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An 
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Marc Bonnet 

investigation for a so inverse problem in linear 

Laborato ire de M �nique des Solides (centre commun CNRS - X- M ines - Pants), Ecole Polytech­
n ique, 91128 Pala iseau Cedex, France 

Resume. On cons idtre le probltme de !'identification de la vitesse normale d'une structure vi­
brante a partir de mesures du champ de pression rayonnt. Dans un premier temps, des ind ications 
qual itat ives sur ce probltme inverse soot obtenues sur le cas particul ier de la sphtre vibrante , pour 
laquelle la pression rayonnte est connue analytiquement Ensuite, dans le but de traiter une surfa ce 
quelconque, on dtveloppe certains aspects alg tbriques de la mtthode d'inversion gaussienne , dans 
le but d' ttudier la stabil isation de !' inversion et certains indicateurs de confiance; le probltme di­
rect d iscrttist est alors construit par la mtthode des tltments finis de frontitre. On prtsente enfin 
des resultats num triques, afi.n de mettre en tvidence !'influence sur !'inversion de certains facteurs : 
informations a pri01i, mesures perturbees, tli mination algori thmique des mesures aberrantes. 

Abstract. We are interested in reconstructing the normal vebcity of a vibrating body using mea­
sured values ofthe radiated pressure fi.eld. Firstly, some qual itative informations about the behavio ur
of this inverse problem are obta ined through the examination of the particular case of the vibrating 
sphere, using its well-known analytical solution. Then, as we wish to deal with a vibrating body of 
arbitrary shape, we devebp some algebraic features of the so-called Gaussian inversion method in
order to stabil ize the inversion and obta in confidence ind icators on the result; in th is case the direct 
problem is d iscretized using the boundary element method. Finally some numerical resul ts are pre­
sented in order to h ighl ight the influence of several factors on the result: a priori informations, noisy
experimental data , detection and elimination of erroneous data, if any. 

Inroduction. 

This paper deals with the problem of evaluating the normal velocity field U on a vibrating struc­
ture (which is represented from the standpoint of acoustical radiation by a closed vibrating surface 
S) through the knowledge of measured values of the radiated pressure field p; the vibration of S
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is assumed to radiate in an infinite space filled with an acoustical fluid (air) of specific mass p and 
sound wave velocity c. Several recent papers have been devoted to this inverse problem some­
times called "acoustic holography". The first studies consider coordinate systems for which the 
Helmholtzequation is separable (cartesian, cylindrical, spherical, ... ), and geometrical configura­
tions such that both the vibrating surface and the measurement points are located on coordinate 
surfaces. In this case, the wave field is analytically expanded in terms of functions of two coordi­
nates associated to a family of separable surfaces and propagated along the third coordinate in 
order to relate the measured pressures and the normal velocities [1]. More recently, other studies 
(see e.g. [2, 3) for arbitrary 3D and axisymmetric vibrating surfaces respectively) deal with arbi­
trary non-separable geometries, the relation between the exterior pressure field and the normal 
velocity on S being derived, in a discrete form, from the well-known boundary integral equations 
and boundary integral representation formulae of linear acoustics (for further reference about 
boundary integral equations in acoustics and engineering science see for example [4-7) and the 
references herein). These two approaches are considered in [8, 9) for plane holography problems. 

The present work pursues the latter line. Its initial motivation is the integration of the inversion 
algorithm into a treatment process which would allow one to estimate the mechanical loadings act­
ing on vibrating structures, given measured values of the radiated pressure field. We consider here 
the above-stated inverse problem from the point of view of the inversion methodology. Accord­
ingly we study some algorithmic details and propose several improvements for a certain approach 
devoted to the numerical solution of linear ill-posed problems, namely the "Gaussian inversion", 
which we apply here in the framework of acoustical radiation in an infinite space. 

The Gaussian inversion is initially derived by Thrantola as a particular case of his concept of
"stochastic inversion" in his textbook devoted to inverse problems [10). We view this approach as 
an alternative to the singular value decomposition method which has been used in the works [ 2) 
[3) mentioned above to  solve numerically the inversion problem. The Gaussian inversion method,
which incorporates a priori information, is stable with respect to data noise. Furthermore the
Gaussian framework involves covariance operators, thus allowing the derivation of easily inter­
pretable confidence or dispersion indicators associated to the numericalsolution. Accordingly we 
·investigate here some algorithmic features and improvements for this method. First, as we are in­
terested here in solving inverse problems involving complex-valued data, unkowns and operators,
we work out the proper meaning of some quantities involved in the Gaussian inversion process,
especially the covariance matrices associated to complex random variables. Then we give some
algebraic developments leading to the following improvements of the Gaussian inversion strategy:
evaluation of the influence of a single datum on the inversion result, numerical computation of
confidence indicators and a posteriori detection of outliers in the data set, all of them requiring
only a moderate additional computer time cost. 

An inversion software, which incorporates the above-mentioned algebraic developments, has
been written as a part of the present work. 

In the first part of this paper, we state the inverse problem and highlight its ill-posedness using 
the analytical solution available for the particular case of the vibrating sphere. The improvements 
of the Gaussian inversion method are the subject of part two, part three being devoted to the 
results of numerical tests. 

1. Inversion or pressure field measurements: statement or the problem.

1.1 ANALYSIS OF THE PARTIOJLAR CASE OF THE EX1ERIOR RADIATION FROM A VIIJRATING

SPHERE. We consider the particular case of a vibrating sphereS of radius a, centered at. the 
origin 0 of a spherical coordinates system (0, r, (), t/;) (see Fig. 1), for which the radiated pres-
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sure field p in the exterior free-space can be analytically expressed in terms of the normal velocity
U on S. Accordingly let the surface S vibrate with a given normal velocity U (0, �. t). We restrict
the vibratory motion of S to be axisymmetrical with respect to the polar axis Oz (see Fig. 1) and 
time-harmonic, that is: 

U(O,�,t) = U(�)e-i"'t; p(r, (}, �. t) = p(r, �)e-i.wt

z 

' 
'· 

\ ' 
•

\ 
' 

- - --

I 

a. 

Fig. 1. The vibrating sphere problem: geometrical configuration.

M(r,B,4>) 

(1.1) 

y 

1.1.1 General solution for the arisymmetrical vibration of a sphere [13]. Under these require­
ments, U(�) can be expanded on the Hilbert orthogonal family of Legendre polynomials {(H) ,
f. E f.} :

t>O-

Ut= 
U+ 1 

2 
U(�)Pt(COS </J)d� (1 .2) 

0 

Accordingly the pressure field p(r, <P) associated to U, which satisfies the Helmholtz equation, is
given by: 

p(r, <P) = L AtPt(cos �)ht(kr) (r ::5 a) (1.3) 
t>O -

in which ht( kr) is the spherical Hankelfunction, of first kind and order f.. The coefficients At in
the expansion (1.3) are related to the Ut through: 
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which define Bt and lit. Thus the ratio of the moduli of At and Ut is equal to an "amplification 
factor" pcfBt. 

