
HAL Id: hal-00092212
https://hal.science/hal-00092212v1

Submitted on 8 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The three dimensions of proofs
Yves Guiraud

To cite this version:
Yves Guiraud. The three dimensions of proofs. Annals of Pure and Applied Logic, 2006, 141(1-2),
pp.266-295. �10.1016/j.apal.2005.12.012�. �hal-00092212�

https://hal.science/hal-00092212v1
https://hal.archives-ouvertes.fr


22nd July 2005 - Modified 18th November 2005

THE THREE DIMENSIONS OF PROOFS

Yves Guiraud1

Abstract: In this document, we study a 3-polygraphic translation for the proofs of SKS, a
formal system for classical propositional logic. We prove that the free 3-category generated
by this 3-polygraph describes the proofs of classical propositional logic modulo structural
bureaucracy. We give a 3-dimensional generalization of Penrose diagrams and use it to
provide several pictures of a proof. We sketch how local transformations of proofs yield a
non contrived example of 4-dimensional rewriting.

Outline

In the first section of this paper, we give a 2-dimensional translation of the formulas of system SKS,
a formal system for propositional classical logic [Brünnler 2004] expressed in the style of the calculus
of structures [Guglielmi 2004]. The idea consists in the replacement of formulas by circuit-like objects
organized in a 2-polygraph [Burroni 1993]. This construction is formalized in theorem 1.4.16.

We proceed to section 2, whose purpose is to translate the proofs of SKS into 3-dimensional objects
that form a 3-polygraph. There we note that every inference rule can be interpreted as a directed 3-cell
between two circuits. We prove theorem 2.4.3 stating that the 3-polygraph we have built can be equipped
with a proof theory which is the same as the SKS one. Section 3 is where the 3-dimensional nature of
proofs happens to be useful: theorem 3.3.1 states that the structural bureaucracy of SKS [Guglielmi 2004]
corresponds to topological moves of 3-cells, called exchange relations.

In section 4 we draw several 3-dimensional representations of a given proof. Section 5 is an informal
discussion about the 4-dimensional nature of local transformations of 3-dimensional proofs. The final
section 6 describes how to adapt the work done here to SLLS, the calculus of structures-style formalism
for linear logic [Straßburger 2003].

1 The two dimensions of formulas

This section gives a 2-dimensional translation of SKS formulas, heavily inspired by the one already
known for terms, studied in [Burroni 1993], [Lafont 2003] and [Guiraud 2004].

After having described the SKS formulas (1.1), we give the intuition behind their translation into
circuit-like objects (1.2): this works by replacing variables with explicit local resources management
operators. This construction requires some theoretical material which is recalled at this moment (1.3).
Then we formalize the translation and study its properties (1.4): the main purpose of this technical part,
that can be skipped on a first approach, is to prove that we can compute a canonical representative for
circuits corresponding to the same SKS formula (theorem 1.4.16). Finally we translate the structural
congruence on SKS formulas into a congruence on the corresponding circuits (1.5).

1Institut de mathématiques de Luminy, Marseille, France - http://iml.univ-mrs.fr/∼guiraud

1



1. The two dimensions of formulas

1.1 The formulas of SKS

System SKS is a formal system for proofs of propositional logic [Brünnler 2004]. It is one of the for-
malisms expressed in the calculus of structures-style, an alternative to sequent calculus where inference
rules can be applied at any depth inside formulas [Guglielmi 2004]. Here an alternative definition is
used, with a term rewriting vocabulary, such as in [Baader Nipkow 1998].

Definition 1.1.1. Let us consider two countable sets VA and VF, which elements are respectively denoted
by a1, a2, etc. and x1, x2, etc. The set of SKS terms is the set T defined as the disjoint union of the two
sets of the pair (A, F) freely generated by the following signature S on the pair (VA, VF):

A

ν

§§

ι

²²
∗

⊤ //

⊥

// F F × F.
∧oo

∨

oo

Terms of sort A are called SKS atoms and terms of sort F are called SKS formulas. The binary relation
denoted by ≡S is defined as the congruence on SKS terms generated by the following rewriting rules:

(x1 ∧ x2) ∧ x3 −→ x1 ∧ (x2 ∧ x3) (x1 ∨ x2) ∨ x3 −→ x1 ∨ (x2 ∨ x3)

x1 ∧ x2 −→ x2 ∧ x1 x1 ∨ x2 −→ x2 ∨ x1

⊤ ∧ x1 −→ x1 ⊥ ∨ x1 −→ x1

⊥ ∧ ⊥ −→ ⊥ ⊤ ∨ ⊤ −→ ⊤

ν(ν(a1)) −→ a1.

Remark 1.1.2. The binary relation ≡S is defined in three steps:

1. One defines the reduction relation →S on terms by u →Sv if there exist a context C, a substitution σ

and one of the nine above rules α : s(α) → t(α) such that u = C[s(α) ·σ] and v = C[t(α) ·σ]. As
usual, C[u] denotes the application of a context C to a term u, while u ·σ stands for the application
of a substitution σ to a term u.

2. Then, one defines the relation ։S from →S by u ։Sv if u = v or if there exists a possibly empty
family (u1, . . . , un) of terms such that:

u →Su1 →Su2 →S . . . →Sun →Sv.

3. Finally, one defines the relation ≡S by u ≡Sv if there exists a possibly empty family (u1, . . . , u2n)

of terms such that:
u ։Su1 ևSu2 ։S . . . ևSu2n ։Sv.

Let us note that, modulo ≡S, the pairs (∧,⊤) and (∨,⊥) are commutative monoid structures on the set
of SKS terms and that the map ν is an involution.

2



1.2. From formulas to circuits: the informal idea

Remark 1.1.3. As they are defined here, the SKS terms are more general than the original SKS formulas
of [Brünnler 2004]. It is straightforward to check that the original formulas are the closed SKS terms of
sort F, modulo the relation ≡S.

The SKS terms described here are more convenient for many reasons, among which the possibility
to reduce the inference rules to a finite number. However, this generalization allows non-linear terms:
this is where we need results from [Burroni 1993] to translate terms into circuits, as described in the rest
of this section.

Another choice could have been made: replacing variables and their negations by a countable number
of constants. This would simplify the translations of terms, since one would need only one sort (F) and
one resources management operator (τFF, defined thereafter). The main drawback of this choice is that
it requires a countable number of 3-dimensional cells to translate the inference rules, in addition to the
countable number of 2-dimensional cells for variables.

1.2 From formulas to circuits: the informal idea

The translation of terms into 2-dimensional objects has been developped troughout [Burroni 1993], [La-
font 2003] and [Guiraud 2004]. The idea is to replace each (family of) term(s) with a circuit: it is built
with the tree-part of the term with, plugged in the leaves, an additional part replacing variables and
consisting of local resources management operators.

Before any formalization, let us give a few examples:

ι(a1) ∧ ι(ν(a1))
(

(⊥ ∨ x1) ∧ ι(a1), ν(a1)
)

⊤ ι(a1) ∧ ι(a1)

These circuits are built using two kinds of wires (one for formulas, in black, and one for atoms, in grey)
and the following fourteen components (six corresponding to the terms constructors and eight for explicit
resources management):

∧

τAAτAFτFAτFFδA εAδF εF

ιν⊥⊤∨

Two operations are allowed to build the circuits, one for each dimension (note that the second one is only
defined if the circuits inputs/outputs match):

◦f f g
f

g
g fg⊗ = =

3



1. The two dimensions of formulas

Usual alternative notations include f ⋆0 g for f ⊗ g, f ⋆1 g for g ◦ f. The circuits are seen as topological
objects and, as such, considered modulo homeomorphic deformation. This means that wires can be
lengthened or shortened and that components can be moved, provided no crossing of wires is created,
such as in the following:

=
f

g f

g
f g=

In [Burroni 1993], this kind of collection of circuits was given a name: a 2-polygraph.

1.3 Two-polygraphs and two-categories

In order to define this structure, we recall some notions about graphs and free categories.

Notation 1.3.1. If G is a graph, its set of objects is denoted by G0 and its set of arrows going from
an object x to another object y is denoted by G(x, y); for such an arrow f, s0(f) is the source x of f

and t0(f) its target y. The set of all arrows of G is denoted by G1 and G itself is often abusively denoted
by (G0, G1) only, assuming that the source and target mappings are given with G1.

Definition 1.3.2. Let G = (G0, G1) be a graph. The free category generated by G, denoted by 〈G〉, is
the following (small) category:

0. The objects of 〈G〉 are the objects of G.

1. The arrows of 〈G〉 from x to y, are all the finite paths in G going from x to y, with concatenation ◦
as composition and empty paths as local identities. The set of all arrows of 〈G〉 is denoted by 〈G〉1.

Definition 1.3.3. A 2-polygraph Σ is given by:

0. A set Σ0 of 0-cells.

1. A set Σ1 of 1-cells, together with two maps s0, t0 : Σ1 → Σ0, called 0-source and 0-target. The
arrows of the free category (Σ0, 〈Σ〉1) are called 1-arrows. The composition of f followed by g is
denoted by f ⋆0 g in the general case and by f ⊗ g when Σ0 has only one element.

2. A set Σ2 of 2-cells, together with two maps s1, t1 : Σ2 → 〈Σ〉1, called 1-source and 1-target, and
such that s0 ◦ s1 = s0 ◦ t1 and t0 ◦ s1 = t0 ◦ t1. The first equality gives a map s0 : Σ2 → Σ0 and
the second one yields t0 : Σ2 → Σ0.

Thus, in order to translate formulas, we build a 2-polygraph ΣF with one 0-cell ∗ (this one can be seen as
the background color in the graphical representations), two 1-cells A and F (the two colors of wires) and
fourteen 2-cells (the circuit components).

All the circuits that can be built with the elementary bricks given by ΣF, equipped with their two com-
positions, considered modulo homeomorphic deformation, form the 2-arrows of the free 2-category 〈ΣF〉
generated by ΣF. The set of all the 2-arrows of 〈ΣF〉 is denoted by 〈ΣF〉2.

