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l.Introduction and motivation 

Although variational Galerkin-type boundary integral formulations 
have received a lot of attention, mostly in the applied mathematics field 
(see e.g. Refs 2, 8, 13, 19) they have led to relatively few developments 
and applications in the field of solid mechanics (see Refs 1, 14, 15, 18), 
compared to the very popular collocation boundary element methods 
(CBEM). Usually variational methods involve double surface integrals 
(see however Ref. 7, where a symmetric BIE formulation with a single 
surface integration is discussed). Variational approaches have 
nevertheless attractive conceptual features over usual collocation 
methods: known convergence results are more extensivei3 and actually 
better than those of CBEM, and they lead to symmetric stiffness-like 
BEM matrices. Moreover, as it will be seen below, the variational 
traction boundary integral equation (TBIE) requiresC o,a. interpolation
ofthe densities instead ofC l,a. at the collocation point for the collocation 
TBIE. The usual C 0 conformal shape functions may then be used. On
the other hand, the implementation of this approach for general 
engineering problems is somewhat more involved than using collocation, 
which explains perhaps its relative lack of popularity. 

In the present paper, the author investigates the statement of a 
Galerkin weighted residual symmetric BIE formulation for the mixed 
boundary value problem oflinear elastiticy. More precisely, the objective 
is to present an application of previous works on indirect regularization 
of displacement CBIEs4•5•6 and of traction BIEs14 to the derivation of a 
Galerkin formulation for mixed elastic boundary value problems in 
which either the inner or the outer integration is at most weakly singular 
while the other integration is regular. As will be seen below, this may 
improve existing Galerkin formulations for elastic problems found in 
the recent literature. 

We consider the static response of a 3D isotropic, either bounded or 
unbounded, elastic body n (Lame constants 'A,Jl), subjected to given 
tractions F on a portion ST of its boundary an while a displacement ud 
is prescribed over the complementary partS:,= an- Srofthe boundary 
(body forces are not considered here). The displacement field u(y) (y 
e Q) is then governed by the homogeneous Navier equation together
with Hooke's law: 

(1) 

and the above-indicated boundary conditions and, ifn is unbounded, 
suitable decay conditions at infinity. The comma, in eqn( 1) and throughout 
the paper, indicates partial differentiation with respect to the components 
of y, and Einstein summation convention is used. Assume that each 
point of an has an unique tangent plane, the unit normal vectorn being 
directed towards the exterior of the material body. 

Letx e R3, and U/'(xJ') be the i-th component of the (singular) 
displacement field aty due to the unit point force acting on x along ek 
direction in an infinite elastic medium (Kelvin fundamental 
displacement), andi:7...CxJ') the is-component ofthe Kelvin fundamental 
stress tensor, given by: 

(2) 

In eqn(2) and throughout the present paper, the comma used with two 
point kernels denotes differentiation with respectto the second argument 
y. The Kelvin solution possesses the following well-known symmetry
properties: 

k i k Ui (x, y) = Uk(y , x) = Ui (x, y)
a k 8 k ) k (3) -a Ui (x, y) = --a Ui (x, y = - Ui,r(x, y)Xr Yr 

and singularity properties (r = IJx-Yll denoting the euclidean distance
betweenx andy): 

Ul(x, y) = 0(1/r)

�7s(x, y) = 0(1/r2) 

Let z be a fixed point, either interior or exterior ton, (ie. not on the 
boundary an). The integral boundary representation formulas for 
displacement u and stress cr read:

KUk(z) + { Ui(y)ns(Y)�fs(z, Y) dSylan (5) 

- f ti(y)Ul(z, y) dSy = 0lan 
KO'ab(z)- Cabkr r ui(y)ns(Y)�fs,r(z, y) dSylan �) 

+ f ti(y)E�b(z, y) dSy = 0lan 
whereK= 1 (zinterior ton) orK=O(zexterior ton). In eqn(6), use has 
been made of eqn(3), which allows the exchange of differentiations with 
respect to the source point z and the integration pointy. 

Let X E an be a fixed boundary point with an unique outward unit 
normal n(x) . The limiting case z 4X in eqn(5) and in the dot-product
of eqn(6) with n(x) yield respectively the so-called displacement and 
traction collocation boundary integral equations, which are the basis of 
various collocation BEM formulations. As a matter of fact, due to the 
well-known singularity properties of the Kelvin fundamental solutions 

1



and their derivatives, eqn( 4 ), these boundary integral equations contain 
integrals which are classically defined as the result of specific limiting 
processes, namely Cauchy principal value for the r·2 kernels and 
Hadamard finite part for ther·3 kernels. More recently, it has been shown 
(see Ref.6), that these singular integrals, suitably rewritten using so­
called 'indirect regularization' methods, are actually weakly singular 
integrals provided certain regularity requirements foran, u and t are
met, (see also Ref.l l ). 

