that of ∇u



and ∇ ?

u in terms of the boundary variables u, t,
?

u,
?

t. To this end one makes use of the decomposition

∇v = ∇Sv + v,n ⊗ n and is left to express u,n,
?

u,n in terms of t,
?

t. First

t = µ

[
2ν

1− 2ν
(div u)n + u,n + n.∇u

]
= µ

[
2ν

1− 2ν
(divSu)n + n.∇Su +

(
1

1− 2ν
n⊗ n + I

)
.un

]
which can be inverted to yield:

u,n =
1
µ

[
I − 1

2(1− ν)
n⊗ n

]
.t− n.∇Su− ν

1− ν
(divSu)n (37)

At this stage, the complete tensors ∇u(x) and σ(x) are accessible from boundary data u, t.

Next, the material derivative
?

n (9) can be reformulated using eqns. (7-8) as:

?

n= (n.θ,n)n− n.∇θ = (divθ − divSθ)n− n.∇θ

This, combined with (36), gives the following relationship

?

t=
?

σ̂(u).n= T n(
?

u)−A.n− (divSθ)t (38)

where

A = C : (∇u.∇θ)− σ(u)div θ + σ(u).(∇θ)T (39)

Finally, one notices that identity (37) also holds for u, t replaced with
?

u,T n(
?

u). This fact together with

eqn. (38) yields the expression of
?

u,n in terms of ∇S
?

u,
?

t, which in turn gives ∇ ?

u in terms of the

boundary variables ∇S
?

u,
?

t. Equation (36) is then applicable to compute the sensitivity of stress once

the elastic and rate BIEs are solved.

Material differentiation of the stress boundary integral representation An alternative ap-

proach is to start from the regularized integral representation of ∇u(x), which reads (Bonnet and Bui

[5]):

(
1
2
− κ)ui,k(x) =

∫
∂Ω

{
[Drjui(y)−Drjui(x)] Σk

ij(x,y)− [ti(y)− ti(x)]Uk
i,r(x,y)

}
dSy

+ Drjui(x)Ak
ij(x, ∂Ω)− ti(x)Bk

ir(x, ∂Ω) (40)

where Ak
ij(x, ∂Ω), Bk

ir(x, ∂Ω) denote regularized expressions for the integrals of Uk
i,r,Σ

k
ij over ∂Ω:

Ak
ij(x, ∂Ω) = − 1

8π(1− ν)
[(1− 2ν)[δikIj(x, ∂Ω) + δskIi(x, ∂Ω)− δijIk(x, ∂Ω)] + Jijk(x, ∂Ω)]

Bk
ir(x, ∂Ω) = − 1

16πµ(1− ν)
[(3− 4ν)δikIr(x, ∂Ω) + Jikr(x, ∂Ω)− δrkIi(x, ∂Ω)− δirIk(x, ∂Ω)]

with

Ia(x, ∂Ω) =
∫

∂Ω

(
1
r
r,n −Dqnq

)
na

dS

r

Jabc(x, ∂Ω) = δacIb(x, ∂Ω) + δbcIa(x, ∂Ω) +
∫

∂Ω

(r,br,qDqanc −Da(nbnc)−Db(nanc))
dS

r

+
∫

∂Ω

(2nanb − r,ar,b)ncDqnq
dS

r
+

∫
∂Ω

ncr,n(δab − 2nanb)
dS

r2



Then a crucial step for the evaluation of
?

σ as given by (36) is a material differentiation of the representa-

tion formula (40). This operation does not raise any conceptual difficulty, all the integrals being weakly

singular. However, the derivation is somewhat tedious and the numerical evaluation of the resulting

lengthy expression is expected to be time-consuming. At the same time, it is not clear whether this

procedure leads to an improvement of accuracy for the stress sensitivity evaluation at boundary points,

compared to the simpler method outlined in eqns. (37) to (39). This approach is developed in [1] but

starting from a strongly singular version of (40).

3.4 Interpretation of the rate BIE as an elasticity problem

Let expression (38) for
?

t be inserted into the derivative
?

I2, eqn. (25), which gives:

?