1.1.2 Amplification factors relatingU and p. Equation (1.4) allows us to obtain some qualita­
tive information about the infinite-dimensional inverse problem by examinating the amplification 
factor pc/ Bt relating At to Ut, which is plotted against£ and for several fixed values of ka in fig­
ure 2. One can see that this factor decreases to zero as £ increases, this decrease being sharper 
for smaller values of ka. This means that, for equal amplitudes, the higher-order spherical modes 
of the normal velocity U produce radiated pressures of lower absolute values, and therefore are 
more difficult to "see", from measured values of p, than the lower-order ones. 

Besides it is possible to show, using the first term of the asymptotic expansion of ht( k a) for£ 
large compared to ka (see [14}, among others): that the coefficient pc/ Bt decreases exponentially 
with £ for large values of£. 
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Fig. 2 Modulus of amplification coefficients pc/ Bt plotted aga inst l, for several values of ka. 

1.1. 3 Study of the matrix rekltion between [U i Ji=l, .. . , n and [p;Ji=l, ... , m . Assume that mea­
sured values p; of p are given at m points M; ( r;, ()•, 4>,) . These values Pi are linearly related to 
the coefficients Ui which define the normal velocity on S, using equation (1.3): 

with pc 
G;i = 

B·Pj(costf>,)hj(kr;) 
) 

(1.5) 

Let the convergent infinite summation in (1.5) be truncated at j = n ,  n being an arbitrary trun­
cation level. The truncated summation (1.3) can then be written in a matricial form p = GU, G 
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being a complex m x n matrix, and we investigate now the behaviour of this matrix G. Accordingly 
we apply to G the singular value decomposition (see [11] and the references mentioned herein) 
and examine the singular values At, ... ,An of G, ordered in decreasing moduli, using subroutine 
CSVDC of the UNPACK software library [15) . 

An extensive parameteric study of the numerical behaviour of G is difficult to achieve due to 
the large number of relevant factors: for example one should examine the influence of the spatial 
location of the measurement points M;, which demands a great deal of compositions. So we 
limited ourselves to examine the influence of the frequency, the distance of the measurement 
points M; to the center of the sphere and the number of unknowns and of measurement points, 
judging that such partial results would be representative of the behaviour of the inverse problem 
under more general conditions. We proceed in presenting some numerical results related to the 
study of G. 

• Singular values of G. In figure 3 the moduli I At I of the singular values are plotted against 
their index£; one can see their very fast decay. The singular values were computed for six different 
sets of m = 10 measurement points, the points of a set being all located at the same distance r to 
the center of the vibrating sphere, with n = 10 and ka = 1.; r varying from one curve to another. 

In figure 4 the moduli of the singular values are again plotted against their index but this time 
for sets of measurement points being located at the same distance r to the center of the vibrating 
sphere but of different sizes (m =  20, 30, 40, 50 points), with n = 10, ka = 1 and kr = 2; m 
varying from one curve to another. We see that the modulus of the singular value increases with 
m for a fixed number n of unknowns. 

Examination of figures 3 and 4 shows that the modulus of At behaves roughly like exp( -£). 
• Condition number of G. It is defined as the ratio: Cond(G) = l.:\tl /I An I· We numerically 

evaluated Cond (G) against ka ( r being fixed) (Fig. 5) and against kr ( ka being fixed) (Fig. 6) . In 
these figures one sees that Cond (G) is a decreasing function of the non dimensional frequency ka 
and an increasing fonction of t he distance r of the measurement points to the center of S. For the 
results of figures 5 and 6 we set m = n = 10, which is a rather small value, but one can see that 
Cond(G) takes quite high values compared to the size of G, especially for ka small or rfa large. 
Furthermore, our numerical experiments showed that the value of Cond(G) is hardly affected by 
increasing the number m of measurement points as was done for figures 3 and 4. 

These preliminary results show the ill-conditioned character of the inverse problem for a gen­
eral vibrating surface. This point motivates the use of an inverse problem numerical approach 
and will be confirmed by the numerical results presented in section 3. 

1.2 FORMUlATIONOFTI1EINVERSEPROBLEM FOR AN ARBI1RARYVIBRATING SURFACE. Now 
we consider an arbitrary closed surfaces subjected to a VIbratory motion, U being the normal 
velocity field on S. The pressure field plxl satisfies, for every fixed point x = ( x1, x2, x3) of S, the 
following integral equation: 

• 
t 

with G(x,y)=(eH"·)/47rr; r=lly-xll 

U(y)G(x,y)dSy = 0 
s 

(1.6 ) 

which is a regularized version [17] of the classical integral equation obtained using Green's 
third id entity; the function G ( x, y) in equation ( 1.6) above is the Green function associated to the 
Helmholtz equation. When one considers, as in the present work, the acoustic radiation in the 
free space outside a vibrating closed surface S, the unit normal n(y) = ( nt, n2, n3) at the current 
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integration point y = (YI, y2, y3) in equation (1.6) is directed towards the interior ofS. As a first
step, solving the integral equation (1.6) allows the determination ofthe pressure field p on S given 
U (Neumann boundary value problem). Then the value p(x) of the pressure field is known, for

every x outsideS, using the well-known integral representation: 

• 
l 

p(x) = -­
pw 

U(y)G(x,y) dSy­
s 

{} p(y)n5(y) 0 G(x,y) dSyS Ys (1.7) 

Equations (1.6, 1. 7) give an integral equation formulation of the direct Neumann acoustical prob­
lem. The inverse problem we are interested in is: given measured values of the pressure field p
radiated in the free�space outside the vibrating surfaceS, find the distribution of normal velovity 
U onS.

It is apparent that the representation (1. 7) does not yield the direct linear operator G, such that 
GU = p, relating p in the free space to U on S: in fact (1. 7) involves the values on S of the pressure
field, which are known through the integral equation (1.6). thus let us write formally equations 
(1.6) and (1.7) as follows (P denoting the discrete set of the measured values of p): 

Kp+ LU = 0 and KIP+ LIU = P (1.6b-l. 7b) 

we get: 
[-KIK-IL + Ll] U = P (1.8) 

and equation (1.8) gives formally the linear operator G for the direct problem:

(1.9) 

Now let us assume that a boundary element discretization process has been performed, in a stan­
dard fashion [16, 17], on the surfaceS and the surface fields p, U, the discrete counterpart of the
unknown U being a set of n nodal values UI, ... , Un. The integral equation (1.6) written for a finite
number ne of collocation points x = XI, ... xn. (which are often chosen as then nodes which define
the boundary element interpolation of U, in which case ne = n) and the integral representation
(1.7) written for the pressures p(XI), ... p(Xm) at the m measurement points x = x�. ... Xm
lead to (1.6b-1.7b), understood as algebraic relations, in which the operators K, L are complex
matrices (fully populated and nonsymmetric) of size n x n and Kr, LI complex matrices of size
m x n. 