4



1.4. From formulas to circuits: the formal construction

Remark 1.3.4. We do not give here a complete definition of this notion, which can be found in either of
[Burroni 1993], [Métayer 2003] or [Guiraud 2005]. Other sources of information about this topic include
[MacLane 1998] for 2-categories, [Baez Dolan 1998] for a certain kind of higher-dimensional categories
and [Chang Lauda 2004] for a whole zoo of them. For this document, let us say that every 2-category
we are interested in can be seen as the quotient of a free 2-category (generated by some 2-polygraph) by
equations between parallel 2-arrows (2-arrows that have the same 1-source and the same 1-target).

1.4 From formulas to circuits: the formal construction

In this paragraph, we build translations between terms and circuits. We follow the same path as in
[Guiraud 2004]: the results we seek are the same as in that document, except for the generalization to
the two-sorted case. We start with the construction of the 2-category T of terms, built from the set T of
SKS terms. First of all, we give some useful notations:

Notation 1.4.1. Let X = X1 ⊗ . . . ⊗ Xn be a 1-arrow in 〈Σ〉: each Xi is either A or F. We denote by ♯X

the pair (♯AX, ♯FX) of natural numbers such that ♯AX (resp. ♯FX) is the number of A (resp. F) appearing
in X. If u = (u1, . . . , un) is a family of n terms in T , we denote by uA (resp. uF) the subfamily of u

consisting only of the ui in A (resp. in F), appearing in the same order as in u. We denote by ♯u the
pair (♯Au, ♯Fu) of natural numbers defined by: ♯Au (resp. ♯Fu) is the greatest of the natural numbers k

such that the variable ak (resp. xk) appears in at least one of the terms u1, . . . , un. Two pairs of natural
numbers are compared with the product order given by the natural one on N.

Definition 1.4.2. Let us define the 2-category of terms, denoted by T, as follows:

0. It contains one 0-arrow, denoted by ∗.

1. Its 1-arrows are the elements X1 ⊗ . . . ⊗ Xn of the free monoid generated by {A, F}.

2. If X and Y = Y1⊗ . . .⊗Yn are two 1-arrows, then the 2-arrows of T from X to Y are all the families
u = (u1, . . . , un) of n terms such that each ui is in Yi and such that ♯u ≤ ♯X.

The two compositions are given by:

- If u = (u1, . . . , un) is a 2-arrow from X to Y and v = (v1, . . . , vq) is a 2-arrow from X ′ to Y ′,
then their product u ⊗ v is the 2-arrow from X ⊗ X ′ to Y ⊗ Y ′ defined by:

u ⊗ v =
(

u1, . . . , un, v1 · ρ♯u, . . . , vq · ρ♯u

)

,

where ρ♯u is the substitution that sends each ai onto ai+♯Au and each xi onto xi+♯Fu.

- If u = (u1, . . . , un) is a 2-arrow from X to Y and v = (v1, . . . , vp) is a 2-arrow from Y to Z, then
their composite v ◦ u is the 2-arrow (w1, . . . , wp) from X to Z such that wi is vi where each ak

(resp. xk) is replaced by the kth element of uA (resp. uF).

Remark 1.4.3. One must check that the operations ◦ and ⊗ are well-defined and that they satisfy the
axioms for the structure of 2-category, as given in [MacLane 1998] for example.

5



1. The two dimensions of formulas

A family u = (u1, . . . , un) of terms can be seen as many 2-arrows in T. Indeed, let us assume that
♯u = (m,n). Then, for any p ≥ m and q ≥ n, u can be seen as a 2-arrow with source Ap × Fq: this
means seeing u as using more variables than it seems (these are dummy variables). Furthermore, one
can also shuffle the source Ap × Fq and still see u as a 2-arrow with source the result of this shuffle. On
the other hand, the target of all these 2-arrows is always the same: it is entirely and uniquely fixed by the
sorts of each ui.

Example 1.4.4. Let us consider u = (a3, x2 ∧ x3, νa1), seen as a 2-arrow from A3⊗ F3 to A⊗ F⊗A,
and v = (ιa2 ∧ x1, x1), seen as a 2-arrow from A2 ⊗ F to F2. Then u ⊗ v and v ◦ u are:

u ⊗ v = (a3, x2 ∧ x3, νa1, ιa5 ∧ x4, x4) and v ◦ u = (ινa1 ∧ (x2 ∧ x3), x2 ∧ x3).

Note that, if u was considered as an arrow with one dummy variable of type F, for example from A3⊗F4

to A⊗ F⊗A, then the result of v ◦u would not be changed (except from its source), while u⊗ v would
become:

u ⊗ v = (a3, x2 ∧ x3, νa1, ιa5 ∧ x5, x5).

On the other hand, the result would not change if only the source A3⊗ F3 was shuffled, into the 1-arrow
A ⊗ F2 ⊗ A ⊗ F ⊗ A for example.

Now we want to prove that T has a graphical presentation as a quotient of a free 2-category. We use a
result from [Burroni 1993] which requires the following notations:

Notation 1.4.5. We recall that ΣF is the following 2-polygraph:

∧

τAAτAFτFAτFFδA εAδF εF

ιν⊥⊤∨

We denote by E∆ the union of the following two families of relations on parallel 2-arrows of the free
2-category 〈ΣF〉:

1. The first family is made of 26 relations, given by all the possible colorations of wires of the
following diagrams:

=

===

= = =

6



1.4. From formulas to circuits: the formal construction

2. The second family is made of 24 relations, four for each of ∧, ∨, ⊤, ⊥, ι, ν:

=

= =

= =

= =

=

= = = =

=

=

=

=

=

=

=

=

=

=

=

=

Finally, we denote by ≡∆ the congruence relation on the free 2-category 〈ΣF〉 generated by the family E∆:
this is the smallest equivalence relation on parallel 2-arrows of 〈ΣF〉 which contains the relations of E∆.

Remark 1.4.6. We recall the following definitions from [Guiraud 2004]. Let us assume that R is a family
of rewriting rules on parallel 2-arrows generated by a 2-polygraph Σ. If α : s2(α) → t2(α) is in R, then
the reduction relation →α it generates is the smallest binary relation on parallel 2-arrows of 〈Σ〉 which
contains α and which is compatible with the two compositions of 〈Σ〉:

- We have s2(α) →αt2(α).

- If f →αg and if h is a 2-arrow of 〈Σ〉, then the following relations hold whenever their left (or
right) side is defined:

f ⊗ h →αg ⊗ h, h ⊗ f →αh ⊗ g, f ◦ h →αg ◦ h, h ◦ f →αh ◦ g.

The reduction relation →R generated by the whole of R is the union of all the →α, for α in R. The
relations ։α and ։R are the reflexive-transitive closures of →α and →R. The relations ≡α and ≡R are
the reflexive-symmetric-transitive closures of →α and →R.

Theorem 1.4.7 (Burroni). The 2-category T is isomorphic to the quotient 2-category 〈ΣF〉/ ≡∆.

Remark 1.4.8. The proof of theorem 1.4.7 is detailed in [Burroni 1993] in the one-sorted case and, as
noted there, generalizes to the many-sorted case. It consists in the following steps:

1. One defines a 2-functor π from 〈ΣF〉 to T as the unique 2-functor such that:

- π(δA) = (a1, a1) and π(δF) = (x1, x1), respectively seen as a 2-arrows from A to A2 and
from F to F2.

7



1. The two dimensions of formulas

- π(εA) = ∗(A) and π(εF) = ∗(F), where ∗(A) (resp. ∗(F)) is the empty family of terms, seen
as a 2-arrow from A (resp. F) to ∗, the empty family of wires.

- π(τA,A) = (a2, a1), π(τA,F) = (x1, a1), π(τF,A) = (a1, x1) and π(τF,F) = (x2, x1), seen
respectively as 2-arrows from A2 to A2, A ⊗ F to F ⊗ A, F ⊗ A to A ⊗ F and F2 to F2.

- π(∧) = x1 ∧ x2 and π(∨) = x1 ∨ x2, both seen as 2-arrows from F2 to F.

- π(⊤) = ⊤ and π(⊥) = ⊥, both seen as 2-arrows from ∗ to F.

- π(ι) = ι(a1), seen as a 2-arrow from A to F.

- π(ν) = ν(a1), seen as a 2-arrow from A to itself.

2. Then one proves that π is compatible with the relations of E∆. This means that, for every f ≡ g

in E∆, π(f) = π(g) holds. For example, let us prove this equality for the first relation, with the
wires colored with A:

π
(

(δA ⊗ A) ◦ δA

)

=
(

π(δA) ⊗ π(A)
)

◦ π(δA)

=
(

(a1, a1) ⊗ a1

)

◦ (a1, a1)

= (a1, a1, a2) ◦ (a1, a1)

= (a1, a1, a1)

= (a1, a2, a2) ◦ (a1, a1)

=
(

a1 ⊗ (a1, a1)
)

◦ (a1, a1)

=
(

π(A) ⊗ π(δA)
)

◦ π(δA)

= π
(

(A ⊗ δA) ◦ δA

)

.

3. This proves that π yields a 2-functor from 〈ΣF〉/E∆ to T. In order to prove that π has an inverse,
one starts with the construction of a decomposition of every 2-arrow of T in elementary 2-cells,
all of the form π(ϕ), where ϕ is any 2-cell of Σ. Let us consider a family u = (u1, . . . , un) of
terms, seen as an arrow from X to Y.

- The first layer is built only from the six operators of the terms signature S, as the juxtaposition
of the tree-parts of the terms u1, . . . , un. For example, if n = 2, u1 = x1 ∧ ι(ν(a2)) and
u2 = x1 ∨ ⊥, one gets:

- Then, the second layer is built from the eight operators of resources management. One takes
the concatenation of the variables remaining from the first layer: in our example, (x1, a2)

and x1 remain, giving the family (x1, a2, x1). Then, one makes a diagram, using the re-
sources management operators to link this family to the one corresponding to X. In our
example, the following possibilities exist, among others, when X = F2 ⊗ A2:

8



1.4. From formulas to circuits: the formal construction

- The seeked decomposition is built from the first layer, composed with any possible second
layer on its top. In our example, we can get the following decompositions (note that we will
make sure that the chosen one is the former):

4. The final and most difficult part, fully detailed in [Burroni 1993], consists in proving that two
decompositions of the same 2-arrow are equal modulo the relation ≡∆. This result comes from
a polygraphic presentation of the 2-category of finite sets. This step yields a 2-functor from T

to 〈ΣF〉/E∆, that is checked to be inverse to π.