I2 (x, t;θ) =
∫

∂Ω

[T n(
?

u)]i(y)Uk
i (x,y) dSy

+
∫

∂Ω

{
ti(y)[θr(y)− θr(x)]Uk

i,r(x,y)−Aij(y)nj(y)Uk
i (x,y)

}
dSy (41)

where the Aij(y) are the coefficients of the tensor A defined by (39). Then an analytical transformation,

given in the Appendix A.1, shows that:∫
∂Ω

Aij(y)nj(y)Uk
i (x,y) dSy

=
∫

Ω

Uk
i (x,y)Aij,j(y) dVy +

∫
∂Ω

ti(y)[θr(y)− θr(x)]Uk
i,r(x,y) dSy

−
∫

∂Ω

[θr(y)− θr(x)]Σk
ij(x,y)Drjui(y) dSy (42)

On account of the last two equations, the rate BIE (35) can be reformulated as a RDBIE on the boundary

variables
?

u,T n(
?

u)) considered as an elastostatic state with nonzero body forces per unit volume given

by F (y) = −div A(y):

I2(x,T n(
?

u))− I1(x,
?

u) = −
∫

Ω

Uk
i (x,y)Aij,j(y) dVy (43)

This result gives some understanding about the nature and structure of the rate BIE (35). Its right-hand

side is seen to be related to a domain integral of the body-force kind (and more precisely of the initial-

stress kind) which, in this particular instance, is analytically convertible into boundary integrals. More

generally, the BIE (35) is related to an elastostatic boundary-value problem. This could have been shown

using different means, e.g. a material derivative of a displacement-based variational formulation for the

elasticity problem.

3.5 Second-order sensitivity formulation

The governing BIE over the second-order shape sensitivities of an elastostatic state is sought as the result

of two successive application of the material derivative (with respect first to p1, then to p2) to the elastic

RDBIE (19). This reduces to taking the material derivative w.r.t. p2 of the first-order rate BIE (35),

which holds true for any domain Ωp, any elastostatic state (u, t) and any first-order sensitivity pair (
?

u,
?

t)

on Ωp.



Material derivative of the left-hand side of (35). The formal derivation used in the previous sec-

tion to establish (35) from (19) is applicable to this step without modification except for the replacement

of (u, t) with (
?

u,
?

t), and gives as a result:{
I1(x,

?

u)− I2(x,
?

t)
}∨

= I1(x,
?∨
u) + J1(x,

?

u;µ)− I2(x,
?∨
t )− J2(x,

?

t;µ) (44)

Material derivative of the right-hand side of (35). Application of formula (10) to J2(x, t;θ) given

by (27) gives, taking into account identity (15) :

∨

J2(x, t;θ) = J2(x,
∨
t;θ) + J2(x, t;χ) + K2(x, t;θ,µ) (45)

where

K2(x, t;θ,µ) =
∫

∂Ω

ti(y)Uk
i,qr(x,y)[θr(y)− θr(x)][µq(y)− µq(x)] dSy

+
∫

∂Ω

ti(y)Uk
i,r(x,y) {[θr(y)− θr(x)]Dqµq(y) + [µr(y)− µr(x)]Dqθq(y)} dSy

+
∫

∂Ω

ti(y)Uk
i (x,y) {npnrDqµpDqθr −DrµqDqθr + DrθrDqµq} (y) dSy (46)

Likewise, the material derivative of integral J1(x,u;θ) is given by :

∨

J1(x,u;θ) = J1(x,u;χ) +
∫

∂Ω

[θr(y)− θr(x)]Σk
ij(x,y){

∨

D̂rjui(y) + Drjui(y)Dqµq(y)}dSy

+
∫

∂Ω

[θr(y)− θr(x)][µq(y)− µq(x)]Σk
ij,q(x,y)Drjui(y) dSy

Using eqn. (66) of Appendix A.2 for
∨

D̂rjui, one obtains :

∨

J1(x,u;θ) = J1(x,u;χ) + J1(x,
∨
u;θ) + K1(x,u;θ,µ) (47)

where

K1(x,u;θ,µ) =
∫

∂Ω

[θr(y)− θr(x)]
{
[µq(y)− µq(x)]Σk

ij,q(x,y) + Dqµq(y)Σk
ij(x,y)

}
Drjui(y) dSy

+
∫

∂Ω

[θr(y)− θr(x)] {Djµq(y)Dqrui(y) + Drµq(y)Dsqui(y)}Σk
ij(x,y) dSy (48)

Second-order shape sensitivity formulation. The previous derivations lead to the main result

of this section, which states that the second-order material derivatives (
?∨
u ,

?∨
t ) associated with any

geometrical transformation Φ(·;p) and any elastostatic state u, t on the domain Ω = Ωp are governed

by the following boundary integral equation (“second-order rate BIE”):