The discrete problem consists here in searching for the modal values u�. ... Un of the normal
velocity using the linear relation: 

with U = [UI, ... , Un J, P = (p(XI), ... p(Xm)] 
(1.10) 

2. Gaussian inversion for a linear inverse problem.

The inverse problem stated in section 1.2 is linear. It is well known [18-11) that the actual soluLion
of inverse problems is generally highly sensitive to measurement and/or modelling errors, due to
their ill-posedness: the solution of an inverse problem is generally not continuous with respect

' 
to the measurements. Several approaches aim to replace the exact solution, if any, by defining 
an approximate solution; their purpose is to restore the continuity of the inversion process with
respect to the data by relaxing the concept of solution in an appropriate way and using stabilization 
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methods of various types. Among these approaches are the Tikhonov regularization [ 21], the 
stochastic inversion [10], the quasi-reversibility method [22]. These approaches rely in fact on 
similar basic concepts: modelling of measurement errors, use of a priori extra informations to 
stabilize the inversion process with respect to the data; they lead to similar optimization problems 
for the actual solution of a given inverse problem and the differences between them appear mostly, 
in our opinion, in the interpretation attached to the quantities and operators involved in each 
particular strategy. 

Having highlighted in section 1.1 above the ill-conditioned character of the present inverse 
problem, we will focus on the use of one of these approaches, namely the stochastic inversion, 
and more specifically the Gaussian inversion method [10]. Our choice is motivated by two rea­
sons: firstly the improved stability of the inversion result with respect to data fluctuations, secondly 
the ability of this method to give easily interpretable confidence indicators, as it be seen in the 
subsequent developments. Besides, other probability laws may be used instead of the Gaussian 
one for defining a stochastic interpretation of an inverse problem, but the Gaussian 
is the only one leading to a linear inversion procedure (of the linear least-squares type) if the 
physical model itself is linear. It is to be noticed that the authors of [2, 3] use a truncated singu­
lar value decomposition to solve numerically their linear least-squares problem. This truncation 
has a stabilizing effect by eliminating the magnification of the data noise caused by the smallest 
singular values; it is indeed a particular case of Tikhonov regularization. However the guidelines 
for choosing the adequate truncation level, as well as the behaviour of the (truncated) singular 
value decomposition, seem to be unclear. The present approach combines the simplicity of more 
usual least squares methods, such as the Householder decomposition, with stabilizing properties 
and access to confidence or dispersion estimators. 

2. 1 BASIC DEFINITIONS AND RESULTS (10]. Let us consider two spaces M (parameter space) 
and D (data space), being respectively associated here to the normal velocities on S and the mea­
sured pressure values. The direct problem under consideration is modelled using a linear operator 
G:M D (defined by equation (1.10) in our particular case). The corresponding inverse problem 
is stated as: 

Find mE M such that Gm= doos (given dabs E D) ( 2.1 ) 
The spaces D and M have finite dimensions m and n respectively (the inverse problem being 
discretized): M= Rn or en and D = Rm or cm. 

In the Gaussian inversion approach, the vectors m and dobs are viewed as multidimensional 
Gaussian random variables, in order to model noisy data dobs and subsequent uncertainties on the 
result m. We know from the classical probability theory that a Gaussian random N -dimensional 
variable y = [yj]i=I,N (each Yi being a scalar random variable) is characterized by the data of 
its mean (or mathematical expectation) (y) and its (positive definite) covariance matrix C; such a 
variable be symbolically noted y = N( (y) , C). Its probability density f is equal to: 

(2.2) 

The data required by the Gaussian inversion approach, are in addition of G and dobs which are 
obviously necessary for any inversion procedure to give results: 

(a) A Gaussian probability lawN ( d005, C0) describing the information available about the qual­
ity of the data dobs· 

(b) A Gaussian probability lawN (mprior, CM) describing a priori information about m. 
The a priori information is generally some knowledge of m coming from general physical con­

siderations. In the Gaussian framework one assumes a priori that m prior is an acceptable reference 
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value for m, the covariance matrix CM defining "soft bounds": the smaller CM, the more accurate 
a priori information. 

Thus one possesses two independent informations about m: the a priori information and the fact 
that m and the measurements dobs are related by the physical model G. The conjunction of these 
informations on m leads to the statement that m follows in fact an a posteriori Gaussian probability 
law N ((m) , C), which covariance operator C and mean (m) result from the minimization with 
respect to m of: 

2S(m) = (G(m)- dobs)* C[/ (G(m)- dobs) +(m- mprior)" C�/ (m- mprior) (2.3) 

and are equal to: 

(2.4) 

Thrantola gives other interesting expressions for (m) and c-1 equivalent to (2.4); the following 
ones, which, unlike (24), do not require the inverses of the covariance operators, will prove useful: 

C = CM- CM G* [G CM G* + Cor1 G CM 
(m) = mprior +CM G* [G CM G* + Cor1 [dobs- Gmprior] 

(2.5a) 
(2.5b) 

The results of the Gaussian inversion method are the a posteriori mean (m) and covariance C. 
Using these quantities one can define as follows confidence indicators associated to the solution 
(m) . 

2.2 DEFINITIONS OF A POSTERIORI CONFIDENCE INDICATORS. 

2. 2. 1 A posteriori covariances and "e�ror ellipsoit:i': - The ellipsoid (in then-dimensional space 
M) defined by: 

2S(m) = m•c-1m = 1 (2.6) 

is geometrically representative of the dispersion of the a posteriori distribution over m. Its prin­
cipal axes are the a posteriori principal standard deviations ur'' that is, the positive square roots 
of the eigenvalues C; of C; the geometrical mean (uJ>OS1) of the principal standard deviations u;'51 
is given by: 

(2.7) 

The consideration of (uJ>OS1) gives a global idea of the overall quality of the inversion, which is 
not always tha case when considering the diagonal terms C;; of C (variances associated to (m) ;), 
especially when C exhibits strong correlations between the (m) ;. 

On can also consider the ratio of the volumes of the a posteriori and a priori error ellipsoids, 
defined as: 

(2 .8) 

which gives a measure of the information gained between the a priori and a posteriori state. 
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2.2 .  2 Relative infomration. Another interesting indicator, provided by the information the­
ory, is the relative information content of a probability density /1 with respect to another proba­
bility density /o, defined as: 

IR (/1,/o) = fi(x)ft(x)log 
/o(x) 

dx (2.9) 

One can apply definition (2.9) to the particular case fo = iJ (IJ being the null information prob­
ability density); then IR (/1 ;�J) is the infomration content of ft. Furthermore IR (ft; fo) being
nonnegative means that ft(x) contains more information about x than /o(x) . 

If both fi and fo are Gaussian probability densities, the algebraic expression of IR(ft; fo) is 
known (10]. In particular if fo and fi are respectively the a priori and a posteriori probability
densities involved in the linear gaussian inversion process, IR (!I; fo) (which in this case will be
denoted simply IR) is given by: 

[ ] • 1 [ ] det( C) [ 1 J 2IR = (m) - mprior CM (m) - mprior -Log d ( ) +'If cMc- -I et C M  
(2.10) 

It is apparent that in the limiting case C = £CM (£ small), that is, in the case of an a posteriori 
uncertainty much smaller than the a priori one, IR behaves asymptotically like 1/£ and can there­
fore take arbitrarily large values. In the opposite case where ((m) , C) are equal to (mprion CM) ,
which means that the result of the Gaussian inversion is equal to the a priori knowledge, IR van­
ishes as expected. 