An alternative approach is to consider eqns(5) and (6) in a weighted­
residual sense, taking the work-like inner products of eqn(5) with 1iz) 
and eqn(6)with ua(z)nb(z), where t]z) and uJz) denote fictitious traction
and displacement fields on an, and then integrate the result over an 
with respect to z. This is the basic well-known idea for obtaining
Galerkin formulations, which are the subject of the present paper. By 
performing this manipulation, one can in principle arrive to a symmetric 
�eighted-residuals formulation if additional requirements onuJz), 
tk(z). 

However, difficulties arise from the strongly singular and
hypersingularnature ofthe Kelvin kernels, so thatGalerkin formulations 
cannot be obtained in a straightforward way using the procedure 
outlined_above. In Ref.l8, the authors con�ider an auxiliary closed 
surface S such that an lies in the interior of S, and define the fictitious 
fields �(z) and U0(Z) for Z E s: thus obtaining a formulatign in which the
inner integral is taken on an and the outer integral onS. At this stage, 
both surfaces and all surface fields are discretized in a usual boundary 
element fashio11:. Finally, in order to tackle the singularity problem, they 
take the limit S � an at the element integral level. Their numerical 
implementation of the method hence relies upon an analytical treatment 
of the limiting process in the singular double element integrals, which 
they actually perform for 2D situations, straight constant or linear 
elements, using complex variable techniques. While fully valid in a 
fundamental viewpoint, this treatment may induce severe practical 
limitations regarding the choice of elements and interpolation functions. 

The purpose of the present paper is the statement of a regularized 
symmetric Galerkin BIE formulation, identical to the one of Sirtoriet 
al. in its essence but applicable to any choice of boundary element 
interpolation. Our formulation relies upon suitable treatments, including 
regularization, of the displacement and traction boundary integral 
equations, which are made before any discretization. This avoids the 
subsequent cumbersome limiting process at the element integral level. 

2.Regularized displacement BIE 

This step relies upon the generalized rigid-body identity6 which reads: 

Vz E R3- {)fl 
n unbounded ( �>:- 'Y)bki + { ns(Y)lan n bounded (?) 

'Efs (z, y) dSy = 0 

Now eqn(7) is multiplied byu/z) and subtracted from eqn(5), yielding: 

{Uk(z) + { (tli(Y)- ui(z)) 'Efs(z, y) dSylan 
- { ti(y)Uik(z, y) dSy = 0lan 

(8) 

where the coefficienty assumes the same meaning as in eqn(7). Finally, 
let x e an and assume u. e Ql·a. at x, where C"'· .... denotes the set of 
functions m times contin�ously differentiable such that3(a,C) > 0,
I u; (x) -u; (y) I�IJx-yJJc:t. Then all integralsineqn(8)are weakly singular
in the limft z � x. As a consequence, eqn(8) taken for x e an is the
regularized DBIE.4 

Now, one can take the inner product of eqn(8) written forz=x E an 
with a fictitious surface traction fieldfcx) and integrate the result over
an again. This leads to: 

'Y { ik(z) {uk(z) +  { (ui(Y)lan lan 

-u;(x))Ef,(x,y)dSy } dSx
(9) 

- { { ti(y)tk(z)Uik(x,y)dSydSxlan lan 0 

It is worth noting that, for the result of eqn(9) to be valid, the surface 
fields t and u must respectively be piecewise continuous and C o,a (the
latter condition ensures that the factor u(y)- u(x) actually weakens the
singularity of the inner integral). These are indeed the very conditions 
under which the integrals in the collocation DBIE, eqn ( 5), are convergent, 
see Ref.l2. 

3.Regularized traction BIE 

Here, following the approach of Sirtori et al., I& an auxiliary regular 
surface S, which completely surrounds an, is inJroduced, such that 
there exists a one-to-one mapping X E an � Z E S. !_:et US introduce a
fictitious displacement field u(z) defined for z E S. Now th� inner 
product of eqn(6) with ii(z) ® n(z) is taken and integrated overS, which 
gives: 

"is u.(z) { O"ab(z)n,(z) + ln l;(y)n,(z)

E�,(z, y) dSy } dSz - Cabh is n,(z)Ua(z) (10)

l Ui(y)n�(y)'Efs,r(z, y) dSy dSz 0 lan 
Let us investigate the two double surface integrals in eqn(1 0). One has: 

( { ti(y)ua(z)nb(z)'E�b(z,y)dSydSzls lan 
ln t;(y) {is (iia(z)- u.(y)) n,(z)E�,(z, y) dSz

+ iia(Y) [is n,(z )E�,(z, y) dSz] }  dSy
(1\) 

ln t;(y) { ii;(YHt-�<)+ is (Ua(z)