Remark 1.4.9. The family E∆ of relations is minimal [Lafont 2003]: there is no other family with less
elements that generates ≡∆. The result from [Burroni 1993] adapts to a general case, where the formal
system to be translated into circuits is made of n sorts and m constructors: in this situtation, the first
family would consist of n(n2 + 3n + 3) relations, while the second one would have m(n + 2) relations.

For the moment, we have a translation from circuits into families of terms. In order to build translations
going the reverse way, we prove that the family E∆ can be extended into a finite, equivalent and conver-
gent family of rewriting rules. The rules were given in [Lafont 2003] then proved to be convergent in
[Guiraud 2004].

Notation 1.4.10. We denote by R∆ the union of the two following families of rewriting rules on the
2-category 〈ΣF〉:

1. The first family consists of 42 rules, given by the following twelve schemes, with every possible
colorations of wires:

9



1. The two dimensions of formulas

2. The second family consists of 36 rules, given by the following twelve schemes, sorted by arity of
each constructor of S, with every possible coloration of wires:

Remark 1.4.11. This definition extends to the case with n sorts and m constructors: the associated
2-polygraph would have one cell in dimension 0, n cells in dimension 1 and m + 2n + n2 cells in
dimension 2. The set of rewriting rules on the 2-polygraph would consist of n(n2 + 6n + 5) rules in the
first family and of 2m(n + 1) rules in the second one.

Lemma 1.4.12. The families R∆ and E∆ are equivalent on 〈ΣF〉.

Proof. We want to prove that the two families generate the same congruence relation on 〈ΣF〉. Since E∆

is a subfamily of R∆, it is sufficient to prove that each extra rule of R∆ is derivable from E∆. This means
that, for each extra rule f → g, the relation f ≡∆g holds. Let us consider, for example, the second
scheme colored with A:

(A ⊗ τAA) ◦ (δA ⊗ A) ◦ δA ≡∆(A ⊗ τAA) ◦ (A ⊗ δA) ◦ δA

=
(

A ⊗ (τAA ◦ δA)
)

◦ δA

≡∆(A ⊗ δA) ◦ δA

≡∆(δA ⊗ A) ◦ δA.

We can also prove this fact graphically:

≡∆≡∆ ≡∆

Let us make another graphical proof:

≡∆≡∆ ≡∆ ≡∆

♦

10



1.4. From formulas to circuits: the formal construction

Now, we want to prove that the family R∆ is convergent on 〈ΣF〉. In [Guiraud 2004], the same set of
rules was proved to be convergent on a monochromatic version of 〈ΣF〉, which we denote here by 〈ΩF〉.
Here, instead of doing the proof again, we can use this result to prove the convergence of R∆. However,
we need some extra notations.

In the 2-category 〈ΩF〉, there is only one 1-cell, denoted by 1, and nine 2-cells: the six from S, with
only their arity kept, together with ε, δ and τ. We define the 2-functor γ from 〈ΣF〉 to 〈ΩF〉 as the only
one which sends A and F onto 1, each constructor of S onto itself, εX onto ε, δX onto δ and τXY onto τ.

Then let us consider a 2-arrow f in 〈ΩF〉 and a 1-arrow X in 〈ΣF〉 such that γ(X) = s1(f) and such
that there exists a 2-arrow fX in 〈∆〉 with 1-source X and with γ(fX) = f. In that case, X is seen as a
coloration of the input wires of the colorless f; then, this coloration is propagated throughout f, giving a
label to each of ε, δ and τ and yielding an arrow fX.

Let us define these notions formally by induction on the size of 2-arrows: this is the least number
of compositions ◦ and ⊗ required to build them from the generators (the cells in each dimension); this
notion is well defined because 〈ΣF〉 is free.

Definition 1.4.13. From now on, if X is a 1-arrow in any 2-category, its identity 2-arrow is also denoted
by X. The set Γ(f) of admissible colorations for a 2-arrow f and the 2-arrow fX are inductively defined
as follows:

- If n ∈ N, then Γ(n) = {A, F}n. If X ∈ {A, F}n, then nX = X.

- If ϕ is in S with 1-source X, then Γ(ϕ) = {X} and ϕX = ϕ.

- The 2-cells δ and ε satisfy Γ(δ) = Γ(ε) = {A, F}. If X ∈ {A, F}, then δX and εX are the 2-cells
of Σ with the same notations.

- The 2-cell τ satisfies Γ(τ) = {A, F}2. If X, Y ∈ {A, F}, then τX⊗Y = τXY.

- If f and g are 2-arrows of 〈ΩF〉, then Γ(f ⊗ g) = Γ(f) ⊗ Γ(g). If X is in Γ(f) and Y is in Γ(g),
then (f ⊗ g)X⊗Y = fX ⊗ gY.

- If f and g are 2-arrows of 〈ΩF〉 such that t1(f) = s1(g), then Γ(g ◦ f) = Γ(f). If X is an element
of Γ(f), then (g ◦ f)X = gt1(fX) ◦ fX.

By induction on the size of f, we get:

Lemma 1.4.14. For every 2-arrow f in 〈ΣF〉, the 1-arrow s1(f) is in Γ(γ(f)) and (γ(f))s1(f) = f.

We extend the constructions γ and (·)X on rules of R∆ this way: for each rule α : f → g in R∆, we
denote by γ(α) the rule γ(f) → γ(g) on 〈ΩF〉 and by γ(R∆) the family of all rules γ(α).

Conversely, each rule α : f → g in γ(R∆) yields one, two, four or eight rules in R∆, each one of the
form αX : fX → gX.

We prove the following result, using the definition of →α and the functoriality of γ:

Lemma 1.4.15. For every rule α in R∆ and every 2-arrows f and g in 〈ΣF〉 such that f →αg, then the

property γ(f) →γ(α)γ(g) holds in 〈ΩF〉.
Conversely, if f and g are 2-arrows in 〈ΩF〉 and α is a rule in γ(R∆) such that f →αg, then every

1-arrow X in Γ(f) is in Γ(g) and fX →αY
gX holds for some Y in 〈ΣF〉.

11



1. The two dimensions of formulas

Then, we can prove:

Theorem 1.4.16. The family of rules R∆ is convergent on 〈ΣF〉.

Proof. In order to prove the termination, let us assume that there exists an infinite reduction path (fn)n∈N

in 〈ΣF〉 generated by R∆: this means that the fn are parallel 2-arrows of 〈ΣF〉 such that, for every n, there
exists a rule αn in R∆ with fn →αnfn+1. From the previous lemma, we deduce that, for every n, the
reduction γ(fn) →γ(αn)γ(fn+1) holds in 〈ΩF〉. Hence (γ(fn))n is an infinite reduction path in 〈ΩF〉
generated by γ(R∆). However, we know since [Guiraud 2004] that γ(R∆) terminates on 〈ΩF〉: this
prevents the existence of such an infinite path. Hence R∆ terminates on 〈ΣF〉.

Now, let us consider a branching (f, g, h) generated by R∆ in 〈ΣF〉: this means that f, g and h are
parallel 2-arrows such that there exist two reduction paths in 〈ΣF〉 with the following shapes:

f →α1
g1 →α2

. . . →αmg and f →β1
h1 →β2

. . . →βnh,

with all the αi and βj in R∆. Then, an application of γ on both paths proves that the triple of 2-arrows
(γ(f), γ(g), γ(h)) in 〈ΩF〉 is a branching generated by γ(R∆). Indeed, from the previous lemma, we
get:

γ(f) →γ(α1)γ(g1) →γ(α2) . . . →γ(αm)γ(g) and γ(f) →γ(β1)γ(h1) →γ(β2) . . . →γ(βn)γ(h).

We know that γ(R∆) is confluent from [Guiraud 2004]. Hence, the branching (γ(f), γ(g), γ(h)) can be
closed with a 2-arrow k in 〈ΩF〉, together with two reduction paths generated by γ(R∆):

γ(g) →α ′

1
g ′

1 →α ′

2
. . . →α ′

p
k and γ(h) →β ′

1
h ′

1 →β ′

2
. . . →β ′

q
k.

Let us consider X = s1(f) in 〈ΣF〉. Since all considered arrows in these paths are parallel, X is the
1-source of all of them and, in particular, admissible for all of them. Then, an application of (·)X yields
1-arrows denoted by Y1, . . . , Yp and Z1, . . . , Zq such that:

g →(α ′

1
)Y1

(g ′
1)X →(α ′

2
)Y2

. . . →(α ′

p)Yp
kX and h →(β ′

1
)Z1

(h ′
1)X →(β ′

2
)Z2

. . . →(β ′

q)Zq
kX.

Hence, there exist reduction paths generated by R∆ from g to kX and from h to kX, so that kX closes the
branching (f, g, h). Thus R∆ is also confluent and, finally, convergent. ♦

Notation 1.4.17. If f is a 2-arrow in 〈ΣF〉, we denote by R∆(f) its unique normal form with respect to
the congruence ≡∆.

Now, we can define translations from families of terms to circuits:

Notation 1.4.18. Let u = (u1, . . . , un) be a family of terms, let X be a 1-arrow of 〈ΣF〉 such that
♯u ≤ ♯X and let Y = Y1 ⊗ . . . ⊗ Yn be the 1-arrow such that ui ∈ Yi. Then we denote by ΦX(u)

the unique 2-arrow from X to Y in 〈ΣF〉 which is in normal form with respect to R∆ and such that
π(ΦX(u)) = u. In the special case where X is of the form Ak ⊗ Fl, ΦX(u) is denoted by Φ(k,l)(u).

In order to conclude this technical part, we prove the following result:

Lemma 1.4.19. For every 2-arrow f in 〈ΣF〉, we have R∆(f) = Φs1(f)(π(f)).