2.2 .  3 Resolution operator. - Assume that there exists mexact such that: 

Gmexact = doos (2.11)

The resolution operator R appears (14], (1]when one expresses (m) in terms of mexact :

(2.12) 

Equation (2.12) shows that the smaller (in matrix norm sense) the a posteriori covariance matrix C 
compared to CM, the better the solution (m) . In other words, a good Gaussian inversion coincides 
with a matrix CCM1 small compared to I. All the eigenvaluesofthematrix CCM1, which is positive 
definite, are real and positive, its trace is also positive. Thus one always has: 

or 

• 

'If I-CCM1
r ·-.- Tr(I)

(2.13) 

<1 (2.14) -

The number r � 1 (2.14) characterizes the resolution quality, it should be the nearest possible
from unity (r = 1 corresponds to a perfect resolution).
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2.3 IN'IERPRETATIONOFCOVARIANCE OPERATORS ASSOCIATED T O COMPI.EX-VALUEDGAUSSIAN 

RANDOM VARIABLES. Acoustical problems frequently involve complex-valued variables (pres­
sure, velocity, velocity potential, ... ). For the present problem, G is a linear operator which relates 
the complex-valued pressure field in the free space to the complex-valued field of normal velocity 
on the vibrating surface. The infinite-dimensional version of G is defined using integral operators 
with complex-valued kernels, while after discretization G will be a matrix with complex-valued 
coefficients. 

Obviously one can split each complex number into its real and imaginary parts, obtaining an 
equivalent problem with real-valued variables. However, using such a transformation, the com­
putation done in real arithmetic needs twice the storage and the computer time required for the 
same computation done in complex arithmetic. 

Thus it seems desirable to work within the usual complex arithmetic framework. More pre­
cisely, we wish to apply formulae (2.3) or (2.5)expressing the gaussian inversion result to complex­
valued Gaussian random variables. In this case, one has to give some sense to formulae like (2.3), 
and particularly to complex covariance matrices. 

We are then led to consider expressions such as: 

s(m) =m" Am (2.15) 

where m is a complex vector and A a complex hermitian positive definite matrix. Let us split (2.15) 
into real and imaginary parts; taking into account the hermitian character of A, we can write: 

m =x+iy (2.16) 

and then 

s(m) = s(x + iy) = (x y] (2.17) 

In the decomposition (2.17), the positive definiteness of the bilinear form s(m) implies the in­
versibility of the matrix AR (write (2.17) with x = 0 or y = 0). 

Going back to  the covariance matrice C, C appears as the rse of A in the quadratic forms 
like (2.15) involved in the definition (2.2) of a random Gaussian vector. Thus let us examine the 
inverse of the matrix appearing in the decomposition (2.17) of s(m), this inverse being the real­
variable substitute for the complex covariance matrix C. An algebraic manipulation shows that: 

--

-1 -1 
AR + A1 (AR)-1 A1 · .

. · 
- (AR)-1 AI AR +AI (AR)-1 AI 

-1 -1 
(AR)-1 A1 AR +AI (AR)-1 AI AR +AI (AR)-1 AI 

(2.18) 
the diagonal blocks of the matrix (2.18) being symmetric while the non-diagonal ones are anti­
symmetric. 

This result remains to be interpreted in terms of covariances. The examination of equation 
(2.18) shows that, in the framework of a Gaussian random variable modelling, the component C;i 
of the complex matrix C, which relates the complex components m; and mi of m, can be interpreted 
as follows: 

• Re ( C;i) is the common value of the covariance coefficients between the two real parts x;, xi 
on one hand, between the two imaginary parts y;, Yi on the other hand. In other words, the 
complex variable modelling assumes for every pair (m;, mi) the correlations between the real 
parts and between the imaginary parts to be equal. 
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• Im (C;i) is the common valueof thecovariance betweeny;, xi and between x;, Yi. 
In other words, the complex variable modelling assumes for every pair (m;, mi) the correlations 
between x;, Yi on one hand, and between y;, xi on the other hand, to be of equal absolute values 
and opposite signs. For the particular casei = j, these correlations vanish: the use of complex 
number representation implies that the real and imaginary parts of any complex component m; 
are independent in probability. 

Therefore it is possible to perform a Gaussian inversion using corn plex arithmetics, if one keeps 
in mind the above-mentioned meaning and limitations implied on the covariance terms. Equa­
tions (2.2) to (2.9) and (211) to (2.14), originally written for real-variable problems, remain valid 
for complex parameter and data spaces, the star denoting hemitian transposition (i.e. transposi­
tion and conjugation) instead of mere transposition. On the contrary, the expression (2.10), as 
stated, is only valid for real-valued Gaussian random variables. One can extend it to complex­
valued variables by rewriting (2.10) in terms of real coefficients using (216), (2.17) and (2.18) 
and calculate IR using the real covariance matrix associated to CM. Then the complex variable 
expression of IR becomes: 

[ ] • -1 [ ] det( C) 21R = (m) - lliprior CM (m)-mprior -2 Logdet (CM)
+ 21r CC�/-I (2.19) 

2. 4 INVERSION ALGORITHM AND INTERPRETATION OF THE RESULTS. The operator G is ex­
pressed as a matrix m x n with complex coefficients; the matrix n x m of the adjoint operator G* 
being obtained by conjugating and transposing G: g;i = gi;. 

Let us recall that, from the very definition of covariance operator, the (a priori and a posteri­
ori) covariance matrices are symmetric and positive definite; thus they can be factored using the 
Choleski decomposition: 

C _ c•/2c1/2 M- M M C _ c•/2c1/2
D - D D (2.20) 

2.4 .1  "One-by-one" inversion of the data. In practical studies one has often to assume the 
measurement errors to be statistically independent, this is equivalent to assume the matrix C0 to 
be diagonal: 

(2.21) 

In this case it is possible to define an inversion procedure which treats the data values one-by­
one. It will rely on the use of (25a-b), which is valid whatever the number m of data values, even 
m = 1.  In this purpose, let us denote by { (m)p, Cp} the result obtained by Gaussian inversion of 
the first p data values, { (m)0, C0} denoting the a priori quantities {m prior, CM} . The p-th row 
of G and the p-th data value will be respectively denoted by gp and d�. Inversion of datum cf!,bs 
with a priori data (m)p-1, Cp_1 leads to the same result as the inversion of the first p data values 
with a priori data mprior and CM[1]. 

