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Abstract

We propose a new geometry of optical lattice for cold atoms, namely a lattice made of a 1D stack

of dark ring traps. It is obtained through the interference pattern of a standard Gaussian beam with

a counter-propagating hollow beam obtained using a setup with two conical lenses. The traps of the

resulting lattice are characterized by a high confinement and a filling rate much larger than unity,

even if loaded with cold atoms from a MOT. We have implemented this system experimentally,

and demonstrated its feasibility. Applications in statistical physics, quantum computing and Bose-

Einstein condensate dynamics are conceivable
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Optical lattices provide a versatile tool to study the dynamical properties of cold and

ultracold atoms. They are presently the topic of intense research activity, in particular

because they represent an outstanding toy model for various domains. In statistical physics,

cold atoms in optical lattices, through their tunability, made possible the observation of

the transition between Gaussian and power-law tail distributions, in particular the Tsallis

distributions [1]. Condensed matter systems and strongly correlated cold atoms in optical

lattices offer deep similarities, as in the superfluid-Mott insulator quantum phase transition

[2], in the Tonks-Girardeau regime [3] or for the emergence of a macroscopic current in the

periodic potentials [4]. In quantum computing, optical lattices appear to be an efficient

implementation of a Feynman’s universal quantum simulator [5], and are among the most

promising candidates for the realization of a quantum computer [6].

One of the main advantages of the optical lattices is their high flexibility. By varying

the shape of the lattice, a wide range of configurations is reached. Currently, many studies

deal with 1D lattices, in particular because quantum effects are stronger in low-dimensional

systems [7]. A particularly interesting situation concerns 1D lattices with periodic boundary

conditions, because many new effects appear [8]. Recently, an experimental implementation

has been proposed, where the lattice sites are distributed along rings [9]. In a more complex

configuration, the sites themselves could have the shape of a ring, allowing e.g. the study

of solitons in 1D Bose-Einstein Condensates (BECs) with periodic boundary conditions [10]

or atomic-phase interferences between such BECs [11]. Experimental realization of such 1D

rings is still an open question, both as a lattice or as a single trap. Large magnetic single ring

traps have been produced, in connection with the study of the atomic Sagnac effect [12, 13],

but their transverse confinement is weak, and they cannot be considered as 1D rings. A

more promising proposition is an optical trap built with twisted light obtained from two

counter-propagating Laguerre-Gaussian beams with an azimuthal phase dependence [14].

Authors suggest that an optical lattice of such ring traps could be created by combining

several twisted molasses. Such an arrangement has the drawback to trap the atoms where

the light intensity is maximum. This may result in serious perturbations of the atoms due to

the trapping beams [15]. In particular, some applications as quantum computation require

to trap the atoms in dark lattices, to make the system robust against decoherence [16].

Contrary to bright lattices, where even a 1D configuration leads to 3D trapping, 1D dark

lattices do not trap atoms in 3D: only 3D dark lattices trap atoms in 3D [15]. So far, the
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only proposal for such a lattice consists in a gaussian beam making a round trip in a confocal

cavity [17]. A difference of waist between the two directions of propagation lead to a lattice

of ring traps with a λ/2 periodicity, where λ is the optical wavelength. Such a device has

the advantage to generate high light intensity inside the cavity, and so deeper traps than

with free-propagating beams. But this is obtained at the cost of the flexibility: for example,

changing the ring radius requires to change the cavity mirrors. These difficulties probably

explain why, to our knowledge, this proposal has not yet been realized experimentaly.

We propose here a new geometry for a dark lattice of ring traps, obtained from a hollow

beam and a counter-propagating gaussian beam, without any cavity. The radius and the

thickness of the rings can be adjusted indepently, and due to the stiff edges of the hollow

beam, the trap steepness is much larger than in [17]. Finally, the filling rate of each site is

much larger than unity, even when loaded with a Magneto-Optical Trap (MOT), contrary

to 3D dark lattices which require the use of a BEC. The filling rate should even reach values

in excess of 1000 atoms per site if an adequate sequence is used to turn on the lattice.

The paper is organized as follows: we first discuss the principle of the lattice of ring traps,

then describe the experimental realization, and finally show preliminary results concerning

cold atoms loaded in the lattice.

Each individual trap is a 3D dark ring, and the lattice is a 1D stack of such rings. Thus,

the global shape of the potential is a bright full cylinder with a pile of ring wells inside. To

obtain this potential, a standard gaussian beam interferes with a counterpropagating hollow

beam with no azimuthal phase dependence [18], contrary to Laguerre-Gaussian beams used

e.g. as waveguides [19]. Both beams have the same blue detuned frequency, so that the

trapping sites correspond to the zero intensity places. Both beams propagate along the z

vertical axis, and the hollow beam is a cylindrical beam, with an intensity distribution along

the radial direction r as illustrated in Fig. 1a (solid line). When the two beams are out

of phase, two pairs of zeros of intensity appear symmetrically on each side of the center, in

r = 100m and r = 130m on Fig. 1b, where the two beam intensities are equal. Because of

the cylindrical symmetry, these zeros correspond to two concentric rings along the azimuthal

direction. On the contrary, when the two beams have the same phase, the intensity profile

reaches its maximum. This interference pattern results in a potential U which is, in the
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limit of weak saturation and large detuning, proportional to the light intensity I:

U =
~

8

Γ2

∆

I

IS

(1)

where ∆ is the detuning, IS the saturation intensity and Γ the width of the atomic transition.

