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Abstract

This paper deals with a novel approach, based on material differentiation of elastic BIE for-

mulations, for the numerical computation of the energy release rate G along a crack front in

3-D elastic fracture problems. It is based upon the definition of G in terms of the material

derivative of the potential energy at equilibrium W with respect to all possible regular virtual

crack extensions. W is formulable in terms of surface integrals; this fact in turn allows for a

boundary-only formulation of its material derivative with respect to virtual crack extensions.

The necessary step of computing the shape sensitivities of the boundary elastic variables is done

by means of a derivative BIE. The latter results from a material differentiation of the primary

elastic BIE, which is performed on a regularized (weakly singular) displacement BIE so that

the process is mathematically sound. The unknowns of both primary and derivative BIEs are

governed by the same integral operator, with obvious computational advantages. The present

approach thus does not resort to any finite-difference evaluation of derivatives with respect to

crack front perturbations.

The implementation of the present method, including the key technical step of constructing

appropriate vector interpolation functions for the transformation velocity associated with a

virtual crack extension, is discussed. Finally, in order to demonstrate the potential of the

proposed approach, numerical results are presented on two mode I examples where reference

results are available for comparison: the round bar with a circular internal crack and the semi-

elliptical surface crack, in both cases under uniform tension.

Keywords: regularized elastic BIE, material differentiation, variable domains, linear frac-

ture mechanics, virtual crack extension.



1 Introduction

One of the basic quantities involved in elastic fracture mechanics is the energy release rate G(s),

function of the arc length s along the front ∂Γ of a crack Γ:

∫

∂Γ

G(s)δℓ(s) ds = −δW (1)

where δW is the perturbation of the elastic potential energy at equilibrium W induced by a crack

front normal extension δℓ and in the absence of load variation. For two-dimensional problems,

G is the value of the well-known path-independent J integral. In linear fracture mechanics, G

is linked to the crack tip singularity of the stress field through the well-known Irwin formula [5]:

G(s) =
1 + ν

2µ

[
K2

I (s) + K2
II(s)

]
+

1

2µ
KIII(s) (2)

where KI(s),KII(s),KIII(s) are the stress intensity factors (SIFs), µ and ν being respectively

the shear modulus and Poisson ratio. Furthermore G has a clear thermodynamical meaning

(Nguyen [19]) and plays a central role for the prediction of crack extension according to Griffith-

type criterions.

Thus the consideration of perturbations of W under fictitious body changes associated to

virtual crack extensions provides a computational tool for elastic crack analysis: this is the virtual

crack extension approach. In the first numerical applications derivatives of W are evaluated using

small finite crack perturbations and finite differences (Hellen [12], Parks [21]). In later works

(Delorenzi [9], Destuynder et al. [10], Mialon [15], Ohtsuka [20]), Suo & Combescure [27] the

concept of material differentiation is applied to W ; this leads to rigorous formulations for G,

starting from variational formulations of elasticity problems. This approach, sometimes known

as the ‘θ-method’ (θ refers to the notation used in [10], [15] and herein for the transformation

velocity), has led to FEM implementations (Wadier & Malak [31]). The present paper aims at

formulating a BIE version of the θ-method.

A common factor shared by the present investigation subject and other situations where the

geometrical domain is a primary variable, like shape optimization, geometrical inverse problems

or free-boundary problems, is the presence of integral functionals being both directly (through

the geometrical support of the integral) and indirectly (through mechanical fields which solve

e.g. elastic boundary-value problems) shape-dependent, whose derivatives with respect to shape

parameters, or more abstractly their domain derivatives, are of practical interest. It is known

that finite-difference evaluations of gradients are both computationally expensive and prone

to inaccuracies due to the known mathematically ill-posed nature of this operation (Tikhonov



and Arsenin [30]). Hence it is natural to revert to analytical differentiation with respect to a

variable domain. This concept has been discussed by several authors (see e.g. Haug et al. [11],

Petryk and Mroz [22], in FEM-oriented contexts). Since in such problems the domain (and

hence its boundary) is a primary variable, it is natural to consider the use of boundary integral

formulations, which allow for the “minimal” modelling. The formulation of shape sensitivities in

a BIE context may result from either the adjoint variable approach (Aithal & Saigal [1], Bonnet

[3], Choi & Kwak [7], Meric [14]) or the direct differentiation approach (Barone & Yang [2],

Bonnet [4], Mukherjee & Chandra [16], Zhang & Mukherjee [32]).

In the present paper, the virtual crack extension approach is formulated for BIE analysis

of crack problems, using the basic concepts developed inn [10], [15]. First some basic defini-

tions and results about material differentiation are recalled. Then the definition of G, for a

three-dimensional cracked solid, is given a boundary-only reformulation; as a result, G solves

a variational equation whose right-hand side depends linearly on the transformation velocity

through the boundary shape sensitivities of elastic variables. In order to use only conventional

displacement collocation BIE formulations, the framework of multiregion modelling is used. The

formulation is general in terms of the fracture modes involved. Next, the governing BIE formula-

tion for firstorder elastic shape sensitivities, whose solution is a necessary step for the numerical

evaluation of G in the present work, is given. Then, the numerical implementation of the method

is described, and special attention is devoted to the key step of building appropriate (vector)

interpolation functions for the transformation velocity in the vicinity of the crack front. Finally,

numerical results are presented on two mode I examples where reference results are available for

comparison: the round bar with a circular internal crack and the semi-elliptical surface crack,

in both cases under uniform tension.