12



1.5. Translation of the structural congruence

Proof. By definition of Φs1(f)(π(f)), the following relations are satisfied:

s1(Φ
s1(f)(π(f))) = s1(f),

t1(Φ
s1(f)(π(f))) = t1(f),

π(Φs1(f)(π(f))) = π(f),

R∆(Φs1(f)(π(f))) = Φs1(f)(π(f))).

The first two equations tell us that Φs1(f)(π(f)) and f are parallel 2-arrows of 〈ΣF〉. The third one
gives that both f and Φs1(f)(π(f)) have the same image through π. However, we already know that, for
every parallel 2-arrows g and h in 〈ΣF〉, we have g ≡∆h if and only if π(g) and π(h) are equal. Thus,
f ≡∆Φs1(f)(π(f)), which is equivalent, since R∆ is a convergent presentation of ≡∆, to the fact that R∆(f)

and R∆(Φs1(f)(π(f))) are equal. Finally, the fourth equation gives the result: R∆(f) = Φs1(f)(π(f))).
♦

1.5 Translation of the structural congruence

In this paragraph, we give one way to translate the relation of structural congruence from terms to circuits.
We generalize a result from [Guiraud 2004], from the one-sorted to the two-sorted case. For that, we
define translations from rewriting rules on terms to rewriting rules on circuits:

Notation 1.5.1. Let α : u → v be a rewriting rule on terms. We denote by ♯α the pair (♯Aα, ♯Fα)

of natural numbers that is the upper bound of ♯u and ♯v. Then Φ(α) is defined as the rewriting rule
Φ♯α(u) → Φ♯α(v) on 〈ΣF〉. If R is a family of rules on terms, then Φ(R) is the family made of the
translations through Φ of each rule in R.

Remark 1.5.2. The definition of Φ(α) is not restricted to rewriting rules: indeed, the left part can be
a variable and the right part may contain more variables than the left one. This would create infinite
reduction paths, but in what follows we are not really interested in the rewriting properties of paths, but
rather in their classification.

Let us prove that redexes are preserved by the translations from terms to circuits.

Lemma 1.5.3. Let u be a term, C be a context and σ be a substitution. Let X be a 1-arrow of 〈ΣF〉 such

that ♯X is greater than ♯u. Then, there exists a 2-arrow f in 〈ΣF〉 such that:

- There exist 1-arrows Y and Z and 2-arrows h and k in 〈ΣF〉 with:

f = k ◦ (Y ⊗ ΦX(u) ⊗ Z) ◦ h.

- The relation π(f) = C[u · σ] holds.

Proof. Let us denote by (x1, . . . , xn) the family of variables π(X). Let us denote by (y1, . . . , yk)

and (z1, . . . , zl) the two families of variables appearing from left to right in the context C, the first
one at the left of the empty slot, the second one at its right. Let us consider any 1-arrow X ′ such that
♯X ′ ≥ ♯C[u · σ] holds. Then, we denote by h the arrow:

h = ΦX′

(y1, . . . , yk, x1 · σ, . . . , xn · σ, z1, . . . , zl).

13



1. The two dimensions of formulas

Then, let us consider the term C0 built from the tree-part of the context C by putting variables on each
leaf, with no repetition and in order from left to right. Let us denote by U the sort of the term u, which
is either A or F. Let us denote by Y1, . . . , Yk the sorts of the variables y1, . . . , yk and by Z1, . . . , Zl the
sorts of the variables z1, . . . , zl. Finally, Y is the product Y1⊗ . . .⊗Yk and Z is the product Z1⊗ . . .⊗Zl.
We define k as the arrow:

k = ΦY⊗U⊗Z(C0).

Then the 2-arrow f = k ◦ (Y ⊗ ΦX(u) ⊗ Z) ◦ h has been built to satisfy π(f) = C[u · σ]. ♦

Now we can prove that reductions on terms can be lifted to reductions on the corresponding circuits.

Proposition 1.5.4. Let α be a rewriting rule on the set of terms. If u and v are terms such that u →αv,

then for every 1-arrow X such that ♯X is greater than both ♯u and ♯v, there exist 2-arrows f and g in 〈ΣF〉
such that:

ΦX(u) ≡∆f →Φ(α)g ≡∆ΦX(v).

Proof. Let us use the notations α : s(α) → t(α) and Φ(α) : s2(Φ(α)) → t2(Φ(α)). Since u →αv,
there exist a context C and a substitution σ such that u = C[s(α) · σ] and v = C[t(α) · σ]. From the
previous lemma, this implies that there exist 2-arrows h and k and 1-arrows Y and Z in 〈ΣF〉 such that
the 2-arrows defined thereafter satisfy π(f) = u and π(g) = v:

f = k ◦ (Y ⊗ s2(Φ(α)) ⊗ Z) ◦ h and g = k ◦ (Y ⊗ t2(Φ(α) ⊗ Z) ◦ h.

Hence f →Φ(α)g. Furthermore, since π(f) = u = π(ΦX(u)), we know that ΦX(u) ≡∆f and, for the
same reasons, ΦX(v) ≡∆g, which concludes the proof. ♦

Corollary 1.5.5. Let R be a family of relations or rewriting rules on terms, let ≡R be the congruence

it generates on terms and ≡∆R the one on parallel circuits generated by the union of R∆ and Φ(R).

If u and v are two terms such that u ≡ Rv, then ΦX(u) ≡ ∆RΦX(v) holds for every X such that ♯X

is greater than both ♯u and ♯v. Conversely, if f and g are two 2-arrows of 〈ΣF〉 such that f ≡ ∆Rg,

then π(f) ≡Rπ(g).

We use this result on the example of the structural rules:

Definition 1.5.6. The family S is the following family of rules:

Remark 1.5.7. The rules for commutativity have been reversed, only for aesthetic and termination rea-
sons. This choice does not change the congruence they generate on circuits. Furthermore, the rule
x1 ∧ x2 → x2 ∧ x1 and its converse generate the same reduction relation on terms, hence the same
congruence.

14



2. The three dimensions of proofs

Remark 1.5.8. Informally, the set of circuits, equipped with the reduction relation → S, is projected,
through π, onto the set of families of terms, equipped with →S, and the fiber of π over each family u of
terms is an ≡∆-equivalence. One of the future objectives of higher-dimensional rewriting is to make this
remark formal.

Remark 1.5.9. The given set of structural rules is terminating but not confluent. However, it can be
completed into a convergent one. One open question is to determine if the union of the resources man-
agement rules and of the structural rules can be completed into an equivalent, finite and convergent set
of rules. The main direction towards this result consists in following the example of the rewriting sys-
tem L(Z2), proposed in [Lafont 2003] as a finite presentation of the structure of Z/2Z-vector spaces,
and proved to be convergent in [Guiraud 2004]. Such a result would provide canonical representatives
of formulas (modulo structural congruence) into circuits.

So far, we have translated the structural congruence from terms to circuits in such a way that, for any
parallel 2-arrows f and g in 〈ΣF〉, we have f ≡∆Sg if and only if π(f) ≡Sπ(g). However, all the relations
between 2-arrows can be given a name and a richer structure than a mere relational one: they have an
intrinsic 3-dimensional nature and so have the inference rules generating the proofs.

2 The three dimensions of proofs

After a presentation of the inference rules of SKS (2.1), we give the intuition leading to the construction
we seek (2.2). Once again, this requires some theoretical notions (2.3). Then we give the formal trans-
lation (2.4) and prove that the 3-dimensional object one gets can be equipped with a notion of proof that
corresponds to the one of SKS (theorem 2.4.3).

2.1 The SKS proofs

In this paragraph, we recall definitions from [Brünnler 2003]. Once again, they are slightly adapted to
our needs; in particular they are written in a term rewriting style.

Definition 2.1.1. The SKS inference rules are the following rewriting rules on the set T of SKS terms:

⊤ −→ ι(a1) ∨ ι(ν(a1)) ι(a1) ∧ ι(ν(a1)) −→ ⊥

(x1 ∨ x2) ∧ x3 −→ x1 ∨ (x2 ∧ x3)

(x1 ∧ x2) ∨ (x3 ∧ x4) −→ (x1 ∨ x3) ∧ (x2 ∨ x4)

⊥ −→ ι(a1) ι(a1) −→ ⊤

ι(a1) ∨ ι(a1) −→ ι(a1) ι(a1) −→ ι(a1) ∧ ι(a1).

The set of SKS inference rules is denoted by R. We denote by S the set of structural rules on SKS terms,
by S−1 the same set with the rules reversed and by S the union of both sets.

Note that the generated congruences ≡S, ≡
S−1 and ≡S are the same relations. We define a graphical

object associated to SKS in which arrows are formal proofs.

15



2. The three dimensions of proofs

Definition 2.1.2. The reduction graph associated to SKS is the graph GK defined as follows:

0. Its objects are the families of SKS terms.

1. If u and v are two objects, then there is an arrow in G from u to v for each α in either of R or S

such that u →αv.

A SKS proof from u to v is a finite path in the graph GK, starting at u and ending at v. A complete SKS

proof of u is a SKS proof from ⊤ to u.

Hence, the SKS proofs are the rewriting paths generated by the inference rules, together with the struc-
tural rules and their converse. In [Guiraud 2004], it was proved that any term rewriting system can be
translated into a 3-polygraph, alike what was done for structural rules in the previous section.

2.2 From proofs to three-dimensional arrows: the informal idea

The inference rules are rewriting rules on circuits: they transform one circuit into another one, with the
same inputs and the same outputs. Let us consider a rewriting rule α : f → g on circuits and call f the
2-source and g the 2-target of α. Then, the fact that f and g are parallel means that f and g have the same
1-source and the same 1-target. Equationally, s1(f) = s1(g) and t1(f) = t1(g). If we denote f by s2(α)

and g by t2(α), then we get:

s1 ◦ s2(α) = s1 ◦ t2(α) and t1 ◦ s2(α) = t1 ◦ t2(α).

