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A REGULARIZED GALERKIN SYMMETRIC BIE FORMULATION FOR MIXED ELASTIC BOUNDARY VALUE PROBLEMS

HAL is

Although variational Galerkin-type boundary integral formulations have received a lot of attention, mostly in the applied mathematics field (see e.g. Refs 2, 8, [START_REF] Nedelec | Integral equations with non integrable kemels[END_REF][START_REF] Wendland | Mathematical properties and asymptotic error estimates for elliptic boundary element methods[END_REF] they have led to relatively few developments and applications in the field of solid mechanics (see Refs 1,[START_REF] Nishimura | A boundary integral equation method for an inverse problem related to crack detection[END_REF][START_REF] Parreira | On the implementation of the Galerkin approach in the boundary element method[END_REF][START_REF] Sirtori | A Galerkin symmetric boundary element method in elasticity: formulation and implementation[END_REF], compared to the very popular collocation boundary element methods (CBEM). Usually variational methods involve double surface integrals (see however Ref. [START_REF] Bui | On the variational boundary integral equations in elastodynamics with the use of conjugate functions[END_REF], where a symmetric BIE formulation with a single surface integration is discussed). Variational approaches have nevertheless attractive conceptual features over usual collocation methods: known convergence results are more extensivei3 and actually better than those of CBEM, and they lead to symmetric stiffness-like BEM matrices. Moreover, as it will be seen below, the variational traction boundary integral equation (TBIE) requiresC o,a. interpolation ofthe densities instead ofC l,a. at the collocation point for the collocation TBIE. The usual C 0 conformal shape functions may then be used. On the other hand, the implementation of this approach for general engineering problems is somewhat more involved than using collocation, which explains perhaps its relative lack of popularity.

In the present paper, the author investigates the statement of a Galerkin weighted residual symmetric BIE formulation for the mixed boundary value problem oflinear elastiticy. More precisely, the objective is to present an application of previous works on indirect regularization of displacement CBIEs4•5•6 and of traction BIEs14 to the derivation of a Galerkin formulation for mixed elastic boundary value problems in which either the inner or the outer integration is at most weakly singular while the other integration is regular. As will be seen below, this may improve existing Galerkin formulations for elastic problems found in the recent literature.

We consider the static response of a 3D isotropic, either bounded or unbounded, elastic body n (Lame constants 'A,Jl), subjected to given tractions F on a portion S T of its boundary an while a displacement u d is prescribed over the complementary partS:,= an-Srofthe boundary (body forces are not considered here). The displacement field u(y) (y e Q) is then governed by the homogeneous Navier equation together with Hooke's law: [START_REF] Hamdi | Fonnulation variationnelle par equations integrates pour le calcul de champs acoustiques lineaires proches et lointains[END_REF] and the above-indicated boundary conditions and, ifn is unbounded, suitable decay conditions at infinity. The comma, in eqn( 1) and throughout the paper, indicates partial differentiation with respect to the components of y, and Einstein summation convention is used. Assume that each point of an has an unique tangent plane, the unit normal vectorn being directed towards the exterior of the material body.

Letx e R3, and U/'(xJ') be the i-th component of the (singular) displacement field aty due to the unit point force acting on x along ek direction in an infinite elastic medium (Kelvin fundamental displacement), andi:7...C xJ') the is-component ofthe Kelvin fundamental stress tensor, given by:

(2)

In eqn [START_REF] Bendali | Prob leme aux limites exterieur et interieur pour le systeme de Maxwell en regime harmonique[END_REF] and throughout the present paper, the comma used with two point kernels denotes differentiation with respectto the second argument y. The Kelvin solution possesses the following well-known symmetry properties:

k i k Ui (x, y) = Uk(y, x) = Ui (x, y) a k 8 k ) k (3) 
-a Ui (x, y) = --a Ui (x, y = -Ui,r(x, y)

Xr Yr and singularity properties (r = IJx-Yll denoting the euclidean distance betweenx andy):

Ul(x, y) = 0(1/r) � 7s(x, y) = 0(1/r2)

Let z be a fixed point, either interior or exterior ton, (ie. not on the boundary an). The integral boundary representation formulas for displacement u and stress cr read:

KUk(z) + { Ui(y)ns(Y)� fs (z, Y) dS y lan (5) 
f ti(y)Ul(z, y) dS y = 0 lan KO'ab(z)-Cabkr r ui(y)ns(Y)�fs,r(z, y) dS y lan �)

+ f ti(y)E� b(z, y) dS y = 0 lan whereK= 1 (zinterior ton) orK=O(zexterior ton). In eqn(6), use has been made of eqn(3), which allows the exchange of differentiations with respect to the source point z and the integration pointy.