2 First-order material derivative of a surface integral

Let us consider, in the three-dimensional Euclidean space R
3 equipped with a Cartesian or-

thonormal basis (e1, e2, e3), a body Ωp whose shape depends on a time-like parameter p through

a continuum kinematics-type lagrangian description, with the “initial” configuration Ω0 conven-

tionally associated with p = 0:

Y ∈ Ω0 → y = Φ(Y ; p) ∈ Ωp where (∀Y ∈ Ω0) Φ(Y ; 0) = Y (3)

Throughout this paper lower-case boldface letters x,y denote geometrical points on the current

configuration Ωp. The diffeomorphism Φ(·; p), or geometrical transformation, must possess a



strictly positive Jacobian everywhere and for any p ≥ 0. A given domain evolution considered

as a whole admits many different representations (3), with different transformations Φ.

Material derivative of scalar or tensor fields. The transformation velocity θ(y; p), defined

by

θ(y; p) = Φ,p(Y ; p) for y = Φ(Y ; p) (4)

is the (Eulerian representation for the) “velocity” of the “material” point wich coincides with

the geometrical point y at “time” p.

Next, let f(y; p) denote a scalar, vector or tensor field. The material derivative
⋆
f (y; p) in

the domain transformation y = Φ(Y ; p) is defined (see e.g. Salençon [26]) as:

⋆
f (y; p) = lim

h→0

1

h
[f(Φ(Y ; p + h), p + h) − f(Φ(Y ; p), p)]

= f,p(y; p) + ∇f(y; p).θ(y; p) (5)

where ∇ denotes the gradient with respect to “Eulerian” coordinates (∇f = (f,yi
) ⊗ ei). The

material derivative of the gradient ∇f is thus given by:

(∇f)⋆ = ∇

⋆
f −∇f.∇θ (6)

It should be stressed that the thansformation Φ is used to represent a continuous change of

domain, each Ωp being the geometrical support of a boundary value problem, as opposed to

a material deformation of a given physical body; the “material” qualificative is thus only a

convenient language abuse.

Material derivative of surface integrals. As shown in Appendix A, the material derivatives

of the unit normal n and the surface differential element dS on a material surface Sp = Φ(S; p)

are given by:
⋆

dS= divSθ dS = Drθr dS
⋆
n= −n.∇Sθ = −nrDjθrej (7)

in terms of the surface gradient ∇S and the surface divergence divS :

∇Sf = ∇f − (∇f.n)n = (f,i − nif,n)ei ≡ (Dif)ei (8)

divSu = divu − (∇u.n).n = Diui (9)

Then, for a generic surface integral J(p):

J(p) =

∫

Sp

f(y, p) dSp



one has, using (7):

dJ

dp
=

⋆
J=

∫

Sp

{
⋆
f dS + f( dS)⋆

}
=

∫

Sp

{
⋆
f +fdivSθ

}
dS (10)

Indeed
⋆
J could be expressed in several other ways (see Petryk and Mroz [22]), but the above

formula serves the purpose of the present paper.

3 Formulation of the energy release rate in a BEM context

Let the body Ω be elastic (shear modulus µ, Poisson ratio ν), its external boundary being split

into ST (on which the traction vector t is given: t = tD) and Su (on which the displacement u

is given: u = uD). No body forces are present. The potential energy of Ω at elastic equilibrium

takes the value W :

W =
1

2

∫

Ω

σ(u) : ε(u) dV −
∫

ST

tD.u dS (11)

where u, ε,σ are the displacement, strain and stress fields solution to the elastic equilibrium

problem with boundary data uD, tD.

Multiregion approach for a cracked elastic solid. Now suppose that a crack Γ, with

upper and lower traction-free faces Γ± (figure 1) and unit normal n directed from Γ− to Γ+,

is embedded in Ω. In order to use only usual displacement BIE formulations, the so-called

“multiregion approach” [8] is considered: Ω is split into two subdomains Ω+,Ω− separated by

a surface S containing the crack Γ (figure 1). The cracked solid equilibrium is then formulated

in terms of two elastic problems (one for each subdomain) with the following conditions on the

external boundary:






u = uD on S±
u

t = tD on S±

T

t = 0 on Γ±

for each subdomain Ω± (12)

and the following coupling conditions (perfect bonding between Ω+ and Ω− outside the crack

Γ): 



u+ = u−

t+ = −t−
on S − Γ (13)

Figure 1 should appear here.