Inversion of cf!,bs using (2.5a-b) leads to the following relation between Cp and Cp_1 :

with Vp = 
1 C

1/21 gP · p- 'Up 

the corresponding relation between mp and mp _1, obtained using (2.5b ), being: 

- 1 •/2 .ohs llip- llip-1 + aPCp_1vp ap � - gpllip-1 
Up 

(2.23) 
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Equations (2.22) and (2.23) define the p-th step step of a "one-by-one" version of the Gaussian 
inversion method. This procedure does not require the inversion of a matrix (the inverse matrix 
in (2.5) degenerating into the scalar 1f{3p). On the other hand, the updating of Cp using equation 
(2.22) seems costly at first sight, requiring two matrix-vector and one matrix-matrix products at 
each step. In fact it is possible to perform (2.22) in a cheaper way, taking into account the partic­
ular structure of the transfer relation (222) between Cp-l and Cp. This relies upon the fact that 
an exact expression of the Choleski decomposition of a matrix T of the form: T=I - avv* with 
av*v < 1 (such a matrix is positive definite) is known: 

• • 
.. 
--

1- as; 
1- as;-1 

1/2 

• + • S; = V1 VI ••• + V; V; 

--O'V;Vj 
- --------��----� ij- ((1- as;)(1- as;_t))112 

(2.24a) 
(2.24b) 

Upon application of this result to the matrixT P = I- ap v P v; , the transferrelation between c!�21 
and c!'2 is known: 

ct/2 = T112dl2 (2.25) p p p-1 
T P being defined by (2.24a-b ). By a pp lying the same method during the inversion of each indi­
vidual datum, we get: 

(2.26) 

In fact all the a posteriori interpretations, including the computation of the indicators introduced 
in section 2.2, can be made using only C112; the actual computation of C is unnecessary for our 
purposes and will therefore be omitted. 

Finally let us remark that the matrix vv* has rank one; it admits the eigenvalue 0 associated to 
the eigenvector v with multiplicity ( n - 1) and the eigenvalue v•v with multiplicity 1. Then: 

which implies: 

det (vv*) = 0 

det c112 = a112 det dl2 p p p-1 

(2.27) 

(2.28) 

2. 4. 2 Evaluation of step by step indicators. We give the algebraic expressions of the indicators 
introduced in section 2.2 associated to the inversion of the p-th datum, the {p- 1) state being 
accordingly considered as the a priori state for this step. Using (228), one has immediately: 

V _ ( )n/2 - O'p VM and (2.29) 

Besides, it is easy to obtain the following expression for IR at step p using (2.23) and (2.27): 

1 2 
-::-2 ap �-gpmp-1 - 2 -2Log aP 
(Tp 

(2.30) 

The evaluation of quantities (2.29) and (2.30) after inversion of each datum re-uses quantities 
already computed during the inversion process, thus needing very few extra computer time. It al­
lows one to check the overall inversion procedure and gives some indication about the information 
content brought by each individual datum. 
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2.4.3  Evaluation ofglobal inversion indicators. The interpretation, in terms of confidence or
quality, of the final result obtained by Gaussian inversion uses the values of the global (i.e. after 
inversion of the m data values) indicators. These ones can be expressed in terms of the scalars ap 
and the matrix K defined by (2.26b): 

LlV = 
[det(C) Jll2 

= [det(K) ]I/2 = (aJ . .. am)I/2V (det (CM) )1/2 

On the other hand: 

and 
post

0'· l 
• pnor

(J' • • 

n[cMc-1-IJ =1t[K*K-I]=-n+ I: IKii l2
(i,j), i<S_j 

(2.31-2.32) 

(2.33) 

The relative information between the a posteriori and a priori states for the global inversion, is 
then equal to : 

2IR = ({m} - mprior] " 
C�/ ({m} - mprior] - 2 L Log a i - 2n + 2

Finally the 
to: 

- - (i,j), i'S_j l < i <m 
(2.34) 

r characterizing the resolutionquality,defined by (2.14), is in this case equal 

1r = 1 - ­n I: IKijl2
(i,j), i<S_j 

(2.35) 

2. 5 A POS TERIORI EXAMINATION OFniE GAUSSIAN ASSUMPTION AND DE1EC110N OF OUTUERS.

- This part presents, as a complement for the numerical implementation of the Gaussian in­
version, a method for the detection of outliers, i.e. the data values which are highly erroneous 
corn pared to the standard deviations of measurement errors given the covariance matrix Co. The 
solution {m} of the Gaussian inversion is, as seen in (2.1), a minimizer of the least-squares type 
functional S (m}, given by (2.3). 

It is shown [1] that the random variable defined as the minimum value of the functional 2S(m) 
follows a x2 distribution, with 2m or m degrees of freedom for complex-variable or real-variable 
problems respectively (m being the dimension of the data space D). x2 (m) is the well-known sta­
tistical law associated to the sum of the squares of m Gaussianscalar real-valued random variables 
of zero mean and unit standard deviation. 

This result is interesting as it allows an a posteriori check of the Gaussian ass urn ption which has 
been made for all the quantities involved in the inverse problem. This check is made by evaluating 
the probability: 

P = P (x2(2m) � 2S({m}) ) (2.36) 

in which we consider a complex-variable inverse problem. The expression f (x2( v)) of the proba­
bility density associated to the x2( v) law is well known. In our gaussian inversion corn puter code,
this probability is computed using the function GAMMP. from the software library "Numerical 
Recipes" [24]: 

P (x2(2m) � 2S({m}) ) = GAMMP(m, S({m}) ) (2.37) 
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Once the value of P is computed, three cases can occur: 
(i) P is neither very small (near zero), nor very large (near unity). In this case the Gaussian 

assumption remains plausible, although this result can by no means be considered as a definite 
confirmation. 

(ii) P is very smalL In this case the gaussian assumption itself is not in doubt; nevertheless it is 
likely that the estimated error for the data values have been postulated in a "conservative" way; 
in other words the data errors are smaller than expected. 

(iii) P is very close to unity. In this case the Gaussian assumption is highly questionable. This 
is often associated to the presence of a small (compared to the size m of the data set) number 
of outliers in the data d005. 1Jpically "very close to unity" means "greater or equal than 0.99 (for
even 0.999)" [24]. In practice, outliers often create on the valueS( (m)) distortions such that P is 
even much closer to unity. It is thus quite possible that almost every data values satisfy the stated 
Gaussian behaviour, this assumption being violated only by a small number of highly erroneous 
measurements. In this case one wishes to detect and eliminate them. Nevertheless P can be very 
close to unity for other reasons than the presence of a small number of outliers: for exam pie this 
fact can also result from systematic measurements errors. In this case the illness is more serious 
as it affects all (or at least a large number ot) measurements and not a small part of them. 

Scanning data to find outliers. Here we present a way of detecting a posteriori the outlier(s), if 
any; it relies upon an a posteriori scanning of the data values using the x2 test as explained below.
The whole inversion procedure would be, schematically, as follows: 

(i) Inversion of the whole data set 
(ii) Computation of P defined by (2.36) and test: P :2: P rer? (with e.g. P ref = 0.99). 
(iii) If the answer to (ii) is yes: determination of the modification of the inversion result induced 

by eliminating one data value. ThiS step is performed sequentially for each individual datum d'lbs 
(i taking successively the values 1, 2, ... , m) for which the solution (m)L the covariance, matrix
q and the probability P f  resulting from the inversion of the m - 1 remaining measurements are
computed. We seek the value I of the index i for which P- P {  is greatest

(iv) The datum iSolated using the previous criterion is eliminated together with the corresponding 
row of G, and the test (ii) is applied to the probability P '  = P j. 