Let X E an be a fixed boundary point with an unique outward unit normal n(x) . The limiting case z 4X in eqn [START_REF] Bonnet | Regularized boundary integral equations for three dimensional bounded or unbounded elastic bodies containing curved cracks of arbitrary shape under dynamic loading[END_REF] and in the dot-product of eqn [START_REF] Bonnet | Regularization of the displacement and traction BIE for 3D elastodynamics using indirect methods[END_REF] with n(x) yield respectively the so-called displacement and traction collocation boundary integral equations, which are the basis of various collocation BEM formulations. As a matter of fact, due to the well-known singularity properties of the Kelvin fundamental solutions and their derivatives, eqn( 4 ), these boundary integral equations contain integrals which are classically defined as the result of specific limiting processes, namely Cauchy principal value for the r•2 kernels and Hadamard finite part for ther•3 kernels. More recently, it has been shown (see Ref.6), that these singular integrals, suitably rewritten using so called 'indirect regularization' methods, are actually weakly singular integrals provided certain regularity requirements foran, u and t are met, (see also Ref.l l ).

An alternative approach is to consider eqns( 5) and ( 6) in a weighted residual sense, taking the work-like inner products of eqn( 5) with 1iz) and eqn [START_REF] Bonnet | Regularization of the displacement and traction BIE for 3D elastodynamics using indirect methods[END_REF]with ua(z)nb(z), where t]z) and uJz) denote fictitious traction and displacement fields on an, and then integrate the result over an with respect to z. This is the basic well-known idea for obtaining Galerkin formulations, which are the subject of the present paper. By performing this manipulation, one can in principle arrive to a symmetric �eighted-residuals formulation if additional requirements onuJz),

t k (z) .
However, difficulties arise from the strongly singular and hypersingularnature ofthe Kelvin kernels, so thatGalerkin formulations cannot be obtained in a straightforward way using the procedure outlined_above. In Ref.l8, the authors con�ider an auxiliary closed surface S such that an lies in the interior of S, and define the fictitious fields �(z) and U0(Z) for Z E s: thus obtaining a formulatign in which the inner integral is taken on an and the outer integral onS. At this stage, both surfaces and all surface fields are discretized in a usual boundary element fashio11:. Finally, in order to tackle the singularity problem, they take the limit S � an at the element integral level. Their numerical implementation of the method hence relies upon an analytical treatment of the limiting process in the singular double element integrals, which they actually perform for 2D situations, straight constant or linear elements, using complex variable techniques. While fully valid in a fundamental viewpoint, this treatment may induce severe practical limitations regarding the choice of elements and interpolation functions.

The purpose of the present paper is the statement of a regularized symmetric Galerkin BIE formulation, identical to the one of Sirtoriet al. in its essence but applicable to any choice of boundary element interpolation. Our formulation relies upon suitable treatments, including regularization, of the displacement and traction boundary integral equations, which are made before any discretization. This avoids the subsequent cumbersome limiting process at the element integral level.