In the particular case of practical importance where Ω has a symmetry plane Π containing a

plane crack Γ and the external loading tD is symmetric with respect to Π, it is sufficient to

consider the subproblem over Ω+ (say), the coupling relations (13) being replaced by:





u+.n = 0

t+ − (t+.n)n = 0
on (Π ∩ ∂Ω+) − Γ (14)

Definition of the energy release rate. The energy release rate G associated with the

cracked solid Ω and the loading uD, tD is defined by (1), or, equivalently by:

∫

∂Γ

Gθν ds = −
⋆

W ∀θ ∈ Θ (15)

where ν is the unit normal to the crack front ∂Γ exterior to Γ and tangent to Γ. Also, Θ denotes

the set of virtual crack extensions, that is, those transformation velocities θ associated with

geometrical transformations Φ(·; p) which describe a crack extension: one has

θ.n = 0 on Γ θ = 0 on Su, ST (16)

Thus only regular virtual crack extensions (i.e. without kinking) are considered. Moreover, in

eq. (15) the variation
⋆

W of W is taken for constant loading (uD, tD) so that one has, within the

multiregion framework:





⋆
u = 0 on S±

u
⋆
t = 0 on S±

T
⋆
t = 0 on Γ±

for each subdomain Ω± (17)

with the coupling conditions:





⋆
u

+

=
⋆
u
−

⋆
t
+

= −
⋆
t
− on S − Γ (18)

Boundary-only formulation of the energy release rate. Now the value W of the potential

energy at equilibrium, eq. (11), can be reformulated using boundary integrals: applying the

divergence-flux theorem to the domain integral in (11) and taking into account the equilibrium

equation divσ = 0 gives the well-known alternative expression:

W =
1

2

∫

Su

t.uDdS − 1

2

∫

ST

tD.u dS

The variation
⋆

W of W in a crack extension thus stems from application of formula (10) to the

above equation. Since θ ∈ Θ, eq. (11), and accounting for the boundary conditions (17),
⋆

W is



finally expressed in terms of the material derivative of the boundary elastic variables as follows:

⋆
W=

1

2

∫

Su

⋆
t .uD dS − 1

2

∫

ST

tD.
⋆
u dS (19)

The derivatives (
⋆
u,

⋆
t) depend linearly on θ, through a derivative BIE to be discussed in the next

section, which has to be solved for all θ in (a finite-dimensional subspace of) Θ.

Thus, incorporation of the variant expression (19) for
⋆

W into the variational equation (15)

leads to a boundary-only approach to the computation of G(s). Note that it is known (see e.g.

Mialon [15]) that the right-hand side −
⋆

W of (15) depends ultimately only on the normal crack

front virtual extension θν |∂Γ, not on any particular continuation of θ outside ∂Γ, although this

fact is not apparent. This is an important consideration because the present use of Lagrangian-

type material differentiation necessarily requires such continuation of θ.

4 First-order elastic shape sensitivity formulation

The intermediary step of determining the material derivatives (
⋆
u,

⋆
t) for every θ ∈ Θ is now

discussed for the sake of completeness. Governing BIEs for the first- and second-order elastic

sensitivities are investigated in more detail in [4].

Governing regularized elastic BIE. Any elastostatic state on Ω with zero body forces can

be characterized by the boundary variables governed by the following regularized displacement

BIE (Rizzo and Shippy [25], Bui et al. [6]):

∫

∂Ω

[ui(y) − ui(x)]nj(y)Σk
ij(x,y) dSy −

∫

∂Ω

ti(y)Uk
i (x,y) dSy = 0 (20)

or, introducing for later convenience an abbreviated notation:

I1(x,u) − I2(x, t) = 0 (21)

using the Kelvin infinite-space fundamental displacement and elastic stress tensor:

Uk
i (x,y) = − 1

16πµ(1 − ν)r
[(3 − 4ν)δik + r,ir,k] (22)

Σk
ij(x,y) = − 1

8π(1 − ν)r2
[(1 − 2ν)(δikr,j + δjkr,i − δijr,k) + 3r,ir,jr,k] (23)

created at y ∈ R
3 by a unit point force applied at the collocation point x along the ek-direction.

Also, r = |y − x| is the Euclidian distance between y,x and (),i denotes a partial derivative with

respect to yi.



The BIE (20) holds for any collocation point x ∈ R
3. The displacement u is required to be

Hölder-continuous at x when x is taken on ∂Ω [13]:

∃C > 0, ∃α ∈]0, 1] such that |u(y) − u(x)| ≤ C |y − x|α (24)

for the regularization provided by the presence of the term [u(y)−u(x)] in (20) to be effective.

First-order sensitivity formulation. A small perturbation of the domain Ω = Ωp associated

to a small increment dp induces a perturbation of the elastostatic state (u, t), which may be

expressed in terms of the first-order material derivatives (
⋆
u,

⋆
t):

δu =
⋆
u dp + o(dp) δt =

⋆
t dp + o(dp)

This idea is consistent with the present BIE framework: the boundary ∂Ωp of a material do-

main Ωp is itself material, hence (
⋆
u,

⋆
t) |∂Ωp

are completely determined by the knowledge of

(u, t) |∂Ωp+dp
for the neighbouring perturbed boundary configurations. In other words, the ma-

terial derivatives (
⋆
u,

⋆
t) |∂Ωp

are taken while “staying on the moving boundary”. The BIE (21)

governs any elastostatic state defined on Ωp for any p ≥ 0 such that Φ(·; p) is defined. Thus tak-

ing the material derivative using formula (10) yields the governing BIE satisfied by any possible

pair (
⋆
u,

⋆
t). This operation is now carried out, with the assumption that the collocation point x

also follows the material transformation (3).