I1(x,
?∨
u)− I2(x,

?∨
t ) = J2(x,

?

t;µ) + J2(x,
∨
t;θ)− J1(x,

?

u;µ)− J1(x,
∨
u;θ)

+ J2(x, t;χ)− J1(x,u;χ) + K2(x, t;θ,µ)−K1(x,u;θ,µ) (49)

where J1, J2,K1,K2 are given by eqns. (34), (27), (46) and (48) respectively. This result holds true for

any collocation point x ∈ R3, hence it defines an integral equation (if x is chosen on the boundary ∂Ωp)

or an integral representation of
?∨
u(x;p) (if x is chosen interior to Ωp). The BIE (49) is weakly singular

provided u and the pair (θ,µ) meet the requirements (23), (32) respectively. This is also true for all

intermediate steps used for the derivation of (49).



Symmetry of the second-order rate BIE. The right-hand side of (49) is symmetric with respect

to (θ,µ), due to what follows. First, the symmetric character w.r.t. (θ,µ) of J2(x,
∨
t ;θ) + J2(x,

?

t

;µ)−J1(x,
?

u;µ)−J1(x,
∨
u;θ) is clearly visible from eqns. (34-27). Then K2(x,u;θ,µ) is also symmetric

in view of eqn. (46). Next, the symmetric character w.r.t. (θ,µ) of J2(x, t;χ)− J1(x,u;χ) stems from

the property (12) of χ. Finally, the symmetric character of K1(x,u;θ,µ), which is not apparent in eqn.

(48), is established in Appendix A.3.

It is worth mentioning that such symmetry considerations are of primary importance in contexts

such as stability/bifurcation analysis of e.g. crack fronts using second-order shape sensitivities (see e.g.

Nguyen [13]).

3.6 Comments about the sensitivity BIE formulations

The first-order rate BIE (35) does not define, for a given transformation velocity θ, a unique pair (
?

u,
?

t).

In order to do so, one has in addition to specify how the boundary conditions associated with the elastic

problem evolve with Ωp. It is simplest to assume that the transformation Φ(·;p) which describes a

given change of domain is chosen so that (say) the Dirichlet and Neumann parts of ∂Ωp are respectively

transformed into the Dirichlet and Neumann parts of ∂Ωp+dp, in which case u,
?

u and t,
?

t are unknown

(resp. known) over the same portions of the boundary. Then (
?

u,
?

t) are linear forms over θ, provided

their prescribed parts are themselves linear forms over θ. Also, the second-order rate BIE (49) does not

define, for given θ,µ,χ, a unique pair (
?∨
u,

?∨
t ).

As a consequence of comments made in †2.3, the first-order rate BIE (35), defined for bodies dependent

on a finite number of shape parameters, can indeed be considered as the governing BIE for elastic shape

sensitivities in an infinitesimal change of boundary θ, without reference to shape parameters. On the

contrary, such interpretation regarding the second-order rate BIE (49) has to be made with much more

caution, due to the significant differences between second-order material derivatives and the domain

derivative, which we outlined in †2.3.

The pairs (u, t) in the elastic BIE (19), (
?

u,
?

t) in the first-order rate BIE (35) and (
?∨
u,

?∨
t ) in the second-

order rate BIE (49) are governed by the same integral operators. More precisely, if Φ(·;p) is chosen as

previously suggested, the components of (u, t) which are not prescribed by the boundary conditions,

those of (
?

u,
?

t) and those of (
?∨
u,

?∨
t ) are governed by the same integral operator. This is of great practical

importance, in a computational viewpoint: the discretized integral operator is built and factored in the

course of a boundary element solution to (19) and later reused for the numerical solution of the rate BIEs

(35), (DRDD). Thus, the complete set of first- and second-order boundary sensitivities is computable by

building the right-hand side of (35) for each pi, i.e. each θ, considered in the first-order case and then of

(49) for each pair (pi, pj), i ≤ j, i.e. each (θ,µ), in the second-order case, then solving as many triangular

systems as right-hand sides so constructed. Hence it is achievable at an additional computational cost

which is reasonable compared to that necessary to solve the elastic BIE.



4 BEM discretization

This section shortly discusses some relevant aspects to the BE discretization of BIEs (19), (35), (49).

