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Introduction

One of the basic quantities involved in elastic fracture mechanics is the energy release rate G(s), function of the arc length s along the front ∂Γ of a crack Γ: ∂Γ G(s)δℓ(s) ds = -δW [START_REF] Aithal | Shape sensitivity analysis in thermal problems using BEM[END_REF] where δW is the perturbation of the elastic potential energy at equilibrium W induced by a crack front normal extension δℓ and in the absence of load variation. For two-dimensional problems, G is the value of the well-known path-independent J integral. In linear fracture mechanics, G is linked to the crack tip singularity of the stress field through the well-known Irwin formula [START_REF] Bui | Mécanique de la rupture fragile[END_REF]:

G(s) = 1 + ν 2µ K 2 I (s) + K 2 II (s) + 1 2µ K III (s) (2) 
where K I (s), K II (s), K III (s) are the stress intensity factors (SIFs), µ and ν being respectively the shear modulus and Poisson ratio. Furthermore G has a clear thermodynamical meaning (Nguyen [19]) and plays a central role for the prediction of crack extension according to Griffithtype criterions.

Thus the consideration of perturbations of W under fictitious body changes associated to virtual crack extensions provides a computational tool for elastic crack analysis: this is the virtual crack extension approach. In the first numerical applications derivatives of W are evaluated using small finite crack perturbations and finite differences (Hellen [START_REF] Hellen | On the method of virtual crack extension[END_REF], Parks [START_REF] Parks | A stiffness derivative finite element technique for determination of crack tip strees intensity factors[END_REF]). In later works (Delorenzi [9], Destuynder et al. [START_REF] Ph | Quelques remarques sur la mécanique de la rupture élastique[END_REF], Mialon [START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF], Ohtsuka [START_REF] Ohtsuka | Generalized J-integral and three-dimensional fracture mechanics[END_REF]), Suo & Combescure [START_REF] Suo | Combescure A. -Sur une formulation mathématique de la dérivée de l'énergie potentielle en théorie de la rupture fragile[END_REF] the concept of material differentiation is applied to W ; this leads to rigorous formulations for G, starting from variational formulations of elasticity problems. This approach, sometimes known as the 'θ-method' (θ refers to the notation used in [START_REF] Ph | Quelques remarques sur la mécanique de la rupture élastique[END_REF], [START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF] and herein for the transformation velocity), has led to FEM implementations (Wadier & Malak [31]). The present paper aims at formulating a BIE version of the θ-method.

A common factor shared by the present investigation subject and other situations where the geometrical domain is a primary variable, like shape optimization, geometrical inverse problems or free-boundary problems, is the presence of integral functionals being both directly (through the geometrical support of the integral) and indirectly (through mechanical fields which solve e.g. elastic boundary-value problems) shape-dependent, whose derivatives with respect to shape parameters, or more abstractly their domain derivatives, are of practical interest. It is known that finite-difference evaluations of gradients are both computationally expensive and prone to inaccuracies due to the known mathematically ill-posed nature of this operation (Tikhonov and Arsenin [START_REF] Tikhonov | Solutions to ill-posed problems[END_REF]). Hence it is natural to revert to analytical differentiation with respect to a variable domain. This concept has been discussed by several authors (see e.g. Haug et al. [START_REF] Haug | Komkov -Design Sensitivity Analysis of Structural Systems[END_REF],

Petryk and Mroz [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF], in FEM-oriented contexts). Since in such problems the domain (and hence its boundary) is a primary variable, it is natural to consider the use of boundary integral formulations, which allow for the "minimal" modelling. The formulation of shape sensitivities in a BIE context may result from either the adjoint variable approach (Aithal & Saigal [START_REF] Aithal | Shape sensitivity analysis in thermal problems using BEM[END_REF], Bonnet [START_REF] Bonnet | BIE and material differentiation applied to the formulation of obstacle inverse problems[END_REF], Choi & Kwak [START_REF] Choi | Boundary integral equation method for shape optimization of elastic structures[END_REF], Meric [START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF]) or the direct differentiation approach (Barone & Yang [START_REF] Barone | A Boundary Element Approach for Recovery of Shape Sensitivities in Three-dimensional Elastic Solids[END_REF],

Bonnet [START_REF] Bonnet | Regularized BIE formulations for first-and second-order shape sensitivity of elastic fields. Contribution to a special issue of Computers and Structures[END_REF], Mukherjee & Chandra [START_REF] Mukherjee | A boundary element formulation for design sensitivities in problems involving both geometric and material nonlinearities[END_REF], Zhang & Mukherjee [START_REF] Zhang | Second-order design sensitivity analysis for linear elastic problems by the derivative boundary element method[END_REF]).