First, a direct application of formula (10) to the integral operators I1, I2 gives :

⋆
I1 (x,u) = I1(x,

⋆
u) + J1(x,u;θ) (25)

⋆
I2 (x, t) = I2(x,

⋆
t) + J2(x, t;θ) (26)

with

J1(x,u;θ) =

∫

∂Ω

[ui(y) − ui(x)]

{
nj(y)

⋆
Σ

k

ij (x,y) + Σk
ij(x,y)[

⋆
nj (y) + nj(y)Drθr(y)]

}
dSy

=

∫

∂Ω

[ui(y) − ui(x)]
{

nj(y)[[θr(y) − θr(x)]]Σk
ij,r(x,y)

− Σk
ij(x,y)[nr(y)Djθr(y) − nj(y)Drθr(y)]

}
dSy

=

∫

∂Ω

[ui(y) − ui(x)]
{

[[θr(y) − θr(x)]]nj(y)Σk
ij,r(x,y) − Σk

ij(x,y)Drjθr(y)
}

dSy

(27)

J2(x, t;θ) =

∫

∂Ω

ti(y)

{
⋆
U

k

i (x,y) + Uk
i (x,y)Drθr(y)

}
dSy

=

∫

∂Ω

ti(y)
{

[[θr(y) − θr(x)]]Uk
i,r(x,y) + Uk

i (x,y)Drθr(y)
}

dSy (28)



where formulas (7) have been taken into account, together with the relations

⋆
Σ

k

ij (x,y) = [[θr(y) − θr(x)]]Σk
ij,r(x,y)

⋆
U

k

i (x,y) = [[θr(y) − θr(x)]]Uk
i,r(x,y)

which stem from (6) and the fact that the Kelvin solution does not depend on p. The tangential

differential operator Drj is defined as:

Drjf = nrDjf − njDrf = nrf,j − njf,r = ersjeabjnaf,b

The integrals in (27) are convergent under the requirements (24) and

∃C > 0 such that |θ(y) − θ(x)| ≤ C |y − x| (29)

Note that the latter is weaker than the C1-continuity at x; for instance the appearance of an

edge or corner out of an initially smooth ∂Ω is allowed.

Finally, it is convenient to rearrange expression (27) for J1(x,u;θ) further, using the follow-

ing variant of Stokes’ formula:

∫

S
Drjf dS = ersj

∫

S
eabjnaf,b dS = 0

which is valid for any piecewise regular closed surface S and continuous, piecewise differentiable

f . Then:

∫

∂Ω

[ui(y) − ui(x)][[θr(y) − θr(x)]]nj(y)Σk
ij,r(x,y) dSy

= −
∫

∂Ω

[ui(y) − ui(x)][[θr(y) − θr(x)]]
{

DrjΣ
k
ij(x,y) + nr(y)Σk

ij,j(x,y)
}

dSy

= −
∫

∂Ω

[ui(y) − ui(x)][[θr(y) − θr(x)]]DrjΣ
k
ij(x,y) dSy

=

∫

∂Ω

Drj{[ui(y) − ui(x)][[θr(y) − θr(x)]]}Σk
ij(x,y) dSy (30)

where the differential operator Drj is understood as acting on the variable y and use has been

made of the equilibrium equation Σk
ij,j = 0 (y 6= x). Substitution of eq. (30) into (27) yields:

J1(x,u;θ) =

∫

∂Ω

[[θr(y) − θr(x)]]Drjui(y)Σk
ij(x,y) dSy (31)

which is more compact than (27).

Derivative BIE. The material derivatives (
⋆
u,

⋆
t) associated with any elastostatic state (u, t)

on Ω = Ωp are governed by the following derivative BIE:

I1(x,
⋆
u) − I2(x,

⋆
t) = −J1(x,u;θ) + J2(x, t;θ) (32)



where J1, J2 are given by eqns. (31), (28). This result holds for any collocation point x ∈ R
3,

hence it defines both an integral equation (with x ∈ ∂Ωp) or an integral representation of

⋆
u (x; p) (with x interior to Ωp). Its right-hand side is explicitly, and linearly, dependent on the

transformation velocity θ. The derivative BIE (32) is weakly singular under the requirements

(24), (29), and this is also true for all intermediate calculations used for its derivation.

Comments about the derivative BIE. Firstly, it is apparent from (21) and (32) that

the same integral operator govern the primary variables (u, t) and their material derivatives.

Also, for a given transformation velocity θ, the derivative BIE (32) has many solutions (
⋆
u,

⋆
t

). In order to ensure uniqueness of (
⋆
u,

⋆
t), one has in addition to specify how the boundary

conditions associated with the elastic problem evolve with Ωp. It is simplest to assume that

the transformation Φ(·; p) which describes a given change of domain is chosen so that the

Dirichlet and Neumann parts Su,p, ST,p of ∂Ωp are respectively transformed into the Dirichlet

and Neumann parts Su,p+dp, ST,p+dp of ∂Ωp+dp, so that (u,
⋆
u) and (t,

⋆
t) are unknown (resp.

known) over the same portions of the boundary. Then (
⋆
u,

⋆
t) are linear forms over θ provided

their prescribed parts are themselves linear forms over θ, thus the unknown parts of (u, t) and

of (
⋆
u,

⋆
t) share the same integral governing operator. This remark constitutes an important

computational advantage: the discretized integral operator is built and factored only once, in

the course of a boundary element solution to (21), then later repeatedly reused for the numerical

solution of the derivative BIE (32).