4.1 Geometrical modelling in the presence of design variables.

We consider the usual BE discretization of ∂Ω, in which the approximate surface on a given boundary

element E is created by interpolation of N nodes yk (1 ≤ k ≤ N) (which usually belong to the true

boundary) using a mapping of E onto a reference element E0 (usually the square ξ = (ξ1, ξ2) ∈ [−1, 1]2

or the triangle 0 ≤ ξ1 + ξ2 ≤ 1) and shape functions Nk(ξ):

y =
N∑

k=1

Nk(ξ)yk (ξ ∈ E0) (50)

Let us also assume an isoparametric discretization for the elastic boundary fields in terms of nodal values

uk, tk:

[u, t](y) =
N∑

k=1

Nk(ξ)[uk, tk] (ξ ∈ E0) (51)

In the presence of a varying boundary (which depends on, say, two parameters p1, p2), it is then consis-

tent with the interpolation approach to simply use (50) with nodes following moving according to the

geometrical transformation:

yk(p) = Φ(Y k;p)

In this case, considering two generic shape parameters p1, p2, the discretized transformation velocities

θ,µ,χ associated with (50) admits a BE-type interpolation (51), with nodal values yk
,p1

,yk
,p2

,yk
,p1p2

respectively. Such interpolation method is consistent with the requirement (32).

4.2 Structure of the discrete linear system.

The discretization of BIEs (19), (35), (49) leads to linear systems of the form:

[A] {u}+ [B]{t} = {0}

[A] { ?

u}+ [B]{
?

t} = {f1(u, t;θ)}

[A] {?∨
u}+ [B]{

?∨
t } = {f2(u, t,

?

u,
?

t;θ,µ,χ)}

which, as has been previously noticed, share the same governing (discrete) operators [A], [B]. After

appropriate column switches, one gets linear systems of equations on the unknown parts v,
?

v,
?∨
v of the

elastostatic state and its sensitivities:

[K] {v} = {g0}

[K] { ?

v} = {g1(v;θ)}

[K] {?∨
v} = {g2(v,

?

v;θ,µ,χ)}



These systems are governed by the same (discrete) operator [K]. However for this to be true the analytical

description of the geometric transformation must be chosen so as the Dirichlet and Neumann parts of ∂Ω

are material surfaces.

4.3 Discretization of tangential differential operators

The first- and second-order rate BIEs (35), (49) make use of various tangential differential operators,

for which BE implementation-oriented expressions are given below. First, the natural basis (aα), metric

tensor (gαβ), jacobian J(ξ) and unit normal n on E associated with interpolation (50) are given by:

aα(ξ) =
N∑

k=1

Nk
,α(ξ)yk gαβ(ξ) = aα(ξ) · aβ(ξ)

dS = J(ξ) dξ = [(g11g22 − g2
12)(ξ)]1/2 dξ J(ξ)n(ξ) = a1 ∧ a2

Then from classical differential geometry the surface gradient ∇Sf of a scalar function expressed in terms

of the variable ξ ∈ E0 is given by:

∇Sf = (Drf)er with Drf = f,αgαβ(aβ.er) (f,α ≡ ∂f

∂ξα
) (52)

using the contravariant representation of g, i.e. gαγgγβ = δα
β . This also holds for the components of

vector or tensor fields, provided they are expressed in cartesian coordinates. One can then establish from

(52) the following formulae:

Drur = ur,αgαβ(aβ.er) (53)

Drjf dSy = εirj [f,1(a2.ei)− f,2(a1.ei)] dξ (54)

Eqns. (52-53-54) allow the discretisation of surface divergence and other tangential differential operators

which appear in the BIEs (35) and (49).

4.4 Numerical evaluation of singular integrals in RDBIE

Singular integrals occur if E contains the collocation point x. A typical singular integral appearing in

(49) is:

Is =
∫

E

[θr(y)− θr(x)][µq(y)− µq(x)]Σk
ij,q(x,y)Drjui dSy (55)

Let η = (η1, η2) denote the antecedent of x on E0. For any usual shape function N(ξ), one can define

auxiliary functions N I
α such that:

N(ξ) = N(η) + (ξα − ηα)N I
α(ξ;η) (56)

Following a common practice in BEM (see e.g. [17]), set ξ1 = ρ cos α, ξ2 = ρ sinα. Then dξ = ρdρdα

and, from (56):

N(ξ)−N(η) = ρM̂q(ρ, α;η) with M̂q(ρ, α;η) = cos αN I
1 (ξ;η) + sinαN I

2 (ξ;η) (57)



so that one has from (50):

r =‖ x − y ‖=‖
N∑

k=1

ρN̂k(ρ, α;η)yk ‖≡ ρr̂(ρ, α;η) (58)

where r̂(ρ, α;η) 6= 0. Consequently, since the derivatives of Σk(x,y) behave like r−3:

Σk
ij,q(x,y) =

1
ρ3

Σ̂k
ij,q(ρ, α;η) (59)

where r̂(ρ, α;η) 6= 0 and Σ̂k
ij,q(ρ, α;η) is regular at ρ = 0. Also, from (51), one can put

θ(y)− θ(x) = ρ
N∑

k=1

yk
,p1

N̂k(ρ, α;η) (60)

and similar expressions for [µ(y)−µ(x)],. . . Using these definitions, integral (55) is recast in a completely

regular form as:

Is =
N∑

k=1

N∑
`=1

yk
r,p1

y`
q,p2

∫
E

N̂k(ρ, α;η)N̂ `(ρ, α;η)Σ̂k
ij,q(ρ, α;η)DrjuiJ(ξ)dρdα (61)

where the discretization of Drjui is not shown for brevity. Expression (61) takes full advantage of

the regularization; its numerical evaluation of (61) can be performed with standard product Gaussian

quadrature formulas, the complete procedure requiring a further coordinate change (ρ, α) → (v1, v2) in

order to recover an integral over the square [−1, 1]2.
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[7] Burczyński, T., Fedelinski, P. Boundary elements in shape design sensitivity analysis and

optimal design of vibrating structures. Engng. Anal. with Bound. Elem., 9, 195–201 (1992).

[8] Choi, J. O., Kwak, B. M. Boundary Integral Equation Method for Shape Optimization of Elastic

Structures. Int. J. Num. Meth. in Eng., 26, 1579–1595 (1988).

[9] Haug, E. J., Choi, K. K., Komkov, V. Design Sensitivity Analysis of Structural Systems.

Academic Press (1986).

[10] Kane, J. H., Zhao, G., Wang, H., Guru Prasad, K. Boundary formulations for three-dimen-

sional continuum structural shape sensitivity analysis. ASME J. Appl. Mech., 59, 827–834 (1992).

[11] Meric, R. A. Shape optimization of thermoelastic solids. J. Therm. Sc., 11, 187–206 (1988).

[12] Mukherjee, S., Chandra, A. A boundary element formulation for design sensitivities in problems

involving both geometric and material nonlinearities. Mathl. Comput. Modelling., 15, 245–255 (1991).

[13] Nguyen, Q. S. Bifurcation and stability in dissipative media (plasticity, friction, fracture). Appl.

Mech. Rev., 47, 1–31 (1994).

[14] Nishimura, N, Kobayashi, S. A boundary integral equation method for an inverse problem related

to crack detection. Int. J. Num. Meth. in Eng., 32, 1371–1387 (1991).
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A Appendix

A.1 Proof of identity (42)

It relies on a series of integrations by parts. First, the classical divergence-flux formula gives:∫
∂Ω

Aij(y)nj(y)Uk
i (x,y) dSy =

∫
Ω

Uk
i (x,y)Aij,j(y) dVy +

∫
Ω

Uk
i,j(x,y)Aij(y) dVy (62)

Now, using the definition (39) of A, the second integral above reads:

I =
∫

Ω

Uk
i,j {Cijpq(up,rθr,q − up,qθr,r) + σirθjr} dV

=
∫

Ω

{
Σk

ij(ui,rθr,j − ui,jθr,r) + Uk
i,jσirθs,r

}
dV (63)

(the arguments x,y being omitted for brevity). Next, one notes the following consequence of the classical

divergence-flux formula:∫
Ω

(fg,rh,j − fg,jh,r) dV =
∫

Ω

(gh,rf,j − gh,jf,r) dV +
∫

∂Ω

fgDrjh dS

which gives, noting for regularisation purposes that θr,j(y) = [θr(y)− θr(x)],j holds:∫
Ω

Σk
ij(ui,rθr,j − ui,jθr,r) dV

= −
∫

∂Ω

Drjui[θr(y)− θr(x)]Σk
ij dS +

∫
Ω

[θr(y)− θr(x)]
{
Σk

ij,rui,j − Σk
ij,jui,r

}
dV

= −
∫

∂Ω

Drjui[θr(y)− θr(x)]Σk
ij dS +

∫
Ω

[θr(y)− θr(x)]Σk
ij,rui,j dV (64)

where use has been made of the equilibrium equation Σk
ij,j = 0 (y 6= x). Besides, one notes that:∫