- U.(y)) n,(z)E�,(z, y) dSz} dSy

where identity' eqn(7) has been used and integrations over§ and an 
exchanged. At this point, one can consider the limiting caseS� an in 
eqn( 11 ). Since the inner integral over S becomes only weakly singular, 
while the subsequent integral over an is regular, the limiting <;_,ase of 
eqn(11) is simply the same formula wherean is substituted toS andx 
E an to z  E S: 

_lim ( { ti(y)ua(z)nb(z)'E�b(z, y) dSy dSz
ZES ..... zEanls lan 

f ti(Y) {ui(Y)(!-K)+ f (ua(z) (12) lan lan 
-u.(y)) n,(x )E�,(z, y) dSx } dSy

In eqn( 12), the outer integral is weakly singular integrals while the inner 
is regular (they have to be considered in this order, because the inner 
integral, considered alone, is of the strongly singular type). 

Next, let us consider the integral in eqn(10) containing the 
hypersingular kernel Cabkr :L�.v· In this case, we will use two successive
integrations by parts. Following8ecache1 and Nishimura& Kobayashi,14 
there exists a fourth-order tensor B(ZJ' ), associated to the Kelvin stress
tensor, such as, for any z -:f. y: 
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Biqks(z, y) 

ejfqelhsBiqks,Jh(z, y)

Jleiepekgr (Deg- r,er,9)
81r(.:\ + 2J1) r 

(13) 

(14) 

where each are the components of the permutation tensor. Moreover, the 
Stokes formula for a closed surfacer reads: 

[ eabcna(Y)f,b(Y) dSy = 0 (15) 

for any continuous and piecewise continuously differentiable function 
fly) (if fly) is only piecewise continuous, identity ( 15) would also present 
contour integrals over lines accross which/has a jump). It is worth 
emphasizing that njy) fb(y) can be expressed in terms of tangential
derivatives off Using eqn(13) and applying eqn(15)jwice (once for 
each of the two integration variables ye an and z e S), one has: 

( ui (y)ni(z)Cijab { ��1,b(z, y)nr(y)uk(Y) dSy dSzls lan 
- ( iii(y)ejfqnj(z) { Biqks,t(z, y)erhsnr(Y)ls lan 

uk,h(Y) dSy = is ejfqnj(z)iii,t(Y) (16) 

{ Biqks(z, y)elhsnl(y)uk,h(Y) dSylan 
Equation ( 14) shows that the kernel B; "-'.(x,y) has a llx-yll"1 singularity. 

Hence, the first (either inner or outer) s'iirface integration in eqn( 16) is 
of aweaklysingularnature, while the otheris regular.As a consequence, 
the limiting cases� an of eqn(16),j_lere again, is simply_the same 
formula where an is substituted to sand X E an to X E S: 

uk(y)dSydSz = { ejfqnj(z)iii,J(x)lan (17) 

{ Biqks(z, y)erhsnr(y)uk,h(Y) dSy dSxlan 
-

Finally, collecting eqns(12), (17), the limiting form of (IO) whenS 
� an is given by: 

E�, ( z, y) dSy } dS., - l.n e; 1, n; ( z )U;,J( z) (18) 

{ Biqks(z, y)erhsnr(y)uk,h(Y) dSy dSx 0 lan 
where the coefficient a assumes the same meaning as in eqn(7). 

One can note that, for the result ( 18) to be valid, the surface fields t 
and u must respectively be piecewise continuous and QJ.a. These 
regularity requirements are identical to those for eqn(9). Likewise, the 
surface fictitious displacement u must also be C o.a. In contrast, one can 
note that the collocation traction BIE eqn( 6) requires that u be C1·a, see 
Refs 6, 9 and 11. The latter fact is recognized as serious as far as 
numerical implementation is considered because the development of 
general C1 boundary elements for 3D problems is problematic. 

4.Galerkin boundary integral formulation for the mixed 
boundary-value problem 

Now let us apply the previous results to the statement of a variational 
BIE formulation for the mixed elastic boundary-value problem. More 
precisely, eqns(9) and (18) are considered with u E V11, t E vT 

(19) 

V T = fill piecewise continuous on an and t(x) = 0 V X ST } (20) 

Splitting an into its components Sit and S7, eqns(9), and (18) then lead 
to the following variational equations: 

{ Buu(u, u) + Btu(t, u) 
But(u, t) + Btt(t, t) 

.Cuu(u) + .Ctu(u) 

.Cut(t) + .Ctt(t) 

where 

But(u, t) 

Btt(u,t) - { { ti(y)tkJsu Jsu 
(x)Uik(x, y) dSy dSx

Btu(t, u) 

Buu(u,u) 

.Cu ( U) -L t f ( Z ) { ')'ii; (X )

(21) 

(22) 

(23) 

(25) 

+ L
T 

(U.(z)-u.(y)) n,(x)E�,(x, y) dSy } dSz
(27) 