This means that α can be seen as a 3-dimensional cell over the free 2-category 〈ΣF〉: a directed volume
between two parallel directed surfaces. However, such an object is difficult to represent. For that reason,
we use here another type of pictures, in order to give the intuition, where 3-cells are drawn as blocks:

x

f

g
y

This represents a 3-cell α going from a circuit f to another one g. Both circuits must have the same inputs
(number and color), here x, and the same ouputs, here y. Note that, although useful, this representation
can be misleading: for example, x is a 1-dimensional cell but it is pictured as a 2-dimensional object,
like f.

This being noticed, we use this block representation for intuition, together with the following one,
much more accurate though only 2-dimensional, made of three vertical slices of the block - one before,
one in the middle, one after:

α

gf

16



2.3. Three-polygraphs and their reduction graphs

Hence, giving a set of rewriting rules on a free 2-category amounts at giving a family of 3-cells over it:
this is a 3-polygraph. Furthermore, this object generates a reduction graph which paths will be proved to
be representatives of the SKS proofs.

In order to give the underlying idea, let us consider extensions of the two compositions of circuits on
3-cells: with these operations, one can put circuits aside a block or plug another ones in its inputs and
outputs. Let us give an example, with the sliced representation:

f h

k

g h

k

α h

k

In this diagram, we see an application of the rule α in the context formed of all the surrounding circuits:
it transforms (f ⊗ h) ◦ k into (g ⊗ h) ◦ k. This operation corresponds, modulo some ≡∆ equivalences,
to an application in context of a SKS rule.

If one considers the graph made of all applications (in context) of rules on circuits, its paths should
have a strong link with the SKS proofs. This is what will be explored, after some formal definitions.

2.3 Three-polygraphs and their reduction graphs

We start with the definition of 3-cells over a 2-category:

Definition 2.3.1. Let C be a 2-category. A family of 3-cells over C is a triple (Σ3, s2, t2) made of a set Σ3

and two maps s2, t2 : Σ3 → C2 such that the following two equations hold:

s1 ◦ s2 = s1 ◦ t2 and t1 ◦ s2 = t1 ◦ t2.

Example 2.3.2. We have already encountered several families of 3-cells, both over the 2-category 〈ΣF〉:
the resources management equations (seen as 3-cells going from left to right), the resources management
rules, the structural rules and their reverse rules. Furthermore, we have seen that any rule on terms
generates a 3-cell over 〈ΣF〉.

Definition 2.3.3. The family of inference rules is the family of 3-cells over the free 2-category 〈ΣF〉 given
graphically as follows:

17



2. The three dimensions of proofs

Such an extension of a 2-polygraph is called a 3-polygraph:

Definition 2.3.4. A 3-polygraph is a data (Σ,Σ3, s2, t2) made of a 2-polygraph Σ and a family of 3-
cells (Σ3, s2, t2) over the free 2-category generated by Σ. The elements of Σ3 are the 3-cells of the
3-polygraph and the maps s2 and t2 are respectively the 2-source and the 2-target maps.

A 3-polygraph Σ is often denoted by the family (Σ0, Σ1, Σ2, Σ3) of its sets of 0, 1, 2 and 3-cells,
assuming that the sources and targets are implicitely given with them.

Example 2.3.5. The 2-polygraph ΣF associated to the signature of SKS terms can be extended into a
3-polygraph with any of the families encountered so far. For example, with the following ones:

- The family of 100 resources management 3-cells, made from the equations of E∆ and their con-
verse (each equation is split into two rules, one going in one direction, one in the reverse direction).

- The family of 18 structural 3-cells, made of the translation of structural rules and their converse.

- The family R of 8 inference 3-cells.

All these 3-polygraphs have the same cells in dimensions 0, 1, 2. Hence, one can enrich ΣF with the
union of any of all these families.

Definition 2.3.6. The 3-polygraph ΣK consists of the 2-polygraph ΣF extended with the three families
of 3-cells from example 2.3.5: it has one cell in dimension 0, two in dimension 1, 14 in dimension 2

and 126 in dimension 3.

We define the reduction graph associated to a 3-polygraph with only one 0-cell: this is the case we need
and this restriction makes graphical representations clearer. The idea behind this notion is that an arrow
in this graph is an application of a 3-cell, seen as a rewrite rule, inside a context. Note that [Guiraud
2004(T)] contains a formal categorical approach to contexts over a 2-polygraph.

Definition 2.3.7. Let Σ = (∗, Σ1, Σ2, Σ3) be a 3-polygraph with one 0-cell. Its associated reduction

graph is the graph denoted by G(Σ) defined this way:

0. The objects of G(Σ) are the 2-arrows of 〈Σ〉2.

1. The arrows of G(Σ) from u to v are all the triples (f, α, g), made of two 2-arrows f and g of 〈Σ〉2
and one 3-cell α of Σ3, such that the following two equalities are defined and hold:

t2α

f f

g g

= u = vs2α

Each triple (f, α, g) is represented by the following diagram:

α

f

g

18



2.3. Three-polygraphs and their reduction graphs

The triples are considered modulo the following deformation equations, given for every possible
2-arrows f, g and h and 3-cell α:

α
= =

f f f f

g g

h

h

h

h

g g

α

α

α

We have the following link between the reduction relation generated by a family of rewriting rules and
the reduction graph generated by the corresponding 3-polygraph:

Remark 2.3.8. Let R be a family of rewriting rules on the parallel 2-arrows of a free 2-category 〈Σ〉
generated by a 2-polygraph Σ. Let us denote by ΣR the 3-polygraph built from Σ extended with the
family R, which elements are seen as 3-cells. Then, given 2-arrows u and v in 〈Σ〉 and a rule α in R, one
has u →αv if and only if there exists an arrow of the form (f, α, g) in G(ΣR) from u to v.

Hence, the reduction graph is almost the same as the graph of the reduction relation. However, in
the former, we give names to reductions: we explicitely give the context of application of each rule,
thus making a difference between two applications of the same rule on the same circuit but in different
contexts.

Furthermore, this allows one to explicitely equip applications of rules with the structure of the cir-
cuits, instead of an implicit compatibility: this is a first step towards the naming of reductions, which
will be of great help in order to deal with bureaucracy.

To conclude this paragraph, let us give some additional notations that will be useful in section 3:

Definition 2.3.9. Let Σ = (∗, Σ1, Σ2, Σ3) be a 3-polygraph with one 0-cell. In G(Σ), we denote by α the
arrow (s2(α), α, t2(α)). The operations ⊗ and ◦ are extended this way between a 2-arrow of Σ and an
arrow of G(Σ):

- If (f, α, g) is an arrow of G(Σ) and h and k are 2-arrows of Σ such that t1(h) = s1(f) and
s1(k) = t1(g), then:

(f, α, g) ◦ h = (f ◦ h, α, g) and k ◦ (f, α, g) = (f, α, k ◦ g).

- If (f, α, g) is an arrow of G(Σ) and h is a 2-arrow of Σ, then:

h ⊗ (f, α, g) = (h ⊗ f, α, t1(h) ⊗ g) and (f, α, g) ⊗ h = (f ⊗ h,α, g ⊗ t1(h)).

Remark 2.3.10. The extension of ⊗ is not arbitrary since the deformation relations yield the following
equalities in G(Σ):

(h⊗ f, α, t1(h)⊗ g) = (s1(h)⊗ f, α, h⊗ g) and (f ⊗ h,α, g⊗ t1(h)) = (f⊗ s1(h), α, g⊗ h).

19



2. The three dimensions of proofs

2.4 From proofs to three-dimensional arrows: the formal construction

If we apply the results from the first section concerning the structural rules to the inference rules, we get:

Proposition 2.4.1. The following definition extends π into a surjective functor from 〈G(ΣK)〉 to 〈GK〉:

- If α is in ∆, then π(f, α, g) = ids(f,α,g).

- If α is in R or S, then π(f, α, g) is the arrow α : π(s(f, α, g)) → π(t(f, α, g)).

Proof. Since π is defined on objects and arrows of the graph G(ΣK), with values into the category 〈GK〉,
it uniquely extends into a functor from 〈G(ΣK)〉 to 〈GK〉. Furthermore, we already know that π is
surjective on objects. Now, let us consider an arrow from u to v in the free category 〈GK〉. Such an
arrow is a sequence of reductions from u to v, using the rules of either of R or S:

u = u0 →α1
u1 →α2

. . . →αnun = v.

Let us consider a 1-arrow X in ΣK such that ♯X is greater than each ♯ui. Then, for any i, we know that
there exist 2-arrows fi and gi in ΣK such that:

ΦX(ui) ≡∆fi →Φ(αi+1)gi ≡∆ΦX(ui+1).

Since, for every equation in E∆, we have in ΣK a 3-cell going from left to right and a 3-cell going from
right to left, we know that, whenever f ≡∆g holds, there exists a path in G(ΣK) from f to g that uses
only 3-cells from the family ∆. Hence, we have a path in G(ΣK):

ΦX(u0) ։∆f0 →Φ(α0)g0 ։∆ΦX(u1) ։∆f1 →Φ(α1) . . . ։∆fn−1 →Φ(αn)gn−1 ։∆ΦX(un).

Since π sends each arrow ։∆ onto an identity, this path is sent by π onto the considered arrow of 〈GK〉.
Hence π is surjective.

♦

In order to adapt the vocabulary of proof theory to the 3-polygraph ΣK, we introduce the following:

Definition 2.4.2. Let f and g be 2-arrows of ΣK. A proof from f to g is a path from f to g in the reduction
graph G(ΣK). A complete proof of f is a path from ⊤◦εX to f in G(ΣK), where εX is a generalized eraser
from X to ∗, built as the juxtaposition of elementary erasers.

As a corollary of the previous result, we get:

Theorem 2.4.3. If there exists a SKS proof from u to v, then there exists a proof from ΦX(u) to ΦX(v)

in ΣK, for every 1-arrow X such that ♯X is greater than both ♯u and ♯v. In particular, if there exists a

complete SKS proof of u, then there exists a complete proof of every ΦX(u), with X such that ♯X ≥ ♯u.

Conversely, if f and g are 2-arrows with target F or A such that there exists a proof from f to g in ΣK,

then there exists a SKS proof from π(f) to π(g). In particular, if there exists a complete proof of f with

target A or F, then there exists a complete proof of π(f).