5 BEM formulation

The surfaces ∂Ω+ and ∂Ω− are approximated by classical boundary elements. Each element Ee

is mapped on a parent element ∆e, which is either the square (ξ1, ξ2) ∈ [−1, 1]2 or the triangle

0 ≤ ξ1 + ξ2 ≤ 1, in terms of NU shape functions Nk and nodes yk (in global numbering);

isoparametric interpolation of the elastic variables (u, t) is considered, so that:





y

u(y)

t(y)






=

NU∑

k=1

Nk(ξ)






y

uk

tk






ξ = (ξ1, ξ2) ∈ ∆e (33)

We denote respectively by aα(ξ) (α = 1, 2) and n(ξ) the natural basis of the tangent plane and

the unit normal at y(ξ):

aα(ξ) =

NU∑

k=1

Nk,α(ξ)yk (α = 1, 2) n(y) =
1√
J

(a ∧ b) (34)



with

J = g11g22 − g2
12 = ‖a1 ∧ a2‖2 gαβ = aα.aβ (α, β = 1, 2) (35)

The three basic steps involved in the computation of G using the present approach are now

described. Nine-noded quadrilateral elements were used for the numerical exemples presented

in this paper.

1 – Solution of the primary BIE. The BIE (20) is discretized along the lines outlined

above. The coupled elastostatic problems on Ω = Ω+∪Ω− are numerically solved with boundary

conditions (12) and continuity conditions (13). If Ω is symmetric with respect to a plane Π and

if Γ ⊂ Π, only one boundary value problem is to be solved, the continuity conditions becoming

(14). This step involves the building of the usual BEM discrete linear equation:

[A] {u} + [B]{t} = {0}

After appropriate column switches, one obtains the governing linear systems of equations on the

vector {v} of elastostatic unknowns:

[K] {v} = {g0} (36)

2 – Solution of the derivative BIE. This step involves the construction of a discrete set of

admissible transformation velocity fields θ ∈ Θ. Denote by E(∂Γ) the set of boundary elements

adjacent to the crack front ∂Γ and let A1, . . . ,ANC be the NC mesh nodes located on ∂Γ (figure

2). The local numbering of nodes on each element E ∈ E(∂Γ) is arranged so that the curve

(ξ2 = −1), associated with the nodes 1, 2, 3, is located on ∂Γ. In order to take into account the

known fact that
⋆

W ultimately depends only on the normal extension velocity θν of the crack

front, transformation velocities of the following form are introduced:

θ(y) =

NC∑

k=1

θkB
k(ξ) y = y(ξ) (37)

in terms of NC scalar nodal values θk = θν(A
k) of θν and vector interpolation functions Bk.

Many choices are possible for the Bk; here they are defined so that θ(y) = 0 outside E(∂Γ)

and, on any element Ee ∈ E(∂Γ):

Bk(ξ1, 1) = 0 ξ1 ∈ [−1, 1]

Bk(ηℓ
1,−1) = δkℓν(ηℓ

1,−1) ℓ = 1, 2, 3
(38)



where ηℓ ∈ ∆e is the antecedent of the crack front node Aℓ ∈ Ee ⊂ E(∂Γ) and the local

numbering k = 1, 2, 3 is used. Defining a continuation ν(ξ) of the unit normal to ∂Γ as follows:

ν =
1

|a1|
(a1 ∧ n) =

g12√
g11J

a1 −
g11√
g11J

a2 (39)

the Bk(ξ) (in local numbering) are defined as:

Bk(ξ) = f(ξ2)Sk(ξ1)ν(ξ) (40)

where S1, S2, S3 are the classical one-dimensional quadratic shape functions

S1(ξ1) = ξ1(ξ1 − 1)/2 S2(ξ1) = 1 − ξ2
1 S3(ξ1) (41)

and f is a continuous function such that f(1) = 0, f(−1) = 1. It is suggested to use f(ξ) =

(3 − 2ξ − ξ2)/4 with quarter-node elements (this allows for a linear variation of the factor f in

the physical space) or f(ξ) = (1 − ξ)/2 with ordinary elements. The definition (40) satisfy the

constraints (38); moreover the transformation velocities θ, eq. (37), are continuous over ∂Ω±

and satisfy the requirements (16). The interpolation of θν on Γ takes the form of a standard

one-dimensional interpolation:

θν(y) =

NC∑

k=1

θkSk(ξ1) (42)

Figure 2 should appear here.

Figure 3 should appear here.

Figure 4 should appear here.

The definition (37)–(40) is then substituted into the derivative BIE (32). Due to the linearity

of the right hand side of (32) with respect to θ, it is sufficient to compute the solutions (
⋆
U

k

,
⋆
T

k

)

to (32) for the particular choices θ = Bk, so that the pair (
⋆
u,

⋆
t) associated with θ defined by

(37) is given by

⋆
u=

NC∑

k=1

θk

⋆
U

k ⋆
t=

NC∑

k=1

θk

⋆
T

k

(43)

The pair (
⋆
U

k

,
⋆
T

k

) satisfies the matrix relation:

[A] {
⋆
U

k

} + [B]{
⋆

T k} = {f1(u, t;Bk)}

where the right-hand side {f1}(u, t;Bk) comes from the discretization of the right-hand side

J2(x, t;θ) − J1(x,u;θ) of eq. (32) with θ = Bk. The above equation, together with the



homogeneous boundary conditions (17), leads to the governing linear systems of equations for

the vector {⋆
v} of unknown derivatives:

[K] {⋆
v} = {f1(u, t;Bk)} (44)

The same matrix [K] appears in (36) and (44), because the present construction of θ is such

that the Dirichlet and Neumann parts S±
u , S±

T remain fixed and thus are material surfaces.