In the present paper, the virtual crack extension approach is formulated for BIE analysis of crack problems, using the basic concepts developed inn [START_REF] Ph | Quelques remarques sur la mécanique de la rupture élastique[END_REF], [START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF]. First some basic definitions and results about material differentiation are recalled. Then the definition of G, for a three-dimensional cracked solid, is given a boundary-only reformulation; as a result, G solves a variational equation whose right-hand side depends linearly on the transformation velocity through the boundary shape sensitivities of elastic variables. In order to use only conventional displacement collocation BIE formulations, the framework of multiregion modelling is used. The formulation is general in terms of the fracture modes involved. Next, the governing BIE formulation for firstorder elastic shape sensitivities, whose solution is a necessary step for the numerical evaluation of G in the present work, is given. Then, the numerical implementation of the method is described, and special attention is devoted to the key step of building appropriate (vector) interpolation functions for the transformation velocity in the vicinity of the crack front. Finally, numerical results are presented on two mode I examples where reference results are available for comparison: the round bar with a circular internal crack and the semi-elliptical surface crack, in both cases under uniform tension.

2 First-order material derivative of a surface integral

Let us consider, in the three-dimensional Euclidean space R 3 equipped with a Cartesian orthonormal basis (e 1 , e 2 , e 3 ), a body Ω p whose shape depends on a time-like parameter p through a continuum kinematics-type lagrangian description, with the "initial" configuration Ω 0 conventionally associated with p = 0: 

Y ∈ Ω 0 → y = Φ(Y ; p) ∈ Ω p where (∀Y ∈ Ω 0 ) Φ(Y ; 0) = Y (3) 
where ∇ denotes the gradient with respect to "Eulerian" coordinates (∇f = (f ,y i ) ⊗ e i ). The material derivative of the gradient ∇f is thus given by:

(∇f ) ⋆ = ∇ ⋆ f -∇f.∇θ (6) 
It should be stressed that the thansformation Φ is used to represent a continuous change of domain, each Ω p being the geometrical support of a boundary value problem, as opposed to a material deformation of a given physical body; the "material" qualificative is thus only a convenient language abuse.

Material derivative of surface integrals. As shown in Appendix A, the material derivatives of the unit normal n and the surface differential element dS on a material surface S p = Φ(S; p) are given by:

⋆ dS= div S θ dS = D r θ r dS ⋆ n= -n.∇ S θ = -n r D j θ r e j ( 7 
)
in terms of the surface gradient ∇ S and the surface divergence div S :

∇ S f = ∇f -(∇f.n)n = (f ,i -n i f ,n )e i ≡ (D i f )e i ( 8 
) div S u = div u -(∇u.n).n = D i u i (9) 
Then, for a generic surface integral J(p):

J(p) = Sp f (y, p) dS p
one has, using [START_REF] Choi | Boundary integral equation method for shape optimization of elastic structures[END_REF]:

dJ dp = ⋆ J= Sp ⋆ f dS + f ( dS) ⋆ = Sp ⋆ f +f div S θ dS (10) 
Indeed ⋆ J could be expressed in several other ways (see Petryk and Mroz [START_REF] Petryk | Time derivatives of integrals and functionals defined on varying volume and surface domains[END_REF]), but the above formula serves the purpose of the present paper.

3 Formulation of the energy release rate in a BEM context

Let the body Ω be elastic (shear modulus µ, Poisson ratio ν), its external boundary being split into S T (on which the traction vector t is given: t = t D ) and S u (on which the displacement u is given: u = u D ). No body forces are present. The potential energy of Ω at elastic equilibrium takes the value W :

W = 1 2 Ω σ(u) : ε(u) dV - S T t D .u dS ( 11 
)
where u, ε, σ are the displacement, strain and stress fields solution to the elastic equilibrium problem with boundary data u D , t D .

Multiregion approach for a cracked elastic solid. Now suppose that a crack Γ, with upper and lower traction-free faces Γ ± (figure 1) and unit normal n directed from Γ -to Γ + , is embedded in Ω. In order to use only usual displacement BIE formulations, the so-called "multiregion approach" [START_REF] Cruse | Boundary Element Analysis in Computational Fracture Mechanics[END_REF] is considered: Ω is split into two subdomains Ω + , Ω -separated by a surface S containing the crack Γ (figure 1). The cracked solid equilibrium is then formulated in terms of two elastic problems (one for each subdomain) with the following conditions on the external boundary:

           u = u D on S ± u t = t D on S ± T t = 0 on Γ ± for each subdomain Ω ± (12) 
and the following coupling conditions (perfect bonding between Ω + and Ω -outside the crack

Γ):    u + = u - t + = -t - on S -Γ ( 13 
)
Figure 1 should appear here.