To informally summarize this result, one can say that the proof theory of the 3-polygraph ΣK we have
built is the same one as the proof theory of SKS. Hence, we have a polygraphic translation of the system
SKS in what we now call its calculus of structures version.

But the 3-dimensional setting has not really been used for the moment. And, as we are going to
see, the unveiling of the three dimensions of proofs allows a direct and simple control on structural
bureaucracy.

20



3. Three dimensions against structural bureaucracy

3 Three dimensions against structural bureaucracy

In [Guglielmi 2005], objects called Formalism A and Formalism B are sketched in order to identify
proofs that only differ by structural bureaucracy: this means that the two proofs only differ by the order
of application of the same inference rules.

Defining relations that control this bureaucracy may be difficult in the term-like language of the cal-
culus of structures. Indeed, it is much like the classification of branchings generated by a term rewriting
system [Baader Nipkow 1998].

Here theorem 3.3.1 states that, once proofs have been translated into 3-dimensional objects, the
equations controlling structural bureaucracy (3.1) become really simple to define: they are the equations
called exchange relations (3.2).

After the proof of the theorem (3.3), we conclude the section by a diagram showing the respective
positions of the 3-polygraphs corresponding to SKS and to Formalisms A and B (3.4).

3.1 The two types of structural bureaucracy

Let us start by giving a definition of structural bureaucracy on SKS proofs, which comes in two types,
called A and B. The first one is generated by the applications of two inference rules in different subterms.
The second one is generated by the application of two inference rules, one inside the other. In both cases,
the two rules apply in two zones of the term that do not intersect.

However, this intuitively simple idea is hard to formalize in the term-like setting used by the calculus
of structures: it is like the classification of branchings generated by a term rewriting system, involving
many tricky notions such as the relative positions of redexes.

On the other hand, the higher-dimensional setting makes the definitions almost trivial: this is mainly
due to the facts that, with this point of view, applications of inference rules have been given a name and
that both dimensions of the terms are revealed and treated symmetrically.

Here we use the 2-categorical structure of T to define both bureaucracy relations. The bureaucracy A
relation identifies two proofs that differ by the order of application of two rules in two different subterms:

Definition 3.1.1. The bureaucracy type A relation is the equivalence relation ≡A on SKS proofs gener-
ated by the rule →A defined, for every two rules α and β, every three 1-arrows X, Y and Z, every two
families of terms u and v by the following diagram (when it has a meaning):

u ◦ (X ⊗ s(α) ⊗ Y ⊗ s(β) ⊗ Z) ◦ v
α// //

β

²²²²

u ◦ (X ⊗ t(α) ⊗ Y ⊗ s(β) ⊗ Z) ◦ v

β

²²²²

A
··)

)
)

u ◦ (X ⊗ s(α) ⊗ Y ⊗ t(β) ⊗ Z) ◦ v
α

// // u ◦ (X ⊗ t(α) ⊗ Y ⊗ t(β) ⊗ Z) ◦ v.

Remark 3.1.2. We use the relations ։ α and ։ β instead of → α and → β. Indeed, when the given
factorizations of the terms are projected through π onto families of terms, some duplicators or erasers
implicitely present in u may duplicate or erase the redexes s(α) and s(β). Hence, reducing them may
require more or less than one application of either α or β. The same comment applies to the next
definition.

21



3. Three dimensions against structural bureaucracy

The bureaucracy B relation identifies two proofs that differ by the order of application of two rules, one
inside the other:

Definition 3.1.3. The bureaucracy type B relation is the equivalence relation ≡B on SKS proofs gener-
ated by the rule →B defined, for every two rules α and β, every four 1-arrows X1, X2, Y1 and Y2, every
three families of terms u, v and w by the following diagram (when it has a meaning):

u ◦ (X1 ⊗ s(α) ⊗ X2) ◦ v

◦(Y1 ⊗ s(β) ⊗ Y2) ◦ w
α // //

β

²²²²

u ◦ (X1 ⊗ t(α) ⊗ X2) ◦ v

◦(Y1 ⊗ s(β) ⊗ Y2) ◦ w

β

²²²²

B{{www
ww

ww
w

u ◦ (X1 ⊗ s(α) ⊗ X2) ◦ v

◦(Y1 ⊗ t(β) ⊗ Y2) ◦ w α
// // u ◦ (X1 ⊗ t(α) ⊗ X2) ◦ v

◦(Y1 ⊗ t(β) ⊗ Y2) ◦ w

The structural bureaucracy relation is the equivalence relation generated by the union of →A and →B.

Remark 3.1.4. One observation one can make is that the two bureaucratic relations appear to be different
in essence. However, this is an artifact of the term-like notation: in the polygraphic setting, both have the
same simple shape. Another observation one does is that these definitions are quite technical (and their
version without the two compositions available would be even worse).

Once again, this is due to the term structure, since the bureaucratic relations are really easy to define
in the polygraphic setting as we are going to see now. Even better, there they inherit the geometrical
interpretation they deserve: they appear as the ability to move blocks representing subproofs one around
the other.

3.2 Exchange relations and three-categories

In this paragraph, we give polygraphic equivalents of the bureaucratic relations. Let us consider the idea
behind the definition of bureaucracy A: we want to identify two proofs that only differ by the order of
application of two rules in two different subterms. And, in circuits, different subterms are two juxtaposed
subcircuits. Hence, bureaucracy A on circuits should identify the two following paths of the reduction
graph G(ΣK):

β

α
t2(β)t2(α)t2(β)s2(α)

α
s2(α) s2(β) t2(α) s2(β)

β ≡

22



3.2. Exchange relations and three-categories

By removing all unnecessary contexts, we get that this relation is generated on circuits by the following
smaller one, indexed by pairs (α : f → f ′, β : g → g ′) of arrows in G(ΣK):

≡

f

f

f

f ′

f ′

f ′

g g

g

g ′ g ′

g ′

α

α

β β

If one considers the block-like 3-dimensional representation of 3-cells, one gets the following identifica-
tion, for every pair (α : f → f ′, β : g → g ′) of arrows in G(ΣK). The corresponding relation is written
below, where ⋆ denotes the composition of paths in 〈G(ΣK)〉:

(α ⊗ s2(β)) ⋆ (t2(α) ⊗ β)

≡

α
β

β
α

≡ (s2(α) ⊗ β) ⋆ (α ⊗ t2(β))

Now, let us translate the bureaucracy B relation onto paths in the reduction graph G(ΣK). This relation
should identify proofs that only differ by the order of application of two rules, one inside the other one.
On circuits, this means that the two rules act on circuits that are vertically composed. Thus, bureaucracy
type B on circuits should identify the following paths of G(ΣK):

s2(β)

α

β β≡

s2(α) t2(α)

α
t2(β)

s2(α) t2(α)

t2(β)

s2(β)

23



3. Three dimensions against structural bureaucracy

Once again, this relation is generated on circuits by a smaller one, with unnecessary contexts removed,
given for every pair (α : f → f ′, β : g → g ′) of arrows of G(ΣK):

≡

f

g

g ′

f

β

f

g

f ′

g ′

f ′

f ′

β

g ′

α

α

g

In block representation, one gets, for every pair (α,β) of arrows of G(ΣK) - once again, this representa-
tion is only given to favour the geometrical intuition:

≡

≡

α

β
β

α

(s2(α) ◦ β) ⋆ (α ◦ t2(β)) (α ◦ s2(β)) ⋆ (t2(α) ◦ β)

The two families of relations we have exhibited are called exchange relations. They are exactly what
lies between the free category 〈G(ΣK)〉 generated by the reduction graph G(ΣK) and the free 3-category

generated by the 3-polygraph ΣK.
Here we give only a graphical definition of this notion, while a formal one is in [Burroni 1993].

Thereafter, we write f ⋆0 g, f ⋆1 g and f ⋆2 g for f ⊗ g, g ◦ f and f ⋆ g respectively.

Definition 3.2.1. Let Σ be a 3-polygraph. The free 3-category generated by Σ is denoted by 〈Σ〉 and
is made of the 0, 1 and 2-arrows of Σ, together with a family of 3-arrows which are the paths of the
reduction graph G(Σ) modulo the congruence generated by the exchange relations:

(α ⋆0 s2(β)) ⋆2 (t2(α) ⋆0 β) ≡02 (s2(α) ⋆0 β) ⋆2 (α ⋆0 t2(β)),

(α ⋆1 s2(β)) ⋆2 (t2(α) ⋆1 β) ≡12 (s2(α) ⋆1 β) ⋆2 (α ⋆1 t2(β)).

These equations allow one to extend the compositions ⋆0 and ⋆1 on equivalence classes of paths of G(Σ)

with α ⋆0 β being given by any side of the relation ≡02 and α ⋆1 β by any side of ≡12.

Using the deformation relation already defined on arrows of G(Σ) together with the two exchange rela-
tions ≡02 and ≡12, one proves a third exchange relation ≡01. Note that we need the extensions of the two
compositions ⋆0 and ⋆1 allowed by ≡02 and ≡12 to write this new one.

24



3.2. Exchange relations and three-categories

Lemma 3.2.2. Let Σ be a 3-polygraph. In the free 3-category 〈Σ〉 generated by Σ, the following exchange

relation holds for any 3-arrows α and β, both sides being equal to α ⋆0 β:

(α ⋆0 s1(β)) ⋆1 (t1(α) ⋆0 β) ≡01 (s1(α) ⋆0 β) ⋆1 (α ⋆0 t1(β)).

Proof. Let us consider 3-arrows α and β. Then we have:

(α ⋆0 s1β) ⋆1 (t1α ⋆0 β) =
(

(α ⋆0 s1β) ⋆1 s2(t1α ⋆0 β)
)

⋆2

(

t2(α ⋆0 s1β) ⋆1 (t1α ⋆0 β)
)

=
(

(α ⋆0 s1s2β) ⋆1 (t1α ⋆0 s2β)
)

⋆2

(

(t2α ⋆0 s1β) ⋆1 (t1t2α ⋆0 β)
)

= (α ⋆0 s2β) ⋆2 (t2α ⋆0 β)

= α ⋆0 β.