3 – Solution of the governing variational equation for G. The energy release rate is

interpolated, similarly to θν |∂Γ, as:

G(s) =

NC∑

k=1

GkSk(ξ2) (45)

Gk being the nodal values G(Ak). Then (
⋆
u,

⋆
t), eq. (43), are substituted into the expression (19)

of
⋆

W , so that the discretized form of the variational equation (15) reads:

find Gk ∀θm (1 ≤ m ≤ NC)

θm

{
Gk

∫

Γ

Sk(s)Sm(s) ds +
1

2

∫

Su

⋆
T m .uD dS − 1

2

∫

ST

tD.
⋆
Um dS

}
= 0 (46)

which, equating to zero the coefficient of each θm, leads to a linear (symmetric and banded)

matrix equation for the NC unknowns Gk.

Evaluation of tangential differential operators. The derivative BIE (32) makes use of

tangential differential operators, for which BE implementation-oriented expressions are now

given. First, from classical differential geometry, the surface gradient ∇Sf of a scalar function

expressed in terms of the variable ξ ∈ ∆e is given by:

∇Sf = (Drf)er with Drf = f,αgαβ(aβ.er) (47)

where gαβ are contravariant components of g: gαγgγβ = δα
β , see eq. (35). Equation (47) also

holds for cartesian components of vector or tensor fields, so that:

Drθr = θr,αgαβ(aβ.er) (48)

Drjui dSy = ǫrjq [ui,1(a2.eq) − ui,2(a1.eq)] dξ (49)

Numerical evaluation of singular integrals. Singular integrals over an element Ee occur

if x ∈ Ee. Following a common practice in BEM [24], set ξ1 = ρ cos ϕ, ξ2 = ρ sin ϕ, where

η = (η1, η2) denote the antecedent of x on ∆e. Then:

dξ = ρdρdϕ (50)



Moreover, for any shape function N(ξ), one can introduce modified shape functions N̂(ρ, ϕ;η),

regular at ρ = 0 and such that:

N(ξ) − N(η) = ρN̂ q(ρ, ϕ;η)

so that one has from (33):

r = |x − y| = ρ

∣∣∣∣∣

N∑

k=1

N̂k(ρ, ϕ;η)yk

∣∣∣∣∣ ≡ ρr̂(ρ, ϕ;η)

and r̂(ρ, ϕ;η) 6= 0. Consequently, since Uk(x,y),Σk(x,y) behave like r−1, r−2 respectively:

Uk
i (x,y) =

1

ρ
Ûk

i (ρ, ϕ;η) Σk
ij(x,y) =

1

ρ2
Σ̂k

ij(ρ, ϕ;η) (51)

where Ûk
i (ρ, ϕ;η) and Σ̂k

ij(ρ, ϕ;η) are regular at ρ = 0. Finally, using the modified interpolation

functions N̂k, B̂
k

associated with the interpolations (33) of u and (37) of θ (see Appendix), one

can write:

u(y) − u(x) = ρ

N∑

k=1

ukN̂k(ρ, ϕ;η) (52)

Bk(y) − Bk(x) = ρB̂
k
(ρ, ϕ;η) (53)

From eqs. (50) to (53), it is easy to see that all singular integrals are recast into regular integrals

expressed in terms of (ρ, ϕ). This makes full use of the regularization. The subsequent numerical

integrations can be performed with standard product Gaussian quadrature formulas, using a last

coordinate change (ρ, ϕ) → (v1, v2) in order to recover an integral over the square [−1, 1]2.

6 Numerical examples

Example 1 – Round bar with a penny-shaped axial crack. An internal penny-shaped

plane crack of radius R1 is situated in a cylindrical bar (length 2H, external radius R > R1); the

crack plane is the plane of symmetry orthogonal to the axis of rotational symmetry, as shown

on figure 5. The bar is subjected to a uniform tension p, along the direction orthogonal to the

crack plane (mode I). An approximate solution for KI , obtained using semi-analytical methods,

is known for this problem (Tada, Paris & Irwin [28]) in the form:

KI =
1

1 − (R2
1/R2)

p
√

πR1F (R1/R)

and values for F are provided by approximate formulas.

Figure 5 should appear here.



Two different meshes, as shown on figures 6, 7, were used for one-eighth of the structure.

The numerical values obtained for G at the crack front nodes are compared with the above

reference solution on figures 8, 9, which show the good agreement between them.

Figure 6 should appear here.

Figure 7 should appear here.

Figure 8 should appear here.

Figure 9 should appear here.