In the particular case of practical importance where Ω has a symmetry plane Π containing a plane crack Γ and the external loading t D is symmetric with respect to Π, it is sufficient to consider the subproblem over Ω + (say), the coupling relations (13) being replaced by:

   u + .n = 0 t + -(t + .n)n = 0 on (Π ∩ ∂Ω + ) -Γ (14) 
Definition of the energy release rate. The energy release rate G associated with the cracked solid Ω and the loading u D , t D is defined by ( 1), or, equivalently by:

∂Γ Gθ ν ds = - ⋆ W ∀θ ∈ Θ ( 15 
)
where ν is the unit normal to the crack front ∂Γ exterior to Γ and tangent to Γ. Also, Θ denotes the set of virtual crack extensions, that is, those transformation velocities θ associated with geometrical transformations Φ(•; p) which describe a crack extension: one has

θ.n = 0 on Γ θ = 0 on S u , S T (16) 
Thus only regular virtual crack extensions (i.e. without kinking) are considered. Moreover, in eq. ( 15) the variation ⋆ W of W is taken for constant loading (u D , t D ) so that one has, within the multiregion framework:

           ⋆ u = 0 on S ± u ⋆ t = 0 on S ± T ⋆ t = 0 on Γ ± for each subdomain Ω ± (17) 
with the coupling conditions:

     ⋆ u + = ⋆ u - ⋆ t + = - ⋆ t - on S -Γ (18) 
Boundary-only formulation of the energy release rate. Now the value W of the potential energy at equilibrium, eq. ( 11), can be reformulated using boundary integrals: applying the divergence-flux theorem to the domain integral in [START_REF] Haug | Komkov -Design Sensitivity Analysis of Structural Systems[END_REF] and taking into account the equilibrium equation div σ = 0 gives the well-known alternative expression:

W = 1 2 Su t.u D dS - 1 2 S T t D .u dS
The variation ⋆ W of W in a crack extension thus stems from application of formula [START_REF] Ph | Quelques remarques sur la mécanique de la rupture élastique[END_REF] to the above equation. Since θ ∈ Θ, eq. ( 11), and accounting for the boundary conditions ( 17),

⋆ W is
finally expressed in terms of the material derivative of the boundary elastic variables as follows:

⋆ W = 1 2 Su ⋆ t .u D dS - 1 2 S T t D . ⋆ u dS (19)
t) for every θ ∈ Θ is now discussed for the sake of completeness. Governing BIEs for the first-and second-order elastic sensitivities are investigated in more detail in [START_REF] Bonnet | Regularized BIE formulations for first-and second-order shape sensitivity of elastic fields. Contribution to a special issue of Computers and Structures[END_REF].

Governing regularized elastic BIE. Any elastostatic state on Ω with zero body forces can be characterized by the boundary variables governed by the following regularized displacement BIE (Rizzo and Shippy [START_REF] Rizzo | An advanced boundary integral equation method for threedimensional elasticity[END_REF], Bui et al. [START_REF] Bui | Régularisation des équations intégrales de l'élastostatique et de l'élastodynamique[END_REF]):

∂Ω [u i (y) -u i (x)]n j (y)Σ k ij (x, y) dS y - ∂Ω t i (y)U k i (x, y) dS y = 0 (20) 
or, introducing for later convenience an abbreviated notation:

I 1 (x, u) -I 2 (x, t) = 0 ( 21 
)
using the Kelvin infinite-space fundamental displacement and elastic stress tensor:

U k i (x, y) = - 1 16πµ(1 -ν)r [(3 -4ν)δ ik + r ,i r ,k ] (22) 
Σ k ij (x, y) = - 1 8π(1 -ν)r 2 [(1 -2ν)(δ ik r ,j + δ jk r ,i -δ ij r ,k ) + 3r ,i r ,j r ,k ] (23) 
created at y ∈ R 3 by a unit point force applied at the collocation point x along the e k -direction.

Also, r = |y -x| is the Euclidian distance between y, x and () ,i denotes a partial derivative with respect to y i .

The BIE [START_REF] Ohtsuka | Generalized J-integral and three-dimensional fracture mechanics[END_REF] holds for any collocation point x ∈ R 3 . The displacement u is required to be Hölder-continuous at x when x is taken on ∂Ω [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF]:

∃C > 0, ∃α ∈]0, 1] such that |u(y) -u(x)| ≤ C |y -x| α (24)
for the regularization provided by the presence of the term [u(y)u(x)] in [START_REF] Ohtsuka | Generalized J-integral and three-dimensional fracture mechanics[END_REF] to be effective.