If the answer to this test is yes, m is replaced by m- 1, the scanning (iii) is performed again
on the remaining data and another data value is isolated and suppressed in the same way, and so 
on. 

If not, end of the scanning. 
If this procedure succeeded in isolating a smaller number of data values so that the inversion 

result after elimination of these data values satisfies the x2 test, this result is considered as the final
inversion result. Otherwise other causes of violation of the gaussian assumption must be looked 
for. 

For this method to have practical interest, the phase (iii) (scanning of the data) must not require 
a too large amount of computer time: performing a complete inversion for each incomplete data 
set is obviously out of question. Instead, we propose to use certain algebraic relations which allow 
to compute cheaply the result of the inversion of m - 1 data values by updating the result of the
inversion of the whole data set. 

We present our algebraic updating identities which relate the state " m - 1" to the state "m".
For this purpose, let us give the index 1 to any quantity resulting from the treatment of the whole 
data set, while the index 0 denotes those corresponding to the elimination of one data value. 
Moreover we denote by d the (scalar) data value currently eliminated, byg the corresponding row
of the linear operator G and by u the standard deviation associated to the data value d. 

From an algebraic standpoint, the states 0 and 1 can be respectively viewed as a priori and a 
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posteriori states. Accordingly, equation (2.4a) is applicable between the states 0 and 1, leading to: 

C-• c-• 1 • 1 = 0 + 2 g g 
(J' 

(2.38) 

in which one has to keep in mind that g denotes a row vector g• a column vector. From relation 
(2.38) it is possible to express Co in terms of Ct using the modification fomzula [15): 

(A- uv•)-1 = A  -I+ aA -•uv• A -I with 1 a = -------=-
1-v• A -1u (2.39) 

in which (u, v) are two column vectors and A is a square inversible matrix; obviously the matrix 
A- uv• also has to be inversible. This modification formula applied to A = C}1, u = g• and 
v• = gju gives, using (2.38): 

(2.40) 

Then, from formula (2.40), (m)o and 2S ( (m)o) can be expressed in terms of (m)t and 2S(m)t) 
[3); the result is: 

g(m)t- d • (m)o = (m)t + 2 C Ctg 
(J' - g lg• 

2S((m)o) = 2S{(m)t)- 2 
1 

• 
{g(m)t- d)* (g(m)t- d) 

u - gCtg 

Then the following difference is computed in step (iii) of the scanning algorithm: 

Pt - Po = P (x2 (2m) � 2S {(m)t))- P (x2(2m- 2) � 2S {(m)o)) 

(2.41) 

(2.42) 

(2.43) 

and the data value associated to the greatest value P1 - P0 encountered during the scanning is 
eliminated. 

The solution ( (m)t, 2S ( (m)t)) of the Gaussian inversion method is updated and takes the 
values ( (m)o, 2S ( (m)o)) given by the equations (2.41) and (2.42) and corresponding to the datum 
actually suppressed. The covariance matrix is not updated using (2.40) since the "one-by-one" 
inversion algorithm described in section 2.3 as well as the confidence indicators manipulate only 
c112, which will be updated instead. The equation (2.40) can be rewritten as: 

1/2 • c. g c•/2 1 with 1 
f.l = --,.-----.,-:::-- :-1-' 1/2 • 1/2 u2- C1 g C1 g 

(2.44) 

Then we use, in a way similar to section 4.3, the fact that an exact expression of the Choleski 
decomposition of a matrix T of the form: T = I+ avv• (which is clearly positive definite) is 
known: 

--• • 
u 

1 +as; 
1 + as;-1 

1/2 
' 

• • Si = Vt V} + ... + V; Vi 

-aV;Vj ------�--....,....,..,.. 
ij- ((1 +as;) (1 + as;-t))1/2 

(2.45) 
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This result, applied to a = f3 and v = c�12g", yields the transfer relation between c�/2 and c:12 : 

and allows the updating of c1/2. 

(2.46) 

Thus the algebraic transfer identities (2.41 ), (2.42) and (2.46) allow one to perform the a poste­
riori scanning of the data set and the updating of the quantities produced by Gaussian inversion at 
a small extra computational cost. These identities are a consequence of the modification formula 
(2.39) which allows the updating of the inverse of a matrix undergoing a small rank perturbation 
(here, a rank one perturbation) at an algebraic operations cost small compared to that required for 
a whole matrix inversion. 

3. Application of the Gaussian inversion method to the acoustical inverse problem: numerical 
results. 

In this part we examine on an example the numerical results obtained by this approach of the 
inverse problem. This example is "synthetic", the data (pressure values at measurement points) 
being computed numerically for a certain normal velocity field, using integral equation (1.11) and 
representation (1.12) via our boundary element code TRIAC installed at LMS. 

• Geometry and vibratory motion. An orthogonal cartesian coordinate system ( Oxyz) is 
attached to the three-dimensional geometrical space, in which we consider a cylindrical surface 
(S) (axis Oz, radius R = 1 m, bounded by the planes z = ±3m), set into a vibratory motion of 
normal velocity U given, in cylindrical coordinates ( r, (), z), by: 

U ( (), z) = cos2Bcos2( n /3) if I z I :::.; 1 .5 
U(8,z) = 0. otherwise 

and (3.1) 

This expression for U is chosen in order to test the ability of the inversion method to reconstruct 
a normal velocity field of relatively small support. In the sequel the numerical tests will be done 
for the two values kR = 0.5 and k R = 2. of the non-dimensional frequency. 

• Measurement points. We consider two sets of 282 measurement points, at which the radi-
ated pressure is known, defined as follows (Fig. 7): 
• two regular square grids (G1) and (G2) of size ay x a.n each containing 112 = 121 regularly 

spaced points, located in the planes x = ±xo, centered with respect to the coordinate axis Ox 
and with sides parallel to Oy and Oz . 

• The 40remaining points are located on a square (C) ( (!yl- ay)(lzl- az) = 0, X =  0) , dividing 
each side into 10 constant subintervals. 
The two sets of measurement points correspond respectively to (xo = 5., ay = az = 5.) and 

(xo = 1.25., ay = 1.25, az = 3.25) . They can be considered respectively as far-field and near-field 
measurement sets, and accordingly will be denoted (FF) and (NF) respectively. 

• Data uncertainties. The real and imaginary parts of the "measured" pressure values have 
been given a standard deviation un = 10- 3x (measured value). 

• Boundary element discretization. S is approximated by 54 eight-noded quadratic bound-
ary elements (9 elements for each of the top and bottom faces and 36 for the lateral face), for 
a total of 164 pressure nodes and 188 normal velocity nodes (these two numbers being different 
due to the edges z = ±3, r = 1). The unknowns for the inverse problem are then the 188 nodal 
values for the normal velocity U. The linear discretized operator G is built using the code TIRAC. 
The direct linear operator G is thus a 282 x 188 complex fully-populated and unstructured matrix, 
which is a large size for an ill-posed problem. 
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Fig . 7. Vibration of a cylinder and measurement points: geometrical configuration. 

x 

W e  wi1l examine the influence on the inversion results of (a) the choice of a priori information 
(here, O"M and L ) , (b) the presence of outliers, (e) random perturbations of the measurements. 
We present (d) the results given by the confidence indicators (mean standard diviation, relative 
information IR, resolution coefficient r). Finally we g ive in (a) and (c) some comparisons between 
the results obtained using ordinary least squares and Gaussian inversion. The computer time 
spent to perform one inversion is 910s on a wokstation HP-APOLLO DN 400, with maximum 
optimization of the code by the compiler. 