The first equality uses the definition of ⋆1 on 3-arrows. The second one is due to commutation properties
of the sources, targets and compositions operators [Burroni 1993]. Then the deformation relation on
arrows of G(Σ) yields the third equality. Finally the relation ≡ 02 allows one to conclude. A similar
computation gives the other part of the seeked relation.

♦

Alternatively, we can give a more constructive definition of the free 3-category 〈Σ〉 generated by a 3-
polygraph Σ. Its 3-arrows are generated by the 3-cells of Σ seen as blocks:

g

m

n

f g

F

f

On these generators, one can use the three following constructors, called compositions:

α ⋆2 β

β

α β
α

β

α

α ⋆0 β α ⋆1 β

If they are sliced, these compositions appear this way:

g

f ′

g ′

f g h

α β

α

β

α β

f g f ′ g ′

f

25



3. Three dimensions against structural bureaucracy

All the constructions are identified modulo the following moves:

≡

≡

≡

≡

≡

≡

This picture contains three families of moves, one for each exchange relation ≡02, ≡12 and ≡01. In the
next paragraph, we prove that, in 〈ΣK〉, the first two relations correspond to the two types of structural
bureaucracy on SKS proofs.

As we have seen, the relation ≡01 is induced by the other two, together with the deformation relation
on arrows of G(ΣK): thus it can be seen as a ghost exchange relation, generated by identification of
circuits modulo homeomorphic deformation.

3.3 Structural bureaucracy is exchange

Here, we prove that exchange relations are the polygraphic version of structural bureaucracy:

Theorem 3.3.1. For every two arrows α and β in G(ΣK), the following two equations hold:

π
(

(α ⋆0 s2(β)) ⋆2 (t2(α) ⋆0 β)
)

≡A π
(

(s2(α) ⋆0 β) ⋆2 (α ⋆0 t2(β))
)

,

π
(

(α ⋆1 s2(β)) ⋆2 (t2(α) ⋆1 β)
)

≡B π
(

(s2(α) ⋆1 β) ⋆2 (α ⋆1 t2(β))
)

.

Conversely, let us consider two SKS proofs D : a ։αb ։βc and D ′ : a ։βb ′
։αc such that D →AD ′

(resp. D →BD ′). Then there exist 2-arrows f, g, g ′ and h in ΣK and arrows α1, α2, β1 and β2 in G(ΣK)

such that the following conditions hold:

- The following two diagrams are paths in G(ΣK):

f →α1
g →β2

h and f →β1
g ′

→α2
h.

- The following relation hold in 〈G(ΣK)〉 with i = 0 (resp. i = 1):

f →α1
g →β2

h ≡i2 f →β1
g ′

→α2
h.

- The following two equalities hold in 〈GK〉:

π(f →α1
g →β2

h) = D and π(f →β1
g ′

→α2
h) = D ′.

26



3.3. Structural bureaucracy is exchange

Proof. Let us fix two arrows α and β in G(ΣK). By construction, these arrows are of the form (f, Φ(α0), g)

and (h,Φ(β0), k). Therefore, they form a diagram of the following shape in the reduction graph G(ΣK):

t ′

α ⋆0 s2(β)

α ⋆0 t2(β)

s2(α) ⋆0 β t2(α) ⋆0 β

f

g

h

k

f

g

h

k

f

g

h

k

h

k

f

g

s s ′ t

t ′s

s ′

t

where s = s2(Φ(α0)), s ′ = s2(Φ(β0)), t = t2(Φ(α0)) and t ′ = t2(Φ(β0)). When π is applied to this
diagram, we get two SKS proofs that satisfy the definition of →A. The proof of the second equality is
handled similarly.

Conversely, let us consider two SKS proofs D and D ′ such that D →AD ′. Let us consider the 1-
arrows Y1, Y2 and Y3 and the families of terms u and v such that these two SKS proofs form the following
diagram:

u ◦ (Y1 ⊗ s(α) ⊗ Y2 ⊗ s(β) ⊗ Y3) ◦ v
α // //

β

²²²²

u ◦ (Y1 ⊗ t(α) ⊗ Y2 ⊗ s(β) ⊗ Y3) ◦ v

β

²²²²

A§§°°
°°

u ◦ (Y1 ⊗ s(α) ⊗ Y2 ⊗ t(β) ⊗ Y3) ◦ v
α

// // u ◦ (Y1 ⊗ t(α) ⊗ Y2 ⊗ t(β) ⊗ Y3) ◦ v,

with a, b, b ′ and c being the terms at the corners, from left to right and top to bottom. Then, from the
decomposition of a, we know that there exists a 2-arrow f in ΣK such that ΦX(a) ≡∆f and f has the
following shape:

f = s s ′

k ′

k

27



3. Three dimensions against structural bureaucracy

Then, the following diagram represents two paths in G(ΣK) which are equivalent modulo ≡ 02, with
s = s2(Φ(α)), s ′ = s2(Φ(β)), t = t2(Φ(α)), t ′ = t2(Φ(β)) and the arrows α1, α2, β1 and β2 defined
implicitely:

t

s s ′

k ′

k

f =
α1

g ′ =

= g

= h

β2β1

α2k ′

k

k

k ′

k ′

k

s

s ′t

t ′ t ′

These two paths satisfy the relation ≡02. Furthermore, from the decompositions of a, b, b ′ and c on one
hand, from the ones of f, g, g ′ and h on the other hand, we have:

f ≡∆ΦX(a), g ≡∆ΦX(b), g ′ ≡∆ΦX(b ′), h ≡∆ΦX(c).

Finally, it is straightforward to check that π(α1 ⋆2 β2) = D and π(β1 ⋆2 α2) = D ′. The proof in the
case D →BD ′ follows the same scheme.

♦

3.4 Some geography

The formalism SKS had two main offsprings, called Formalism A and Formalism B [Guglielmi 2005]:
in the former, proofs are identified modulo bureaucracy A and, in the latter, modulo both types A and B.
However, there is not much freedom in the construction of more formalisms, depending on what proofs
one wants to identify.

But, in the higher-dimensional setting, there are 3-polygraphs corresponding to each of these three
formalisms, among many others that are linked by the following categorical map - a diagram in the
category of families of 3-polygraphs over the 2-polygraph ΣF of SKS formulas:

ΣK // //
""

""EE
EE

EE
EE

G(ΣK) // //

²²

²²

〈G(ΣK)〉
²²

²²
G(ΣK) // // 〈G(ΣK)〉 // //

²²²²

〈G(ΣK)〉/ ≡02

²²²²
〈G(ΣK)〉/ ≡12

// // 〈ΣK〉

28



4. Representing proofs in three dimensions

Let us give a description of all these objects. One starts with the 3-polygraph ΣK: its 3-cells are the
inference rules, the structural rules and the resources management rules. From this object, one can
consider all the rules, applied in any context, which yields the reduction graph G(ΣK): its arrows are all
the one-step sequential reductions. Alternatively, one can consider all the rules applied in any existing
context and possibly in parallel to build G(ΣK), a graph which arrows are the one-step parallel reductions.

Then, one considers the paths generated by G(ΣK): this produces the free-category 〈G(ΣK)〉 which
arrows correspond to SKS proofs. This is the polygraphic equivalent of the calculus of structures version
of SKS. Alternatively, the paths generated by G(ΣK) give the free category 〈G(ΣK)〉. There, arrows
correspond to SKS proofs generalized with the possible application in parallel of inference rules. Here,
bureaucracy is at its highest level, since all the described proofs differing by the order of application of
subproofs are distinguished; furthermore, there is at each time a third possible proof, consisting in the
simultaneous application of both subproofs. Hence, this is the biggest object of this classification.

There one starts the quotients of 〈G(ΣK)〉 by the exchange relations. The first possibility is to quotient
by the first family of exchange relations, corresponding to bureaucracy type A. This yields the object
〈G(ΣK)〉/ ≡ 02, which is the polygraphic version of Formalism A. As an alternative, one can instead
quotient 〈G(ΣK)〉 by the exchange relations corresponding to bureaucracy type B, to get 〈G(ΣK)〉/ ≡12,
which has no equivalent in SKS derived formalisms. Finally, doing both quotients, one gets the free
3-category 〈ΣK〉 generated by ΣK, where all the bureaucracy is killed. This is the polygraphic equivalent
of Formalism B.

Hence, this diagram localizes the polygraphic equivalents of the known formalisms: ΣK for the
signature of SKS, 〈G(ΣK)〉 for the calculus of structures version of SKS, 〈G(ΣK)〉/ ≡02 for Formalism A
and 〈ΣK〉 for Formalism B. But the diagram also encompasses still unknown formalisms that could
prove to be useful, like the biggest one 〈G(ΣK)〉, where parallel applications of rules are allowed and
distinguished from sequential ones, or 〈G(ΣK)〉/ ≡ 12, where only bureaucracy B is killed. This is
an example of the freedom the higher-dimensional setting lets to the user in the exact design of the
(equivalence classes of) proofs he wants to consider. Another example of freedom is given in section 5
about the possibilities offered for handling the equations between formulas.

4 Representing proofs in three dimensions

This section is a first attempt at representing proofs in 3 dimensions, so that one can view them as the
genuine 3-dimensional objects they are.

In order to represent 2-arrows, Penrose diagrams are really convenient; they make 2-arrows appear
as circuits, using the following scheme: each 2-cell is pictured as a vertice in a graph, each 1-cell as an
edge and each 0-cell as a part of the plane which boundaries are the edges of the graph. Thus, each k-cell
is pictured as a (2 − k)-dimensional object. Then, the produced vertices and edges are thickened until
they are 2-dimensional; note that in the circuit representation, wires are not thickened to make drawing
easier, but they should be for sake of coherence.

The application of a similar process to a 3-dimensional arrow gives that each k-cell is represented
as a (3 − k)-dimensional object. In details: each 3-cell is pictured as a point; each 2-dimensional cell
is a line (either open or between two points); each 1-dimensional cell is a surface (either open or with a
line as a boundary); each 0-dimensional cell is a volume lying between surfaces. Finally, every object is
thickened, if necessary, until it gets 3-dimensional.