First-order sensitivity formulation. A small perturbation of the domain Ω = Ω p associated to a small increment dp induces a perturbation of the elastostatic state (u, t), which may be expressed in terms of the first-order material derivatives (

t) + J 2 (x, t; θ) (26) 
with

J 1 (x, u; θ) = ∂Ω [u i (y) -u i (x)] n j (y) ⋆ Σ k ij (x, y) + Σ k ij (x, y)[ ⋆ n j (y) + n j (y)D r θ r (y)] dS y = ∂Ω [u i (y) -u i (x)] n j (y)[[θ r (y) -θ r (x)]]Σ k ij,r (x, y) -Σ k ij (x, y)[n r (y)D j θ r (y) -n j (y)D r θ r (y)] dS y = ∂Ω [u i (y) -u i (x)] [[θ r (y) -θ r (x)]]n j (y)Σ k ij,r (x, y) -Σ k ij (x, y)D rj θ r (y) dS y (27) J 2 (x, t; θ) = ∂Ω t i (y) ⋆ U k i (x, y) + U k i (x, y)D r θ r (y) dS y = ∂Ω t i (y) [[θ r (y) -θ r (x)]]U k i,r (x, y) + U k i (x, y)D r θ r (y) dS y ( 28 
)
where formulas [START_REF] Choi | Boundary integral equation method for shape optimization of elastic structures[END_REF] have been taken into account, together with the relations

⋆ Σ k ij (x, y) = [[θ r (y) -θ r (x)]]Σ k ij,r (x, y) ⋆ U k i (x, y) = [[θ r (y) -θ r (x)]]U k i,r (x, y)
which stem from ( 6) and the fact that the Kelvin solution does not depend on p. The tangential differential operator D rj is defined as:

D rj f = n r D j f -n j D r f = n r f ,j -n j f ,r = e rsj e abj n a f ,b
The integrals in [START_REF] Suo | Combescure A. -Sur une formulation mathématique de la dérivée de l'énergie potentielle en théorie de la rupture fragile[END_REF] are convergent under the requirements [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three-dimensions[END_REF] and

∃C > 0 such that |θ(y) -θ(x)| ≤ C |y -x| (29) 
Note that the latter is weaker than the C 1 -continuity at x; for instance the appearance of an edge or corner out of an initially smooth ∂Ω is allowed.

Finally, it is convenient to rearrange expression (27) for J 1 (x, u; θ) further, using the following variant of Stokes' formula:

S D rj f dS = e rsj S e abj n a f ,b dS = 0
which is valid for any piecewise regular closed surface S and continuous, piecewise differentiable f . Then:

∂Ω [u i (y) -u i (x)][[θ r (y) -θ r (x)]]n j (y)Σ k ij,r (x, y) dS y = - ∂Ω [u i (y) -u i (x)][[θ r (y) -θ r (x)]] D rj Σ k ij (x, y) + n r (y)Σ k ij,j (x, y) dS y = - ∂Ω [u i (y) -u i (x)][[θ r (y) -θ r (x)]]D rj Σ k ij (x, y) dS y = ∂Ω D rj {[u i (y) -u i (x)][[θ r (y) -θ r (x)]]}Σ k ij (x, y) dS y ( 30 
)
where the differential operator D rj is understood as acting on the variable y and use has been made of the equilibrium equation Σ k ij,j = 0 (y = x). Substitution of eq. ( 30) into (27) yields:

J 1 (x, u; θ) = ∂Ω [[θ r (y) -θ r (x)]]D rj u i (y)Σ k ij (x, y) dS y (31) 
which is more compact than [START_REF] Suo | Combescure A. -Sur une formulation mathématique de la dérivée de l'énergie potentielle en théorie de la rupture fragile[END_REF].

Derivative BIE. The material derivatives (

BEM formulation

The surfaces ∂Ω + and ∂Ω -are approximated by classical boundary elements. Each element E e is mapped on a parent element ∆ e , which is either the square (ξ 1 , ξ 2 ) ∈ [-1, 1] 2 or the triangle 0 ≤ ξ 1 + ξ 2 ≤ 1, in terms of NU shape functions N k and nodes y k (in global numbering); isoparametric interpolation of the elastic variables (u, t) is considered, so that:

           y u(y) t(y)            = N U k=1 N k (ξ)            y u k t k            ξ = (ξ 1 , ξ 2 ) ∈ ∆ e (33) 
We denote respectively by a α (ξ) (α = 1, 2) and n(ξ) the natural basis of the tangent plane and the unit normal at y(ξ):

a α (ξ) = N U k=1 N k,α (ξ)y k (α = 1, 2) n(y) = 1 √ J (a ∧ b) (34) 
with

J = g 11 g 22 -g 2 12 = a 1 ∧ a 2 2 g αβ = a α .a β (α, β = 1, 2) (35) 
The three basic steps involved in the computation of G using the present approach are now described. Nine-noded quadrilateral elements were used for the numerical exemples presented in this paper.