As a first remark, we performed a singular value decomposition on G for the two measurement 
sets and the two frequencies, using the above-mentioned UNPACK [15) routine CSVDC. CSVDC 
failed to give any correct singular value in the far-field case, whereas it gave all the singular values 
in the near-field case. In the latter case, we obtain Cond(G)= 8.16 x 1cf (for kR = 0.5) and
Cond(G) = 1.28 x 10S (for kR = 2); the CPU time spent was approximately 1300s on a work­
station HP-APOLLO DN400, that is, more than the time needed for a Gaussian inversion with 
the same matrix G. Thus the singular value decomposition technique could not be applied to the 
present problem in the far-field case. These numerical results match the conclusions of the study 
of the sphere problem done in section 1. 

(a) Choice of a priori information. In analogy with the method proposed by Thrantola for 
the Gaussian inversion of infinite-dimensional linear inverse problems [10), covariance matrices 
of the following type have been used: 

(3.2) 
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that is, a discrete version of the exponential covariance function (see [10) or [11]). The distance 
11 lis appearing in (3.2) is the distance along the surface S, L denoting some characteristic length 
considered to be relevant (e.g. a vibration "wavelength" characteristic of the motion of S con­
sidered as an elastic structure) and uM a standard deviation (which physical dimension here is a 
velocity). The smaller uM, the greater weight of this information for the inversion process. The 
covariance (3.2) thus expresses that two nodes on S are correlated if their distance along S is not 
large corn pared to a characteristic "correlation length" L. A choice such as (3.2) is not mandatory 
but provides a good way of introducing a physical a priori information, namely the correlation 
length L.  

On the other hand mprior has been chosen as the vector of equal components which satisfies at 
best (in a least squares sense) the measurements. 

The figures 8 to 11 plot the quadratic error between the "exact" (in the sense of (3.1)) and 
computed nodal values of U against the correlation length L, for the two measurement sets and 
the two frequencies considered; here the simulated data is exact (no noise addition). These results 
show that the Gaussian inversion behaves very differently in the far-field (Figs. 8, 9) and the near­
field (Figs. 10, 11) cases. In the former case the results are poor for L < 2., which confirms the 
interest of this a priori information when the inverse problem is ill-posed (a value typical of the 
problem considered, according to (3.1), could be L= 3.), whereas in the latter case, which is less 
ill-posed, the results are better for small values of L and their accuracy is very dependent on the 
weight O"M given to CM. 

Figure 12 shows the real part of the nodal values U (x;) at the nodes x; located on the generator 
(x = 1, y = 0) of S, bracketed between the values Re [U (x; )] ± (C;;/2)1/2 (for this example we 
used the far-field measurement set together with kR = 0.5, O"M = 1).The quantity (C1;/2)1/2 is, 
according to the discussion of section 2.3, the standard deviation associated to either the real or 
imaginary part of U (xi); the magnitude of the (C;;/2)1/2 (i = 1, ... , n) define one confidence 
indicator related to the reconstructed values of U. One can see on this particular example that 
the value uM = 1, defining too narrow a priori "soft bounds" on m, seems responsible of the poor 
"peak" value of U at z = 0 in figure 12, which contributes greatly to the overall reconstruction 
error. 

_(b) Presence of outliers. The scanning algorithm described in section 2.4 has been tested: 
we performed a Gaussian inversion in which an error of approximately 10% has been added to 
the measurements 76, 77 and 78. 

The figure 13 shows both the extreme sensitivity of the solution to such outliers and the ef­
ficiency of the scanning algorithm. Our Gaussian inversion program succeeded in finding and 
eliminating those outliers, and only them, and in updating the solution. On this example, the ex­
tra computer time spent in scanning the data set and eliminating the outliers was approximately 
10% of the "normal" inversion corn puter time for the same problem. 

(c) Influence of random perturbations of the measurements. We compared the results given by 
the ordinary leastsquares method (Householder reduction, programs CQRDC and CQRSL from 
the software library UNPACK [15 ]) and the gaussian inversion. The "measured" values have been 
given, as before, a standard deviation O'D = 10-3 x (measured value). The measurements were 
perturbed by adding to them the realisation of a Gaussian random variable of standard deviation 
upx (measured value). Inversions have been performed for several values of up, the quadratic 
error for the nodal values of U iS displayed against uP for the two inversion methods in the tables I 
to rv. 

In the far-field case (Thbs. I and 11), the results show that the ordinary least squares inversion 
produces correct results for exact data only. In this latter case, the results are better than using 
Gaussian inversion, which is not surprinsing since, contrarily to the Gaussian inversion, there is 
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Fig. 8. Quadratic relative error between "exact" (given by (3.1)) and computed (by means of Gaussian 
inversion) nodal values of U, against L and for several values of O'M :case ((FF), kR = 0.5).
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Fig. 9. Quadratic relative error between "exact" (given by (3.1 )) and computed (by means of  Gaussian 
inversion) nodal values of  U, against L and for severa l values of O'M : case ( (FF), kR = 2. ). 
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Fig. 10. Quadratic relative error between "exact" (given by (3.1)) and computed (by means of gaussian . 
inversion) nodal values of U, against L and for several values of O'M : case ((NF), kR = 0.5).
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Fig. 11 .  Quadratic relative error between "exact" (given by (3.1)) and computed (by means of gaussian
inversion) nodal values of U, against L and for several values of O'M : case ( (NF), kR = 2.) .
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Fig. 12. Nodal values U (xi) at the nodes located on the generator (x = 1, y = 0) of S, and upper and

lower bounds (x;} ± ( C; ;/2)1/2 . This is one confidence indicator related to the reconstructed values of U.

no corn promize between fitting the data and satisfying some a priori information. On the contrary, 
on the present example, any noise completely deteriorates the results obtained by ordinary least 
squares while the gaussian inversion shows more stability with respect to random fluctuations. 

'Thble I. Comparison of quadratic errors for reconstructions performed using least-squares and
Gaussum inversion, against the relative standard deviation uP of the noise added to the data (far-field 
measurement case, kR = 0.5) .

Gaussian inversion 
L2 error P(2.37) 

CTp = 0. 0.14 0 .

up = 10-5 0.093 0.

CTp = 10-4 0.15 0. 

up = w-3 0.39 2 .0 x w-42

up = w-2 2.08 1. 

up = w-1 2.52 1.

least squares 
L2 error 
0.0080 

3.6 X 106

3.6 X 107

3.6 X 108

3.6 X 109
. 

3.6 X 1010

P(2.37) 
0. 