Example 2 – Semi-elliptical surface crack. As a second illustrative example, the case

of a semi-elliptical surface crack situated in a symmetry plane of a rectangular parallepiped

is considered. The geometrical notations are given in figure 10. The aspect ratio b/a is the

ellipticity of the crack (b = a for the semicircular crack). For comparison with other available

solutions, the parallepiped is subjected to a uniform tension p, along the direction orthogonal

to the crack plane (mode I). Owing to geometrical symmetry, only one-quarter of the initial

parallelipiped is discretized into a total of 136 9-noded boundary elements; the crack front itself

is made of 6 element edges, so that G and θ are interpolated using 13 nodal values. Two

variant meshes M1 and M2 were used, both having six bounary elements along the crack front,

so that the angular spacing between crack front nodes (using notations of figure 10) is uniform

(∆θ = π/24, mesh M1, figure 11) or non-uniform (∆θ = π/32 (resp. π/16) for θ ∈ [0, π/4] (resp.

θ ∈ [π/4, π/2]), mesh M2, figure 12); θ = 0 being the angular location of the crack edge.

Figure 10 should appear here.

Figure 11 should appear here.

Figure 12 should appear here.

Numerical values of the non-dimensional SIF K⋆
I = KI/Ke

I were obtained from the computed

values of G computed with the present method, using:

KI =

[
2µ

1 + ν
G

]1/2

Ke
I =

1

Q
p
√

πa

the shape factor Q being defined as:

Q = E(k) =

∫ π/2

0

√
1 − k2 sin2 θdθ k2 =





1 − (b/a)2 (b ≤ a)

1 − (a/b)2 (b ≥ a)



They are compared to other numerical results from Newman and Raju [17] (figures 13 to 16) and

from Tanaka and Itoh [29] (figures 14, 15). The latter ones were obtained using a sophisticated

spcial crack-front element which allows for the modelling of both the square-root crack front

singularity and the crack edge singularity (whose exponent differs from −1/2 except for ν = 0),

and are thus expected to provide the better reference solution near the crack edge. One sees

on figures 14, 15 that our results show a better tendency to reproduce the small peak near

the crack edge when mesh M2, which is finer than M1 near the crack edge, is used. Generally

speaking, our results agree reasonably well with the reference ones. For comparison sake, we

have also depicted on figures 13 to 16 the values of K⋆
I obtained by extrapolation of the crack

opening displacement. They tend to be somewhat less good than those obtained using the

present approach, dspite the use of quarter-node elements along the crack front.

Figure 13 should appear here.

Figure 14 should appear here.

Figure 15 should appear here.

Figure 16 should appear here.

7 Conclusion

In this paper, a novel approach for the computation of energy release rate G(s) has been pre-

sented for 3-D elastic fracture. It is based on a boundary-only approach for the formulation of

perturbations of the elastic potential energy at equilibrium induced by crack front virtual ad-

vances. As such, this work parallels other investigations devoted to the FEM-based ‘θ-method’.

A key ingredient in the present approach is the use of the derivative BIE which governs the

elastic sensitivities on the boundary. The derivative BIE itself of course is also applicable to

other kinds of situations, like shape optimization or inverse problems.

The extra computational cost associated with the building and solution of this derivative BIE

is reasonable thanks to the fact that the primary and derivative BIEs share the same governing

operator, which is thus build and factored only once. The numerical examples presented show

the potential of the method. In particular, they tend to be more accurate than the evaluations

based on displacement extrapolation produced by the same run, although quarter-node elements

were used along the crack front.



Further developments should include the study of actual crack growth (including stability and

non-bifurcation considerations) under Griffith criterion. This requires that the elastic potential

energy be differentiated up to the second order with respect to crack front advances.
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A Material derivative of dS and n

For the sake of completeness, eq. (7) is briefly established. First the material derivative of a

material vector a attached to the moving point y = Φ(Y ; p) is given by:

⋆
a= ∇θ.a (54)

Then, let Sp be a material surface, and denote by (a, b) a pair of material vectors attached to a

material point y = Φ(Y ; p), chosen so as to be unitary and orthogonal at a fixed value p0 of p

and to belong to the tangent plane at y to Sp for all p in a neighbourhood of p0. For any such

p, the unit normal to Sp at y is thus given by

n(y; p) =
1

|a ∧ b|(a ∧ b) (55)



Moreover, the surface differential element dS at y is proportional to |a ∧ b|, so that:

⋆
dS= |a ∧ b|⋆ dS (56)

The material derivative of the vector product a ∧ b is then taken for the particular value p0 of

p, using (54):

(a ∧ b)⋆ = (∇θ.a) ∧ b + a ∧ (∇θ.b)

= [(∇θ)aa + (∇θ)bb]n − (∇θ)naa − (∇θ)nbb

= (divSθ)n − n.∇Sθ (57)

where the fact that (a, b,n) is an orthonormal vector frame at p = p0 has been used. Moreover,

one has:

|a ∧ b|⋆ =
a ∧ b

|a ∧ b| .(a ∧ b)⋆ = n.(a ∧ b)⋆ = divSθ (58)

Eq. (7) is then easily obtained from (55), (56), (57), (58).