Ω

Uk
i,jσirθs,r dV =

∫
∂Ω

Uk
i,j [θj(y)− θj(x)]σirnr dS −

∫
Ω

Uk
i,rjσir[θj(y)− θj(x)] dV

=
∫

∂Ω

Uk
i,j [θj(y)− θj(x)]tiθj dS −

∫
Ω

Σk
ir,jui,r[θj(y)− θj(x)] dV (65)

Finally, eqns. (64-65) imply that the integral I (63) can be expressed as:

I =
∫

∂Ω

ti(y)[θr(y)− θr(x)]Uk
i,r(x,y) dSy −

∫
∂Ω

[θr(y)− θr(x)Σk
ij(x,y)Drjui(y) dSy

which, in view of (62), finally proves the identity (42).

A.2 Expressions for
?

D̂rjui,
?

D̂rui,
?

D̂rθr

Starting from the definition

Drjui = nrui,j − njui,r



and using equations (4), (9), one has:
?

D̂rjui = nr(
?

ui,j −ui,qθq,j)− nqDrθqui,j − ns(
?

ui,r −ui,qθq,r) + nqDjθqui,r

= Drj
?

ui −ui,qDrjθq + nqDjθqui,r − nqDrθqui,j

= Drj
?

ui −ui,qDrjθq + ui,qDrjθq + DjθqDqrui + DrθqDsqui

= Drj
?

ui +DjθqDqrui + DrθqDsqui (66)

Next, one notes that:

−njDrjui = nj(njDrui − nrDrui) = Drui

since n.∇Su = 0 by virtue of definition (7). Hence, one can combine eqns. (9) and (66) to get:
?

D̂rui = − nj

?

D̂rjui −
?

nj Drjui

= − nj

?

D̂rjui +nqDjθqDrjui

= Dr
?

ui −DrθqDqui + nqDjθqDrjui (67)

Finally, the above formula with u = θ, i = r and summation over r yields (note that
∨

θ = χ):
?

d̂ivSθ= divSχ−∇Sθ : ∇Sµ+
?

n .
∨
n (68)

A.3 Proof of the symmetry of K1(x, u; θ, µ)

It rests on the fact that J1(x,u;θ) admits the alternative expression (30):

J1(x,u;θ) =
∫

∂Ω

[ui(y)− ui(x)]
{
[θr(y)− θr(x)]nj(y)Σk

ij,r(x,y)−Drjθr(y)Σk
ij(x,y)

}
dSy

which was the one obtained before integration by parts. Then one may take the material derivative of I1

by applying (10) to the above expression instead of (34). On account of identities (9), (28), one has:

∨

J1(x,u;θ) =
∫

∂Ω

[
∨
ui(y)− ∨

ui(x)]
{

nj(y)
?

Σ
k

ij (x,y)−Drjθr(y)Σk
ij(x,y)

}
dSy

+
∫

∂Ω

[ui(y)− ui(x)]{[χr(y)− χr(x)]nj(y)Σk
ij,r(x,y)−

∨

D̂rjθr(y)Σk
ij(x,y)}dSy

+
∫

∂Ω

[ui(y)− ui(x)]
{

nj(y)
?∨

Σk
ij(x,y)+

?

Σ
k

ij (x,y)Dsqµq(y)−
∨

Σk
ij(x,y)Dqjθq(y)

}
dSy

−
∫

∂Ω

[ui(y)− ui(x)]Σk
ij(x,y)Drjθr(y)Dqµq(y) dSy

which, using expression (66) for
?

D̂rjui and upon some algebraic manipulations, leads to the following

result:
∨

J1(x,u;θ) = J1(x,u;χ) + J1(x,
∨
u;θ) + K1(x,u;θ,µ)

where

K1(x,u;θ,µ) =
∫

∂Ω

[ui(y)− ui(x)]
{

nj(y)
?∨

Σk
ij(x,y)+

?

Σ
k

ij (x,y)Dsqµq(y)+
∨

Σk
ij(x,y)Dsqθq(y)

}
dSy

−
∫

∂Ω

[ui(y)− ui(x)]Σk
ij(x,y)dj(y) dSy



and

dj = nr (DjθrDqµq + DjµrDqθq −DjµqDqθr −DjθqDqµr) + nj (DqθrDrµq −DrθrDqµq)

in which the symmetry of K1 with respect to (θ,µ) is now apparent. It is however preferable to use the

earlier, more compact, expression (48) of
∨

J1, for practical purposes.