1 -Solution of the primary BIE. The BIE ( 20) is discretized along the lines outlined above. The coupled elastostatic problems on Ω = Ω + ∪Ω -are numerically solved with boundary conditions [START_REF] Hellen | On the method of virtual crack extension[END_REF] and continuity conditions [START_REF] Kupradze | Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity[END_REF]. If Ω is symmetric with respect to a plane Π and if Γ ⊂ Π, only one boundary value problem is to be solved, the continuity conditions becoming [START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF]. This step involves the building of the usual BEM discrete linear equation:

[A] {u} + [B]{t} = {0}
After appropriate column switches, one obtains the governing linear systems of equations on the vector {v} of elastostatic unknowns:

[K] {v} = {g 0 } (36)
2 -Solution of the derivative BIE. This step involves the construction of a discrete set of admissible transformation velocity fields θ ∈ Θ. Denote by E(∂Γ) the set of boundary elements adjacent to the crack front ∂Γ and let A 1 , . . . , A NC be the NC mesh nodes located on ∂Γ (figure 2). The local numbering of nodes on each element E ∈ E(∂Γ) is arranged so that the curve (ξ 2 = -1), associated with the nodes 1, 2, 3, is located on ∂Γ. In order to take into account the known fact that ⋆ W ultimately depends only on the normal extension velocity θ ν of the crack front, transformation velocities of the following form are introduced:

θ(y) = NC k=1 θ k B k (ξ) y = y(ξ) (37) 
in terms of NC scalar nodal values θ k = θ ν (A k ) of θ ν and vector interpolation functions B k .

Many choices are possible for the B k ; here they are defined so that θ(y) = 0 outside E(∂Γ)

and, on any element E e ∈ E(∂Γ):

B k (ξ 1 , 1) = 0 ξ 1 ∈ [-1, 1] B k (η ℓ 1 , -1) = δ kℓ ν(η ℓ 1 , -1) ℓ = 1, 2, 3 (38) 
where η ℓ ∈ ∆ e is the antecedent of the crack front node A ℓ ∈ E e ⊂ E(∂Γ) and the local numbering k = 1, 2, 3 is used. Defining a continuation ν(ξ) of the unit normal to ∂Γ as follows:

ν = 1 |a 1 | (a 1 ∧ n) = g 12 √ g 11 J a 1 - g 11 √ g 11 J a 2 (39) 
the B k (ξ) (in local numbering) are defined as:

B k (ξ) = f (ξ 2 )S k (ξ 1 )ν(ξ) (40) 
where S 1 , S 2 , S 3 are the classical one-dimensional quadratic shape functions

S 1 (ξ 1 ) = ξ 1 (ξ 1 -1)/2 S 2 (ξ 1 ) = 1 -ξ 2 1 S 3 (ξ 1 ) (41) 
and f is a continuous function such that f (1) = 0, f (-1) = 1. It is suggested to use f (ξ) =

(3 -2ξ -ξ 2 )/4 with quarter-node elements (this allows for a linear variation of the factor f in the physical space) or f (ξ) = (1 -ξ)/2 with ordinary elements. The definition (40) satisfy the constraints (38); moreover the transformation velocities θ, eq. ( 37), are continuous over ∂Ω ± and satisfy the requirements [START_REF] Mukherjee | A boundary element formulation for design sensitivities in problems involving both geometric and material nonlinearities[END_REF]. The interpolation of θ ν on Γ takes the form of a standard one-dimensional interpolation:

θ ν (y) = N C k=1 θ k S k (ξ 1 ) (42) 
Figure 2 should appear here.

Figure 3 should appear here.

Figure 4 should appear here.

The definition (37)-( 40) is then substituted into the derivative BIE [START_REF] Zhang | Second-order design sensitivity analysis for linear elastic problems by the derivative boundary element method[END_REF]. Due to the linearity of the right hand side of ( 32) with respect to θ, it is sufficient to compute the solutions (

⋆ U k , ⋆ T k )
to [START_REF] Zhang | Second-order design sensitivity analysis for linear elastic problems by the derivative boundary element method[END_REF] for the particular choices θ = B k , so that the pair ( ⋆ u, ⋆ t) associated with θ defined by (37) is given by

⋆ u= NC k=1 θ k ⋆ U k ⋆ t= NC k=1 θ k ⋆ T k (43)
The pair (

⋆ U k , ⋆ T k
) satisfies the matrix relation:

[A] { ⋆ U k } + [B]{ ⋆ T k } = {f 1 (u, t; B k )}
where the right-hand side {f 1 }(u, t; B k ) comes from the discretization of the right-hand side J 2 (x, t; θ) -J 1 (x, u; θ) of eq. ( 32) with θ = B k . The above equation, together with the homogeneous boundary conditions [START_REF] Newman | An empirical stress-intensity factor equation for the surface crack[END_REF], leads to the governing linear systems of equations for the vector { ⋆ v} of unknown derivatives:

[K] { ⋆ v} = {f 1 (u, t; B k )} (44)
The same matrix [K] appears in (36) and ( 44), because the present construction of θ is such that the Dirichlet and Neumann parts S ± u , S ± T remain fixed and thus are material surfaces.