2.Regularized displacement BIE

This step relies upon the generalized rigid-body identity6 which reads:

Vz E R3-{)fl n unbounded ( �>:-'Y)bki + { ns(Y) lan n bounded (?)
'Efs (z, y) dS y = 0

Now eqn( 7) is multiplied byu/z) and subtracted from eqn(5), yielding:

{Uk(z) + { (tli(Y)-ui(z)) 'Efs(z, y) dS y lan -{ ti(y)U i k(z, y) dS y = 0 lan (8)
where the coefficienty assumes the same meaning as in eqn [START_REF] Bui | On the variational boundary integral equations in elastodynamics with the use of conjugate functions[END_REF] ( { ti(y)ua(z)nb(z)'E�b(z,y)dS y dS z ls lan l n t;(y) {is (iia(z)-u.(y)) n,(z)E�,(z, y) dS z + iia(Y) [is n,(z )E�,(z, y) dSz]} dS y (1\) l n t;(y) { ii;(YHt-�<)+ is (Ua(z) -U.( y)) n,(z)E�,(z, y) dS z } dSy where identity' eqn [START_REF] Bui | On the variational boundary integral equations in elastodynamics with the use of conjugate functions[END_REF] has been used and integrations over § and an exchanged. At this point, one can consider the limiting caseS� an in eqn( 11 ). Since the inner integral over Sbecomes only weakly singular, while the subsequent integral over an is regular, the limiting <;_,ase of eqn( 11) is simply the same formula wherean is substituted toS andx E antoz E S: 

{ Biqks(z, y)elhsnl(y)uk,h(Y) dS y lan Equation ( 14) shows that the kernel B; "-'.(x,y) has a llxy ll"1 singularity.

Hence, the first (either inner or outer) s'ii rface integration in eqn( 16) is of aweaklysingularnature, while the otheris regular. As a consequence, the limiting case s � an of eqn( 16),j_lere again, is simply_the same formula where an is substituted to sand X E an to X E S:

uk(y)dSydSz = { ejfqnj(z)iii,J(x) lan

(17)
{ Biqks(z, y)erhsnr(y)uk,h(Y) dS y dSx lan -Finally, collecting eqns( 12), ( 17), the limiting form of (IO) whenS � an is given by: E�, ( z, y) dS y } dS., -l. n e; 1, n; ( z )U;,J( z) (18) { Biqks(z, y)erhsnr(y)uk,h(Y) dS y dS x 0 lan where the coefficient a assumes the same meaning as in eqn [START_REF] Bui | On the variational boundary integral equations in elastodynamics with the use of conjugate functions[END_REF].

One can note that, for the result ( 18) to be valid, the surface fields t and u must respectively be piecewise continuous and QJ.a. These regularity requirements are identical to those for eqn [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF]. Likewise, the surface fictitious displacement u must also be C o.a. In contrast, one can note that the collocation traction BIE eqn( 6) requires that u be C 1 •a, see Refs 6, 9 and 11. The latter fact is recognized as serious as far as numerical implementation is considered because the development of general C 1 boundary elements for 3D problems is problematic.

4.Galerkin boundary integral formulation for the mixed boundary-value problem

Now let us apply the previous results to the statement of a variational BIE formulation for the mixed elastic boundary-value problem. More precisely, eqns( 9) and ( 18) are considered with u E V 11 , t E vT [START_REF] Wendland | Mathematical properties and asymptotic error estimates for elliptic boundary element methods[END_REF] V T = fill piecewise continuous on an and t(x) = 0 V X S T } (20) Splitting an into its components S i t and S 7 , eqns [START_REF] Guiggiani | A general algorithm for the numerical solution of hypersingular boundary integral equations[END_REF], and ( 18) then lead to the following variational equations: { Buu(u, u) + Btu(t, u) But(u, t) + Btt(t, t)

.Cuu(u) + .Ctu(u) .Cut(t) + .Ctt(t)

where But(u, t)

Btt(u,t) -{ { ti(y)tk Jsu Jsu (x)Ui k ( x , y) dS y dS x Btu(t, u) Buu(u,u) .Cu ( U) -L t f ( Z ) { ')'ii; (X ) (21) (22) (23) (25) 
+ L T (U.(z)-u.(y)) n,(x)E�,(x, y) dSy } dS z 

5.Numerical implementation of the regularized variational BIE

The symmetry properties (28) allows a reduction of computational effort for both the matrix building and the linear system solution steps, which have been extensively discussed elsewhere. We rather wish to focus the discussion on the treatment of the singular surface integrals ({ E Eo)

Then, for (a, P)= 1,2, the natural basis (a.), metric tensor (gcx�) and unit normal n onE are given by:

({ E Eo)

The shape functions Nq are also used for the interpolation of the fields u, t, ii, i. Moreover, it can be shown that: and the regular quantitiesNq( p,a;11), r(p, a;11), Uf' (p,a;rt), L.! (p, a;11 ), � i q ks, elp ,a ;T'I ) are defined by: (33) 1 ns(Y)�fs(x, y) ( tli(Y)-Ui( X)) dSy The variational formulation (21) involves double surface integrals, but at most one of the two surface integration is singular, the other being always regular. In such case, the singular integration should be performed first.