Because the outer ring is shallow, only the inner ring, in r = 100m, is a trap.

A hollow beam as described above is easily produced by a conical lens [18]. Conical

lenses are extensively used to produce Bessel-Gauss beams [20] or annular beams [21, 22].

To generate an annular hollow beam, we use a converging lens L to shape the incident

gaussian beam, and then a conical lens. Each incident ray is deviated towards the optical

axis z by the conical lens, and thus the incident gaussian beam is transformed in a ring [18].

A second conical lens is used to collimate the radius r of the ring, so that after this second

lens, r becomes constant with z. The resulting hollow beam has a radius r which depends

only on the distance between the two conical lenses, while its thickness ∆r depends on the

focal length of L. Thus r and ∆r are adjustable independently.

The potential is obtained by focusing the gaussian beam and the counterpropagating

hollow beam at the same point, so that the wave surfaces are planes perpendicular to the

propagation axis. The resulting potential has a periodicity of λ/2, with a shape depending

locally on the phase φ between the two beams. It is illustrated through the theoretical plots

of Figs. 1b and 2 where, for sake of simplicity, we used the parameters of the experimental

demonstration described below: the hollow and gaussian intensities are respectively IH =

14 mW and IG = 11.5 mW (Fig. 1a), with ∆/2π = 70 GHz. Fig. 1b shows the potential

transverse profile at the bottom of the wells. The geometry of the ring appears clearly, with

a confinement of the order of r/10 for U < 200 Er, and a height for the external barrier

of 580 Er, where Er is the recoil energy. Secondary minima, originating in the residual

diffraction produced by the mask used to remove inner rings of the hollow beam [18], appear

inside the main ring, but because of their weak depth, they should not be annoying in most

applications.

A better understanding of the potential distribution can be obtained from Fig. 2, where

U is plotted in gray scale versus r and z. The potential is periodic along z, with a period

λ/2. Atoms with low enough energy are confined in a torus with a half-ellipse cross-section

with axes of the order of 0.1 µm and 10 µm, corresponding on the figure to the dark zone

on the point C. The height of the external barrier varies with z. The minimum height
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Figure 1: In (a), theoretical transverse profile of the gaussian (dashed) and hollow (full) beams used

in the experiment. In (b), the resulting transverse potential at the bottom of the well. Parameters

are those used in the experiments.

UA = 580 Er, in point A of Fig. 2, occurs at the same z as the bottom of the main well (Fig.

1b). The internal barrier has a channel structure, with the lowest pass in point B (Fig. 2),

at a height of UB = 200 Er, between two successive longitudinal sites.

The number of atoms that we should be able to put in each site of this lattice depends

of course on the density of the cloud of cold atoms used to load the lattice, but also on the
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Figure 2: 2D representation of the potential as a function of the radius r and the longitudinal

coordinate z. The complete potential has a revolution symmetry around the axis r = 0. Parameters

are those of Fig. 1. Note that the scales along z and r are different. Dark corresponds to a zero

potential. Significance of points A, B and C is given in the text.

spatial overlap between the cloud and the lattice. In particular, when the atoms are loaded

from a MOT, the capture volume of the lattice is decisive for its filling rate. In the present

case, the capture volume is determined by the hollow beam diameter, which may be chosen

of several hundreds of µm. For example, with r = 100 µm (Fig. 2) and an initial cloud of

radius 1 mm, 1.5 % of the initial atoms are inside the hollow beam. Thus if the lattice is

loaded with a cloud of 108 atoms in 4 mm3, which are the typical characteristics obtained

from a MOT, 1.5 × 106 atoms are loaded in 2000 sites, leading to a filling rate much larger

than 1.

To test the feasibility of this lattice, we have implemented an experiment with the char-
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acteristics described above. Cesium atoms are initially cooled in a standard MOT with a

−3Γ detuning from resonance. At time t = −40 ms, the magnetic field is turned off, while at

time t = −30 ms, the detuning is increased to −5Γ and the trap beam intensity is decreased:

this sequence allows us to obtain at time t = 0 a 40 µK molasse, corresponding to an energy

of 200 Er, with 108 atoms in typically 4 mm3.

The hollow and gaussian beams are produced by two laser diodes injected by a single

master laser diode in an extended cavity, which ensure the same frequency for both beams.