3 -Solution of the governing variational equation for G. The energy release rate is interpolated, similarly to θ ν | ∂Γ , as: 43), are substituted into the expression [START_REF] Nguyen | Bifurcation and stability in dissipative media (plasticity, friction, fracture)[END_REF] of ⋆ W , so that the discretized form of the variational equation ( 15) reads:

G(s) = N C k=1 G k S k (ξ 2 ) ( 45 
)
G k being the nodal values G(A k ). Then ( ⋆ u, ⋆ t), eq. (
find G k ∀θ m (1 ≤ m ≤ NC) θ m G k Γ S k (s)S m (s) ds + 1 2 Su ⋆ T m .u D dS - 1 2 S T t D . ⋆ U m dS = 0 (46)
which, equating to zero the coefficient of each θ m , leads to a linear (symmetric and banded) matrix equation for the NC unknowns G k .

Evaluation of tangential differential operators. The derivative BIE (32) makes use of tangential differential operators, for which BE implementation-oriented expressions are now given. First, from classical differential geometry, the surface gradient ∇ S f of a scalar function expressed in terms of the variable ξ ∈ ∆ e is given by:

∇ S f = (D r f )e r with D r f = f ,α g αβ (a β .e r ) ( 47 
)
where g αβ are contravariant components of g: g αγ g γβ = δ α β , see eq. ( 35). Equation (47) also holds for cartesian components of vector or tensor fields, so that:

D r θ r = θ r,α g αβ (a β .e r ) ( 48 
)
D rj u i dS y = ǫ rjq [u i,1 (a 2 .e q ) -u i,2 (a 1 .e q )] dξ (49)
Numerical evaluation of singular integrals. Singular integrals over an element E e occur if x ∈ E e . Following a common practice in BEM [START_REF] Rizzo | A boundary integral equation method for radiation and scattering of elastic waves in three-dimensions[END_REF], set ξ 1 = ρ cos ϕ, ξ 2 = ρ sin ϕ, where η = (η 1 , η 2 ) denote the antecedent of x on ∆ e . Then:

dξ = ρdρdϕ (50)
Moreover, for any shape function N (ξ), one can introduce modified shape functions N (ρ, ϕ; η), regular at ρ = 0 and such that:

N (ξ) -N (η) = ρ N q (ρ, ϕ; η)
so that one has from (33):

r = |x -y| = ρ N k=1 N k (ρ, ϕ; η)y k ≡ ρr(ρ, ϕ; η)
and r(ρ, ϕ; η) = 0. Consequently, since U k (x, y), Σ k (x, y) behave like r -1 , r -2 respectively:

U k i (x, y) = 1 ρ Û k i (ρ, ϕ; η) Σ k ij (x, y) = 1 ρ 2 Σk ij (ρ, ϕ; η) (51) 
where Û k i (ρ, ϕ; η) and Σk ij (ρ, ϕ; η) are regular at ρ = 0. Finally, using the modified interpolation functions Nk , Bk associated with the interpolations (33) of u and (37) of θ (see Appendix), one can write:

u(y) -u(x) = ρ N k=1 u k N k (ρ, ϕ; η) (52) 
B k (y) -B k (x) = ρ Bk (ρ, ϕ; η) (53) 
From eqs. (50) to (53), it is easy to see that all singular integrals are recast into regular integrals expressed in terms of (ρ, ϕ). This makes full use of the regularization. The subsequent numerical integrations can be performed with standard product Gaussian quadrature formulas, using a last coordinate change (ρ, ϕ) → (v 1 , v 2 ) in order to recover an integral over the square [-1, 1] 2 .

Numerical examples

Example 1 -Round bar with a penny-shaped axial crack. An internal penny-shaped plane crack of radius R 1 is situated in a cylindrical bar (length 2H, external radius R > R 1 ); the crack plane is the plane of symmetry orthogonal to the axis of rotational symmetry, as shown on figure 5. The bar is subjected to a uniform tension p, along the direction orthogonal to the crack plane (mode I). An approximate solution for K I , obtained using semi-analytical methods, is known for this problem (Tada, Paris & Irwin [START_REF] Tada | Paris & Irwin -The stress analysis of crack handbook[END_REF]) in the form:

K I = 1 1 -(R 2 1 /R 2 ) p πR 1 F (R 1 /R)
and values for F are provided by approximate formulas.

Figure 5 should appear here.

Two different meshes, as shown on figures 6, 7, were used for one-eighth of the structure.

The numerical values obtained for G at the crack front nodes are compared with the above reference solution on figures 8, 9, which show the good agreement between them.

Figure 6 should appear here.

Figure 7 should appear here.

Figure 8 should appear here.

Figure 9 should appear here.

Example 2 -Semi-elliptical surface crack. As a second illustrative example, the case of a semi-elliptical surface crack situated in a symmetry plane of a rectangular parallepiped is considered. The geometrical notations are given in figure 10. The aspect ratio b/a is the ellipticity of the crack (b = a for the semicircular crack). For comparison with other available solutions, the parallepiped is subjected to a uniform tension p, along the direction orthogonal to the crack plane (mode I). Owing to geometrical symmetry, only one-quarter of the initial parallelipiped is discretized into a total of 136 9-noded boundary elements; the crack front itself is made of 6 element edges, so that G and θ are interpolated using 13 nodal values. Two variant meshes M1 and M2 were used, both having six bounary elements along the crack front, so that the angular spacing between crack front nodes (using notations of figure 10) is uniform (∆θ = π/24, mesh M1, figure 11) or non-uniform (∆θ = π/32 (resp. π/16) for θ ∈ [0, π/4] (resp.