The given displacements u0 and tractions tD are incorporated in the 
linear forms�" and�,. From eqns(21) to (2 7) and taking the symmetry 
properties of eqn(3) into account, the following symmetry properties, 
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which are expected as classical features ofGalerkin BIE methods like 
e.g. in Ref.l8, are apparent: 

Vu, u E Vu, Vt, t E VT 

Buu(u, u) = Buu(u, u) Btt(t, t) = Btt(t, t) (28) 

But(1t, t) = Btu(t, u) 

The variational BIE formulation (21) is the main result of the present 
paper. Indeed it must be understood as a reformulation of the variational 
symmetric BIE formulation developed in Ref.18. The difference between 
the two formulations, which constitutes the main motivation of this 
paper, is that our result (21) has undergone a preliminary regularization 
treatment, using singularity exclusion methods developed in our previous 
works (e.g. in Ref.6) together with a stress function and integration by 
parts method which has been previously used, e.g. in Refs 1 and 14 for 
the BIE modelling of crack problems. As a result, our variational 
formulation can be expected to be more flexible in aB EM implementation 
point of view, since boundary element geometrical and field interpolation 
of any degree can be incorporated into eqn(21) without difficulty, as will 
be briefly shown in the next section. 

5.Numerical implementation of the regularized variational 
BIE 

The symmetry properties (28) allows a reduction of computational 
effort for both the matrix building and the linear system solution steps, 
which have been extensively discussed elsewhere. We rather wish to 
focus the discussion on the treatment of the singular surface integrals 
which appear in eqn(21 ), in the simplest case ofisoparametric conformal 
BEM interpolation. The surface on is divided into boundary elements, 
which are mapped onto areforence element E0, which is generally the 
square�= (�1

'�2) e [-1,1]2 or the triangle 0 � �1 + �2 � 1. Let the 
discussion be restricted to the consideration of a single element£. The 
location of a pointy onE is expressed in terms of n shape functions A* 
and n geometrical nodesAk (k = 1 ..... n) located on the boundary of£: 

({ E Eo) (29) 

Then, for (a,P)= 1,2, the natural basis (a.), metric tensor (gcx�) and unit 
normal n onE are given by: 

({ E Eo) 
The shape functions Nq are also used for the interpolation of the 
fields u, t, ii, i. Moreover, it can be shown that: 

VyE E y/g([jn( {)eabcnb(Y( {) )f,c(Y( {))

at 
= ecxf33 O�cx a/3

(31) 

Let rt = ( rt I' rt2) denote the antecedent of x on £0• Foil owing a common 
practice in BEM (see e.g. Ref.l7), set �1 = 111 + pcos a, �2 = 112 + psin 
a. Then: 

dSy = y/g([jd6d6 = jll(fjpdpda = J(e)pdpda (32) 
A A A A 

and the regular quantitiesNq(p,a;11), r(p,a;11), Uf' (p,a;rt), L.! (p,a;11), 
�iqks,elp,a;T'I) are defined by: 

(33) 

A A A A 
where f(p,a;11) * 0 and U(p,a;11), L.(p,a;11) and Aiqh.eg(p,a;11) are 
regular at p = 0. Hence the singular surface integrals wliich occur in 
eqn(21) can be written: 

1 ns(Y)�fs(x, y) ( tli(Y)- Ui( X)) dSy 
E (34) 

ul L n,(y)f:7,(p, a; •l)M•(p, a; '1)J(e)dpda

(35) 

L uhx, y)ti(Y) dSy

tlj Ul(p, a; 1J)l\1q({)J({)dpda
E 

(36) 

Equations (34), (35) and (36) take full advantage of the regularization. 
Their numerical evaluation of can be performed with standard product 
Gaussian quadrature formulas, provided a further coordinate change 
(p,a) � (vl'v2) is made in eqn(34) in order to recover an integral over 
the square [-1, 1 f.4 

The variational formulation (21) involves double surface integrals, 
but at most one of the two surface integration is singular, the other being 
always regular. In such case, the singular integration should be performed 
first. 

6.Concluding comments

In this paper, a symmetric Galerkin regularized BIE formulation is 
established. Its main feature is that, before any discretization, one of the 
successive surface integrations is at most weakly singular while the 
other is regular. Thus, the present formulation, which may be understood 
as an improvement of the one developed in Ref. IS, provides a basis for 
the numerical treatment of general 3D situations. Conventional boundary 
element interpolations of any degree for the geometry as well as the 
unknowns can be implemented in a straightforward manner, using 
conventional techniques for numerical integration together with a now 
well-established singularity cancellation method at the shape function 
level. 

The present approach can be readily applied to other similar situations, 
such as potential problems or elastodynamic problems. Moreover, 
similar formulations are already known in the literature, notably about 
variational formulations for crack problems (see references quoted 
herein). 
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