VyE E y/g([jn( {)eabcnb(Y( {) )f, c(Y( { )) at = ecxf33 O �cx a/3 ( 

6.Concluding comments

In this paper, a symmetric Galerkin regularized BIE formulation is established. Its main feature is that, before any discretization, one of the successive surface integrations is at most weakly singular while the other is regular. Thus, the present formulation, which may be understood as an improvement of the one developed in Ref. IS, provides a basis for the numerical treatment of general 3D situations. Conventional boundary element interpolations of any degree for the geometry as well as the unknowns can be implemented in a straightforward manner, using conventional techniques for numerical integration together with a now well-established singularity cancellation method at the shape function level.

The present approach can be readily applied to other similar situations, such as potential problems or elastodynamic problems. Moreover, similar formulations are already known in the literature, notably about variational formulations for crack problems (see references quoted herein).

0

  Finally, let x e an and assume u. e Ql•a. at x, where C"'• .... denotes the set of functions m times contin�ously differentiable such that3(a,C) > 0, I u ; (x) -u ; (y) I�IJx-yJJc:t. Then all integrals ineqn(8)areweakly singular in the limft z � x. As a consequence, eqn(8) taken for x e an is the regularized DBIE.4Now, one can take the inner product of eqn[START_REF] Cortey-Dumont | Simulation numerique de probU::m esde diffraction d'ondes par une fissure[END_REF] written forz=x E an with a fictitious surface traction fieldfcx) and integrate the result over an again. This leads to:'Y { ik (z) {uk(z)+ { (ui(Y) lan lan-u;(x))Ef,(x,y)dS y } dS x(9)-{ { ti(y)tk(z)U i k(x,y)dS y dS x lan lanIt is worth noting that, for the result of eqn(9) to be valid, the surface fields t and u must respectively be piecewise continuous and C o,a (the latter condition ensures that the factor u(y)u(x) actually weakens the singularity of the inner integral). These are indeed the very conditions under which the integrals in the collocation DBIE, eqn[START_REF] Bonnet | Regularized boundary integral equations for three dimensional bounded or unbounded elastic bodies containing curved cracks of arbitrary shape under dynamic loading[END_REF], are convergent, see Ref.l2.

3 .

 3 Regularized traction BIEHere, following the approach of Sirtori et al., I& an auxiliary regular surface S, which completely surrounds an, is inJroduced, such that there exists a one-to-one mapping X E an � Z E S. !_:et US introduce a fictitious displacement field u(z) defined for z E S. Now th� inner product of eqn[START_REF] Bonnet | Regularization of the displacement and traction BIE for 3D elastodynamics using indirect methods[END_REF] with ii(z) ® n(z) is taken and integrated overS, which gives:"is u.(z) { O"ab(z)n,(z) + l n l;( y)n,(z) E�,( z, y) dS y } dS z -Cabh is n,(z)Ua(z) (10) l Ui( y)n �(y)'Efs,r(z , y) dSy dS z 0 lan Let us investigate the two double surface integrals in eqn(1 0). One has:

_lim(

  { ti(y)ua(z)nb(z)'E�b(z, y) dS y dS z ZES .... . zEanls lan f ti(Y) {ui(Y)(!-K)+ f (ua(z)[START_REF]Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoe1asticity[END_REF] lan lan -u.(y)) n,(x )E�,( z, y) dSx } dSyIn eqn[START_REF]Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoe1asticity[END_REF], the outer integral is weakly singular integrals while the inner is regular (they have to be considered in this order, because the inner integral, considered alone, is of the strongly singular type).Next, let us consider the integral in eqn(10) containing the hypersingular kernel Cabkr :L�. v• In this case, we will use two successive integrations by parts. Following8ecache1 and Nishimura& Kobayashi,14 there exists a fourth-order tensor B(ZJ' ), associated to the Kelvin stress tensor, such as, for any z -:f. y: the components of the permutation tensor. Moreover, the Stokes formula for a closed surfacer reads: [ eabcna(Y)f,b(Y) dS y = 0 (15) for any continuous and piecewise continuously differentiable function fly) (if fly) is only piecewise continuous, identity ( 15) would also present contour integrals over lines accross which/has a jump). It is worth emphasizing that njy) fb(y) can be expressed in terms of tangential derivatives off Using eqn(13) and applying eqn(15)jwice (once for each of the two integration variables y e an and z e S), one has: ( u i (y)ni(z)Cijab { ��1 ,b(z , y)nr(y)uk(Y) dS y dS z ls lan -( iii(y)ejfqnj(z) { Biqks,t(z, y)erhsnr(Y) ls lan uk,h(Y) dS y = is ejfqnj(z)iii,t(Y)

  given displacements u 0 and tractions tD are incorporated in the linear forms� " and� , . From eqns(21) to (2 7) and taking the symmetry properties of eqn(3) into account, the following symmetry properties, which are expected as classical features ofGalerkin BIE methods like e.g. in Ref.l8, are apparent:Vu, u E Vu, Vt , t E VT Buu(u, u) = Buu(u, u ) Btt(t, t) = Btt(t, t) (28) But(1t, t) = Btu(t, u )The variational BIE formulation (21) is the main result of the present paper. Indeed it must be understood as a reformulation of the variational symmetric BIE formulation developed in Ref.[START_REF] Sirtori | A Galerkin symmetric boundary element method in elasticity: formulation and implementation[END_REF]. The difference between the two formulations, which constitutes the main motivation of this paper, is that our result (21) has undergone a preliminary regularization treatment, using singularity exclusion methods developed in our previous works (e.g. in Ref.[START_REF] Bonnet | Regularization of the displacement and traction BIE for 3D elastodynamics using indirect methods[END_REF]) together with a stress function and integration by parts method which has been previously used, e.g. in Refs 1 and 14 for the BIE modelling of crack problems. As a result, our variational formulation can be expected to be more flexible in aB EM implementation point of view, since boundary element geometrical and field interpolation of any degree can be incorporated into eqn(21) without difficulty, as will be briefly shown in the next section.

  which appear in eqn(21 ), in the simplest case ofisoparametric conformal BEM interpolation. The surface on is divided into boundary elements, which are mapped onto areforence element E0, which is generally the square�= (�1 ' � 2 ) e [-1,1] 2 or the triangle 0 � � 1 + �2 � 1. Let the discussion be restricted to the consideration of a single element£. The location of a pointy onE is expressed in terms of n shape functions A* and n geometrical nodesAk (k = 1 ..... n) located on the boundary of£:

  31) Let rt = ( rt I ' rt 2 ) denote the antecedent of x on £ 0 • Foil owing a common practice in BEM (see e.g. Ref.l7), set �1 = 111 + pcos a, � 2 = 112 + psin a. Then: dSy = y/g([jd6d6 = jll(fj pdpda = J(e)pdpda (32)

  f(p,a;11) * 0 and U(p,a;11), L.(p,a;11) and Aiqh.eg(p,a;11) are regular at p = 0. Hence the singular surface integrals wliich occur in eqn(21) can be written:

E ( 34 )

 34 ul L n,( y )f:7,(p, a; •l)M•(p, a; '1)J(e)dpda (35) L uhx, y)ti(Y) dSy tlj Ul(p, a; 1J ) l\1q ( { ) J ( { )dpda E (36) Equations (34), (35) and (36) take full advantage of the regularization. Their numerical evaluation of can be performed with standard product Gaussian quadrature formulas, provided a further coordinate change (p,a) � (vl'v2) is made in eqn(34) in order to recover an integral over the square [-1, 1 f.4