B Modified shape functions for singular integration

Shape functions for 9-noded quadrilateral element. The classical Lagrangian shape

functions for the 9-noded quadrilateral element are:

N1(ξ) = S1(ξ1)S1(ξ2) N4(ξ) = S3(ξ1)S2(ξ2) N7(ξ) = S1(ξ1)S3(ξ2)

N2(ξ) = S2(ξ1)S1(ξ2) N5(ξ) = S3(ξ1)S3(ξ2) N8(ξ) = S1(ξ1)S2(ξ2)

N3(ξ) = S3(ξ1)S1(ξ2) N6(ξ) = S2(ξ1)S3(ξ2) N9(ξ) = S2(ξ1)S2(ξ2)

(59)

with the Si given by (41). Their derivatives N,α are thus given by

N,α(ξ) = S′

i(ξ1)Sj(ξ2) + Si(ξ1)S
′

j(ξ2) (60)

with appropriately chosen i, j.

Modified shape functions. Singular integrations use modified shape functions N̂ such that:

N(ξ) − N(η) = ρN̂(ρ, ϕ;η)

First, note that, for any pair f(ξ), g(ξ) of regular functions:

f̂g(ρ, ϕ;η) = f̂(ρ, ϕ;η)g(ξ) + f(η)ĝ(ρ, ϕ;η) (61)



so that the N̂ , N̂,α, eqs. (59), (60) can be readily obtained in terms of the Ŝi, Ŝ′
i, with:

Ŝ1(ρ, ϕ; ηα) = cα[2ηα − 1 + ρcα]/2 Ŝ′
1(ρ, ϕ; ηα) = cα

Ŝ1(ρ, ϕ; ηα) = cα[−2ηα − ρcα] Ŝ′
1(ρ, ϕ; ηα) = −2cα

Ŝ3(ρ, ϕ; ηα) = cα[2ηα + 1 + ρcα]/2 Ŝ′
1(ρ, ϕ; ηα) = cα

(62)

In the above formula, c1, c2 stand for cosϕ, sin ϕ respectively.

Modified vector shape function B̂m
j . It is defined by:

Bm(ξ) − Bm(η) = ρB̂
m

(ρ, ϕ;η)

From the definition (40) and using (61), B̂
m

is given by:

B̂
m

(ρ, ϕ,η) = (f̂(ρ, ϕ; η2)Sm(ξ1) + f(η1)Ŝm(ρ, ϕ; η1))ν(ξ) + f(η2)Sm(η1)ν̂m(ρ, ϕ,η) (63)

Next, expression (39) for ν and the rule (61) give:

ν̂m(ρ, ϕ,η) =
g1α√
g11J

(ξ)â1(ρ, ϕ;η) − g1α√
g11J

(ξ)â2(ρ, ϕ;η)

+

(
g12√
g11J

)∧

(ρ, ϕ;η)a1(η) −
(

g11√
g11J

)∧

(ρ, ϕ;η)a2(η)

with:

âα(ρ, ϕ;η) =

NU∑

k=1

N̂k,α(ρ, ϕ;η)yk

Finally, one can show that:

(
g1α√
g11J

)∧

(ρ, ϕ;η) =
1

Dα
(Aα

11ĝ11 + Aα
12ĝ12 + Aα

22ĝ22) (α = 1, 2) (64)

with

ĝαβ(ρ, ϕ;η) = âα(ρ, ϕ;η).aβ(ξ) + aα(η)âβ(ρ, ϕ;η)

Dα(ξ,η) =
√

g11(ξ)J(ξ)
√

g11(η)J(η)
[
g1α(ξ)

√
g11(η)J(η) + g1α(η)

√
g11(ξ)J(ξ)

]

Aα
11(ξ,η) = g2

1α(η)g2
12(ξ) − gαα(η)g12(η)[g12(ξ)g11(η) + g12(η)g11(ξ)]

Aα
12(ξ,η) = gαα(η)g11(η)[g12(ξ)g11(η) + g12(η)g11(ξ)]

Aα
22(ξ,η) = −g2

1α(η)g2
11(ξ)

C Expression of DrB
m
r

One can show using classical differential geometry that, for any vector B such that B.n = 0:

divSB dSy = (
√

JBα),α dξ



Then, from the definition (40) of Bm, one has:

divSBm dSy =

{
fSm

[
(
√

g11),2 −
(√

g12

g11

)

,1

]
+ f ′Sm

√
g11 − fS′

m

√
g12

g11

}
dξ

The above formulas use the second derivatives Nk,αβ of the shape functions Nk.
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Figure 4: The vector interpolation function B2
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Figure 6: Example 1: Boundary element subdivision of crack plane (coarse

mesh)
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Figure 7: Example 1: Boundary element subdivision of crack plane (fine

mesh)
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Figure 8: Example 1: comparison between numerical results and reference

solution (coarse mesh)
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Figure 9: Example 1: comparison between numerical results and reference

solution (fine mesh)
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Figure 10: Example 2: Geometrical notation for the crack plane
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Figure 11: Example 2: Boundary element subdivision of crack plane (mesh

M1, b = a)
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Figure 12: Example 2: Boundary element subdivision of crack plane (mesh

M2, b = 0.6a)
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Figure 13: Example 2: comparison between results (shallow semielliptical

surface crack, b = 0.4a)
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Figure 14: Example 2: comparison between results (shallow semielliptical

surface crack, b = 0.6a)
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Figure 15: Example 2: comparison between results (semicircular surface

crack, b = a)
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Figure 16: Example 2: comparison between results (deep semielliptical sur-

face crack, b = 2a)