θ ∈ [π/4, π/2]), mesh M2, figure 12); θ = 0 being the angular location of the crack edge. Numerical values of the non-dimensional SIF K ⋆ I = K I /K e I were obtained from the computed values of G computed with the present method, using:

K I = 2µ 1 + ν G 1/2 K e I = 1 Q p √ πa
the shape factor Q being defined as:

Q = E(k) = π/2 0 1 -k 2 sin 2 θdθ k 2 =    1 -(b/a) 2 (b ≤ a) 1 -(a/b) 2 (b ≥ a)
They are compared to other numerical results from Newman and Raju [START_REF] Newman | An empirical stress-intensity factor equation for the surface crack[END_REF] (figures 13 to 16) and from Tanaka and Itoh [START_REF] Tanaka | New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[END_REF] (figures [START_REF] Meric | Differential and integral sensitivity formulations and shape optimization by BEM[END_REF][START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF]. The latter ones were obtained using a sophisticated spcial crack-front element which allows for the modelling of both the square-root crack front singularity and the crack edge singularity (whose exponent differs from -1/2 except for ν = 0), and are thus expected to provide the better reference solution near the crack edge. One sees on figures 14, 15 that our results show a better tendency to reproduce the small peak near the crack edge when mesh M2, which is finer than M1 near the crack edge, is used. Generally speaking, our results agree reasonably well with the reference ones. For comparison sake, we have also depicted on figures 13 to 16 the values of K ⋆ I obtained by extrapolation of the crack opening displacement. They tend to be somewhat less good than those obtained using the present approach, dspite the use of quarter-node elements along the crack front. 

Conclusion

In this paper, a novel approach for the computation of energy release rate G(s) has been presented for 3-D elastic fracture. It is based on a boundary-only approach for the formulation of perturbations of the elastic potential energy at equilibrium induced by crack front virtual advances. As such, this work parallels other investigations devoted to the FEM-based 'θ-method'.

A key ingredient in the present approach is the use of the derivative BIE which governs the elastic sensitivities on the boundary. The derivative BIE itself of course is also applicable to other kinds of situations, like shape optimization or inverse problems.

The extra computational cost associated with the building and solution of this derivative BIE is reasonable thanks to the fact that the primary and derivative BIEs share the same governing operator, which is thus build and factored only once. The numerical examples presented show the potential of the method. In particular, they tend to be more accurate than the evaluations based on displacement extrapolation produced by the same run, although quarter-node elements were used along the crack front.

Further developments should include the study of actual crack growth (including stability and non-bifurcation considerations) under Griffith criterion. This requires that the elastic potential energy be differentiated up to the second order with respect to crack front advances. Example 
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 1 Figure 1: Multiregion modelling of cracked solids: notation.
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 3 Figure 3: Geometrical support and nodal values for the discretized crack extension velocity
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 13 Figure 13: Example 2: comparison between results (shallow semielliptical surface crack, b = 0.4a)
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 15 Figure 15: Example 2: comparison between results (semicircular surface crack, b = a)
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 16 Figure 16: Example 2: comparison between results (deep semielliptical surface crack, b = 2a)
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The derivatives ( ⋆ u, ⋆ t) depend linearly on θ, through a derivative BIE to be discussed in the next section, which has to be solved for all θ in (a finite-dimensional subspace of) Θ. Thus, incorporation of the variant expression[START_REF] Nguyen | Bifurcation and stability in dissipative media (plasticity, friction, fracture)[END_REF] for ⋆ W into the variational equation[START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF] leads to a boundary-only approach to the computation of G(s). Note that it is known (see e.g.Mialon[START_REF] Mialon | Calcul de la dérivée d'une grandeur par rapport à un fond de fissure par la mèthode θ[END_REF]) that the right-hand side -⋆ W of (15) depends ultimately only on the normal crack front virtual extension θ ν | ∂Γ , not on any particular continuation of θ outside ∂Γ, although this fact is not apparent. This is an important consideration because the present use of Lagrangiantype material differentiation necessarily requires such continuation of θ.4 First-order elastic shape sensitivity formulationThe intermediary step of determining the material derivatives ( ⋆ u, ⋆