6.1 x w-122

4.0 x w-15

5 .6 x w-30

0.60 
1.
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Fig. 13. Nodal values of U, for the same nodes as figure 3.2, after automatic detection and suppression 
of experimental values (i) none (ii) 78 (iii) 78, 77 and (iv) 78, 77 et 76 by the algorithm. 

Thble 11. Comparison of quadratic errors for reconstructions perfonned using least-squares and 
Gaussian inversion, against the relative standard deviation uP of the noise added to the data (far-field 
measurement case, kR = 2.). 

Gaussian inversion least squares 
L2 error P(2.37) L2 error P(2.37) 

Up = 0. 0.058 0. 1.2 x w-4 0. 
up = w-5 0.058 0. 9.1 X Hf 1.3 x w-122 

up = w-4 0.064 0. 9.1 X 10S 8.8 x w-76 

up = w-3 0.28 7.6 x w-54 9 .1 X 1<f 1.4 x w-30 

up = w-2 1.41 1. 9.1 X 107 0.51 
up = w-1 2.38 1. 9 .1 X 1t:f 1. 

In the near-field case (Thbs. Ill and IV), the same comments hold, but the compared behaviour 
of the two methods is not as radically different as in tables I and 11. 

In both cases, one can see that the stability of gaussian inversion strongly deteriorates when 
uP ;::: un. 

(d) Results given by the confidence indicators. Let us compare the results obtained in re-
constructing U for the two measurements sets (FF), (NF) and the two frequencies kR = 0.5, 2 .  
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'Thble Ill. Comparison of quadratic errors for reconstructions perfonned using least-squares and 
Gaussian inversion, against the relative standard deviation uP of the noise added to the data (far-field 
measurement case, kR = 05).

Gaussian inversion least squares 
L2 error P(2.37) L2 error P(2.37) 

Up = 0. 0.0086 0. L6 x 10- 0. 

up = w-5 0.0089 0. 0.23 1.0 x 1o-121

up = w-4 0.024 0. 2 .27 1.6 x w-75

up = w-3 0.23 8.4 x w-98 22.7 8.7 x w-30

up = w-2 1.37 1. 227. 0.63 

up = w-1 2.09 1. 2271 1. 

Thble IV. Comparison of quadratic errors for reconstructions perfomred using least-squares and 
Gaussiiln inversion, against the relative standard deviation up of the noise added to the data (far-field 
measurement case, kR = 2.) .

Gaussian inversion least squares 
L2 error P(2.37) L2 error P(2.37) 

Up = 0. 0.0018 0. 1.6 x w- 0. 

up = w-5 0.0033 0. 0.022 8.7 x w-122

up = w-4 0.024 0. 0.22 5.6 x 10-75

up = w-3 0.24 1.8 x w-93 2.18 7.7 X 10-30

up = w-2 1.25 1 .  21.8 0.62 

up = 10-1 2.37 1. 218. 1. 

considered. Thble V displays, for each case, the quadratic error for the normal velocity nodal 
values ( "L2 error"), the relative information for the overall inversion (IR, given by (2.34)), the
geometrical mean (upm1} of the a posteriori standard deviations associated to the unknowns and 
the resolution r (215). The measurements have been given a standard deviation equal 
to 10-3 x (measured value). Besides, uM = 10. and L = 2 . .  One can see that the three indica­
tors displayed vary according to the actual precision of the result and give concordant indications 
about the quality of the result. This illustrates the interest of such indicators in practical cases, 
for which the actual precision is obviously not known. An important remark concerning the inter­
pretation of (upos1) and r is that these quantities are independent of the data values dohs (see (2.7) 
and (2.14)); they are related to the resolving power of the physical model G. On the contrary, IR 
depends on G and on dobs (through the result (m)). 
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Thble V. The confidence indicators IR, (a-post} and r are displayed together with the actual L2 error
for the two measurement sets and the two frequencies considered. 

kR = 0.5 (FF) kR = 2. (FF) kR = 0.5 (NF) kR = 2. (N F)
L2 error 8.36 x 10- 2 4.48 x to-2 1.4410-3 2.610-4

IR (2.20) 1.09 x 10-3 2.49 X toJ 3 .881& 4.841ol 

( O'posl) 0.57 0.080 0.010 2.810-3 

r(2.15) 0.316 0.523 0.908 0.976 

4. Conclusions.

In thiS paper, the inverse problem of recovering the normal velocity of a vibrating surface using 
pressure measurements (a procedure which is sometimes known as "acoustic holography") has 
been adressed. We were primarily interested in studying its ill-posed character. 

In section 1 the well-known problem of the vibrating sphere was considered, in order to study 
the condition number of the problem on the truncated analytical solution. This investigation 
showed that the acoustic holography problem may be ill-conditioned, especially for far-field mea­
surements and/or low frequencies. 

Section 2 was devoted to the exposition of the Ga ussian inversion concept and of the specific al­
gorithm developed, the Gaussian inversion approach being designed to solve numerically ill-posed 
discrete inverse problems. Our algorithmic development focused on the practical obtention of in­
terpretable confidence indicators on the inversion result, the interpretation of complex-valued 
Gaussian random variables and the automatic detection of outliers. Although the basic concept 
of gaussian inversion has been formulated by Thrantola [10 ), some of the developments in this 
section are new, to the best of our knowledge. 

In section 3 we tested numerically our algortihm on a particular problem, namely a vibrating
cylinder, using simulated data. The numerical physical model relating the acoutical pressures to 
the vibratory motion was built using a boundary element discretization of the cylinder and the 
classical integral representation formula; for this purpose we used our boundary element code 
TRIAC. This method allows one to perform numerical acoustical holographies for abitrary vi­
brating surfaces. We chose a rather fine discretization, leading to a discrete inverse problem of 
rather large size (282 measurements and 188 unknowns) in order to study the behaviour of our 
method for large-size problems. The results of these tests, regarding the ill-conditioning, con­
firm the predictions of the preliminary investigation of section 1. We noticed that the ordinary 
least-squares method (using the Householder factorization) gives more accurate results for ex­
act data but performs poorly for far-field measurements if the data experience a slight random 
perturbation. Moreover, the singular value decomposition algorithm available in the software li­
brary LINPACK failed to give any correct singular value in the case of far-field measurements, 
which prevents one to use for this case the truncated singular value decomposition as was done in 
some recent works on the same subject. The numerical results show the interest of the computed 
confidence indicators. Finally our algorithm for finding outliers performs very well. 

As a general conclusion, we showed the applicability and interest of the gaussian inversion 
approach applied to acoustic source inverse problems, especially in cases where the problem is 
ill-posed. The robustess of the Gaussian inverison method is obtained at the expense of a loss of 
accuracy (compared to the ordinary least squares method) if the data happen to be exact, but this 
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is very unlikely to occur for practical problems. 
The present algorithm itself is not specifically designed towards acoustic holography problems, 

it can solve anylineardiscrete complex-valued inverse problem. It is now used by the Departement 
Acoustique et Mecanique Vibratoire of Electricite de France for various identification problems. 
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