For this demonstration, the beams are tuned 70 GHz above the atomic transition. In these

conditions, the power of the gaussian and hollow beams, which are respectively 11.5 and

14 mW, are sufficient to reach the needed potential depth of 200 Er. The gaussian beam

has a minimum waist of 140 µm, located at the level of the MOT. The axicon setup is

mounted on an optical rail, to guarantee a good stability of the beam. The incident beam

is collimated with a waist equal to 645 µm. The two conical lenses, with a vertex angle

of 2◦, are separated by a distance of about 10 cm, adjusted to obtain r = 1 mm. The L

focal length of 500 mm leads to ∆r = 100 µm. A telescope located just before the trap

reduces these values to r ≃ 100 µm and ∆r ≃ 10 µm. We obtain in the MOT a transverse

distribution of the hollow beam which is in excellent agreement with the theoretical one.

To load the cold atoms inside the lattice, the later is turned on at a time t < 0, so that

when the molasse is switched off, the atoms are already distributed inside the wells. At

time t = 0, the atoms start to fall under the effect of gravity, except for those which are

trapped in the lattice. The free atoms need typically 25 ms to quit the camera field of view,

so that for t > 25 ms, only atoms interacting with the optical lattice remain. To observe

the atoms, we switch on during 1 ms the trap laser beams near resonance, and we used a

low-noise cooled CCD camera to detect the fluorescence emitted by the atoms. A typical

picture is shown in Fig. 3. As the resolution of the imaging setup is about 10 m, individual

rings separated by λ/2 cannot be distinguished. On the contrary, the picture resolves the

transverse distribution caracterized by two maxima resulting from the side view of the rings.

The dashed line is the theoretical distribution obtained when the potential is approximated

to a double gaussian curve. Thus the experimental distribution is less contrasted because

the inner walls of the actual wells are flatter than the outer ones.

Fig. 4 shows the evolution of the population of the lattice as a function of the time, for the

above parameters. The points are obtained by integrating the experimental pictures along
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Figure 3: Left, side view of the lattice obtained by taking a snapshot of the fluorescence of the

atoms in the lattice at time t = 40 ms. Right, the corresponding transverse distribution (solid

line) and a rough estimate of the theoretical distribution (dashed line). The two-bump structure

reveals the annular structure of the traps.

the z axis. In order to test the robustness of the procedure, eight measures have been done

for each point in abscissa. Fig. 4 shows that the number of atoms decreases exponentially

with time. The fit on an exponential (solid line in Fig. 4) gives a lifetime of 30 ms. This

value is in good agreement with the theoretical lifetime of the atoms resulting from collisions

and spontaneous emission. The number of atoms in the lattice is also in good agreement

with the theoretical one: after 40 ms, there are still 30000 atoms. Assuming that these atoms

are localized in about 700 lattice sites, we reach a filling rate of 40 atoms per site. Note

that actually, we have no direct proof of the localization of the atoms, but only the periodic

optical potential can refrain the atoms from falling. However, only a direct observation of

atom localization, through e.g. Bragg diffraction, would demonstrate unambiguously that

atoms are trapped in the lattice.
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Figure 4: Number of atoms in the lattice versus time. The main plot is in linear scale, and the

number of atoms is given as a percentage of the molasse population. The solid line correspond to

the fit by an exponential with a decay time τ = 30 ms. In the insert, the same results are shown

in log scale, with the absolute number of atoms. In both cases, points are experimental.

In conclusion, we propose here a new lattice geometry, namely a 1D stack of ring traps,

and show its experimental feasibility. The experimental set-up remains relatively simple,

because the lattice is created from only one pair of beams and it does not need any cavity,

contrary to the propositions respectively in [14] and [17]. The other characteristics of this

lattice are: high confinement of the atoms due to the stiff walls of the trapping sites; large

capture volume and filling rate, due to the independence of the torus radius and thickness;

and weak interaction between light and atoms, as the traps are dark. We implemented

experimentally such a lattice, and loaded it directly from a MOT. We measure a lifetime of

the atoms in the lattice of 30 ms. Although we have no direct evidence of the localization

of the atoms in the lattice sites, this demonstrates the feasibility of this system. The life-

time should be improved by changing some parameters which were not optimized for this

feasibility demonstration. For example, a decrease of the initial temperature of the atoms in
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the molasse by an adequate cooling sequence lead to relatively deeper traps. An increase of

the detuning ∆ of the lattice, which requires more intense laser sources, reduces the spon-

taneous emission. Finally, a decrease of the pressure of the thermal atoms, through e.g. the

use of a double cell, improves the collision rate. Each of these enhancements will contribute

to lengthen the lifetime of the atoms in the lattice. If better filling rates are necessary, it

would also be possible to increase it. Indeed, when the lattice is switched on, many atoms

are heated on the lattice axis, because this axis corresponds to a maximum of the potential.

To avoid these extra losses, we plan to switch on the lattice in two steps: first, the hollow

beam is switched on just after the trap beams are switched off, so that the atoms inside

the beam are trapped and remain in the cylinder. Then, the gaussian beam is switched on

progressively, so that the atoms are adiabatically pushed in the ring traps. This precaution

prevents the atoms to be heated by a sudden increase of the potential.

Finally, it would be interesting to study the dynamics of the atoms in this novel geometry

of lattice. Moreover, this lattice could be used in systems where interactions between atoms

in a same site or in neighboring sites are required, or when periodic limit conditions are

necessary.
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