⋆ u, ⋆ t): δu = ⋆ u dp + o(dp) δt = ⋆ t dp + o(dp) This idea is consistent with the present BIE framework: the boundary ∂Ω p of a material domain Ω p is itself material, hence ( ⋆ u, ⋆ t) | ∂Ωp are completely determined by the knowledge of (u, t) | ∂Ω p+dp for the neighbouring perturbed boundary configurations. In other words, the material derivatives ( ⋆ u, ⋆ t) | ∂Ωp are taken while "staying on the moving boundary". The BIE (21) governs any elastostatic state defined on Ω p for any p ≥ 0 such that Φ(•; p) is defined. Thus taking the material derivative using formula (10) yields the governing BIE satisfied by any possible pair ( ⋆ u, ⋆ t). This operation is now carried out, with the assumption that the collocation point x also follows the material transformation (3).First, a direct application of formula[START_REF] Ph | Quelques remarques sur la mécanique de la rupture élastique[END_REF] to the integral operators I 1 , I 2 gives :⋆ I 1 (x, u) = I 1 (x, ⋆ u) + J 1 (x, u; θ)(25)⋆ I 2 (x, t) = I 2 (x, ⋆

⋆u, ⋆ t) associated with any elastostatic state (u, t)on Ω = Ω p are governed by the following derivative BIE:I 1 (x, ⋆ u) -I 2 (x, ⋆ t) = -J 1 (x, u; θ) + J 2 (x, t; θ)(32)where J 1 , J 2 are given by eqns. (31),[START_REF] Tada | Paris & Irwin -The stress analysis of crack handbook[END_REF]. This result holds for any collocation point x ∈ R 3 , hence it defines both an integral equation (with x ∈ ∂Ω p ) or an integral representation of ⋆ u (x; p) (with x interior to Ω p ). Its right-hand side is explicitly, and linearly, dependent on the transformation velocity θ. The derivative BIE (32) is weakly singular under the requirements (24),[START_REF] Tanaka | New crack elements for boundary element analysis of elastostatics considering arbitrary stress singularities[END_REF], and this is also true for all intermediate calculations used for its derivation.Comments about the derivative BIE. Firstly, it is apparent from (21) and (32) that the same integral operator govern the primary variables (u, t) and their material derivatives.Also, for a given transformation velocity θ, the derivative BIE (32) has many solutions (⋆ u, ⋆t). In order to ensure uniqueness of ( ⋆ u, ⋆ t), one has in addition to specify how the boundary conditions associated with the elastic problem evolve with Ω p . It is simplest to assume that the transformation Φ(•; p) which describes a given change of domain is chosen so that the Dirichlet and Neumann parts S u,p , S T,p of ∂Ω p are respectively transformed into the Dirichlet and Neumann parts S u,p+dp , S T,p+dp of ∂Ω p+dp , so that (u, ⋆ u) and (t, ⋆ t) are unknown (resp. known) over the same portions of the boundary. Then ( ⋆ u, ⋆ t) are linear forms over θ provided their prescribed parts are themselves linear forms over θ, thus the unknown parts of (u, t) and of ( ⋆ u, ⋆ t) share the same integral governing operator. This remark constitutes an important computational advantage: the discretized integral operator is built and factored only once, in the course of a boundary element solution to (21), then later repeatedly reused for the numerical solution of the derivative BIE (32).

A Material derivative of dS and n

For the sake of completeness, eq. ( 7) is briefly established. First the material derivative of a material vector a attached to the moving point y = Φ(Y ; p) is given by: ⋆ a= ∇θ.a (54)

Then, let S p be a material surface, and denote by (a, b) a pair of material vectors attached to a material point y = Φ(Y ; p), chosen so as to be unitary and orthogonal at a fixed value p 0 of p and to belong to the tangent plane at y to S p for all p in a neighbourhood of p 0 . For any such p, the unit normal to S p at y is thus given by

Moreover, the surface differential element dS at y is proportional to |a ∧ b|, so that:

The material derivative of the vector product a ∧ b is then taken for the particular value p 0 of p, using (54):

where the fact that (a, b, n) is an orthonormal vector frame at p = p 0 has been used. Moreover, one has:

Eq. ( 7) is then easily obtained from ( 55), ( 56), ( 57), (58).

B Modified shape functions for singular integration

Shape functions for 9-noded quadrilateral element. The classical Lagrangian shape functions for the 9-noded quadrilateral element are:

with the S i given by (41). Their derivatives N ,α are thus given by

with appropriately chosen i, j.

Modified shape functions. Singular integrations use modified shape functions N such that:

First, note that, for any pair f (ξ), g(ξ) of regular functions:

so that the N , N,α , eqs. ( 59), (60) can be readily obtained in terms of the Ŝi , Ŝ′ i , with:

In the above formula, c 1 , c 2 stand for cos ϕ, sin ϕ respectively.

Modified vector shape function Bm j . It is defined by:

From the definition (40) and using (61), Bm is given by:

Next, expression (39) for ν and the rule (61) give:

Nk,α (ρ, ϕ; η)y k

Finally, one can show that: The above formulas use the second derivatives N k,αβ of the shape functions N k .
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