29



4. Representing proofs in three dimensions

Let us draw a 3-dimensional proof, using 3-dimensional Penrose diagrams. First, let us make a Penrose
diagram for the following rewriting-style rule:

In order to make pictures simpler, we do not distinguish the two sorts A and F anymore, the 2-cells ∧

and ∨ are drawn the same way and the 2-cell ι disappears: these are only temporary choices, until we get
easier ways to draw 3-dimensional Penrose diagrams. When each 3-cell has been given a 3-dimensional
representation, proofs can be drawn as pastings of these 3-dimensional blocks, such as the following one:

Except for the aforementionned simplifications, the left-hand side picture is an accurate 3-dimensional
representation of a proof that the implication (a∧b)∨(a∧b) =⇒ a∧b holds for any atoms a and b.
In the right-hand side picture, surfaces corresponding to 3-dimensional identities have been removed in
order to see internal parts of the proof. For a better understanding of how this object is built (and what
lies behind some opaque volumes), one can make vertical slices of this object, to produce the following
rewriting-style proof:

(a ∧ b) ∨ (a ∧ b) (a ∨ a) ∧ (b ∨ b) (a ∨ a) ∧ (b ∨ b) a ∧ b

Since the given representation uses only a fake third dimension, one could prefer to use a software dedi-
cated to 3-dimensional pictures. This has many advantages, such as being able to turn around the object
and make snapshots from different points of view. For example, the following views of the same proof
were generated using the software POV-Ray, a ray-tracer, freely available on http://www.povray.org.

30



5. Normalization of proofs

Once again, the left-hand side pictures are the correct ones, while the right-hand side ones show internal
parts of the proof. This part is quite new and some work will be necessary to easily produce nicer, more
usable representations, so that the third dimension can provide more insight on what kind of objects
proofs are.

5 Normalization of proofs

When the third dimension gets involved, one can ask whether this dimensional increase will stop. The
answer is quite simple: no. Indeed there are, at least, two good reasons to proceed to the fourth dimen-
sion.

The first one is total abstract nonsense - which does not mean that it is not a good reason. In category
theory, there is a proverb saying: when one wants to study some objects, one should rather study their

morphisms. In higher-dimensional rewriting, there is something similar: when one wants to study some

objects modulo some congruence relation, one should rather replace equations by rewriting rules (this
operation is called categorification in [Baez Dolan 1998]).

The second, more concrete reason is that there are two kinds of examples that give rise to 4-
dimensional arrows: equations between formulas and local transformations on proofs. This section
is about a short glance at these two issues.

31



5. Normalization of proofs

5.1 Equations between formulas

Previously, structural equations between formulas have been treated as pairs of inverse rules. But this is
just one possibility, the higher-order rewriting framework allowing one to choose between many possible
considerations. Here are three of them, but one can at least take any desired combination of them.

Equations are equations. The first possibility is, as stated before, to translate equations between formu-
las into equations between circuits. In that case, one considers circuits modulo two families of equations.
The first one is a faithful translation of the equations on formulas, so that, for example, one can recognize
associativity of ∧ and ∨ among them:

≡

≡ ≡ ≡ ≡

≡ ≡ ≡ ≡

≡≡

The second family purpose is to give the resource management operators their real meaning, so that, for
example, δA really is a local duplicator of atoms; among others, one gets the following equations:

≡

≡≡ ≡

≡ ≡

From equations to 3-dimensional isomorphisms. Rather than considering equations on formulas as
equations on circuits, one can treat them as invertible computations. Indeed, equations are often clashing
with computational considerations, so that, whenever possible, they are replaced by local computations.
Hence, one could replace the two aforementionned families of equations by two families of invertible
3-cells. For example, the equation enforcing the associativity of ∧ is split into two 3-cells:

Then, in order to ensure that they are 3-dimensional isomorphisms, one adds equations between proofs:
both possible composites are equal to the corresponding identity. Hence, this leaves no equation between
objects of dimension 2, while two of them appear between objects of dimension 3 for each equation on
formulas.

32



5.2. Local computations on proofs

From equations to 4-dimensional computations. There is no reason to stop the process of lifting up
equations. In order to achieve this, the pairs of 3-dimensional cells replacing equations are keeped, but
equations between 3-dimensional composites are lifted up. Hence, instead of considering commuta-
tive diagrams between 3-dimensional arrows, one defines 4-dimensional cells. Each one represents a
computation from one composite to the identity 3-cell, such as in the following diagram:

==

There, the equation about the associativity of ∧ is finally replaced by two 3-cells, together with the above
pair of 4-cells. When this transformation is done, there is no more equations between 2-arrows (formulas)
or 3-arrows (proofs). Only computations between proofs remain, in the form of pairs of 4-cells.

5.2 Local computations on proofs

The next example of 4-dimensional cells is in fact a generalization of the former one. Indeed, it arises
whenever one wants to compute normal forms for proofs, modulo some specified equations.

This encompasses the former example, since these equations can be the ones stating that two 3-
cells are inverse one another. As an example of generalized computation, the following 4-cell can be
introduced in order to simplify proofs with a weakening followed by a contraction, both acting on the
same atom:

In fact, any local computation on proofs can be replaced by a 4-cell. All the 4-cells being given, the
computations they generate are the 4-dimensional arrows of a free 4-category.

Remark 5.2.1. Let us make an immediate remark on this 4-cell. A weakening followed by a contraction
is some kind of higher-dimensional version of the composition of a duplicator, followed by an eraser.
Hence, this 4-cell should be part of a family of 4-dimensional resources management cells, an higher-
dimensional version of the family E∆ of 3-dimensional ones.

We need to explore this potential family and, for example, check if it is automatically produced by its
3-dimensional version. Another topic is to study its rewriting properties. A conjecture is that this family
controls another form of bureaucracy, called type C in [Straßburger 2005], which is not geometric like
the other two.

33



6. A polygraphic translation of SLLS

5.3 A word on cut-elimination

We have not discussed cut-elimination, though it is the most known and studied computation on proofs.
This is due to the fact that there is no known cut-elimination procedure on the system SKS which is
generated by local rules between parallel proofs, unlike the ones known for various sequent calculi.

Indeed, the known procedure is a global algorithm, which takes into account the whole proof in
order to eliminate the cuts [Brünnler 2004]. Hence, at least for the time being, there is no 4-dimensional
interpretation for the cut-elimination mechanism.

5.4 Some temporary relief

The 4-dimensional point of view immediately arises the following question: how can one use the fact
that these computations are 4-dimensional objects? This comes with the subsidiary question: how can
one represent 4-dimensional objects? In fact, this is not necessary at this point.

To explain this answer, let us step back by one dimension. Term rewriting is about some prop-
erties (termination and confluence) of computations on 2-dimensional objects. While considering the
whole 2-dimensional structure of terms is really useful, the computations need not be seen as genuine
3-dimensional objects: the only purpose of doing so would be to identify reduction paths modulo bureau-
cracy. But term rewriting is not concerned with the classification of reduction paths (only their existence)
and neither termination nor confluence are modified by bureaucracy.

Then comes proof theory which, with the higher-dimensional point of view, studies 3-dimensional
objects, or rather computations between them. Hence, with the same arguments as above, consider-
ing the whole 3-dimensional structure of proofs shall prove to be useful. But the four dimensions of
computations on proofs are not involved if one only wants to prove termination or confluence of proof
normalization processes.

In conclusion, if it is only about (normalization of) proofs, then one can live with rewriting paths on
3-dimensional arrows. But when times will come when the classification of rewriting paths on proofs is
concerned, then the fourth dimension will be useful.

In order to manage the six types of geometric bureaucracy lurking in dimension 4, for example. . .

6 A polygraphic translation of SLLS

This calculus of structures-style formalism is presented in [Straßburger 2003] and describes proofs of
propositional linear logic [Girard 1987]. Since its structure is very similar to the one of SKS, we present
here a polygraph which is (strongly) conjectured to satisfy the same properties with respect to SLLS
as ΣK does with respect to SKS.

In term-like version, the signature of SLLS has two sorts A and F and the following constructors:

A

ν

§§

ι

²²
∗

⊤,⊥, 1, 0
// F

!, ?

EE F × F
⊗,⊕,O,N

oo

34



6. A polygraphic translation of SLLS

Terms are equipped with the structural congruence generated by the following rules, where (µ, η) is any
pair among (O,⊥), (⊗, 1), (⊕, 0) and (N,⊤):

µ(µ(x1, x2), x3) −→ µ(x1, µ(x2, x3))

µ(η, x1) −→ x1

µ(x1, x2) −→ µ(x2, x1)

?(⊥) −→ ⊥ !(1) −→ 1

⊥⊕⊥ −→ ⊥ 1N1 −→ 1

ν(ν(a1)) −→ a1.

The same argumentation as the one developped for SKS throughout the section leads to the replacement
of the set of formulas by the free 2-category generated by the following 2-polygraph with one cell in
dimension 0, two cells in dimension 1 and twenty cells in dimension 2:

ιν

τAAτAFτFAτFFδA εAεFδF

O ⊗ ⊕ N ! ? ⊥ 1 0 ⊤

Then, we consider the family of 48 resources management equations, given through the following
schemes:

≡

≡≡≡

≡ ≡ ≡

≡ ≡

Finally, the structural rules are translated into the following family of 17 rules on parallel 2-arrows:

35



6. A polygraphic translation of SLLS

In [Straßburger 2003], the inference rules of system SLLS are given in a term-rewriting style. We do not
recall them from there and instead directly give the corresponding 3-cells, placed in the same order as in
the original manuscript so that each one can be recognized:

36



Comments and future directions

Comments and future directions

This documents presents a higher-dimensional rewriting point of view for the deep inference system
named SKS and, similarly, for the one called SLLS. One benefit of this setting is to provide a uni-
form theory for many possible systems, depending on what the user wants to emphasize. Indeed, much
freedom is left on how to consider bureaucracy or how to see equations. Moreover, bureaucracy of
geometrical nature is easily handled through the exchange relations. However, there is a bureaucracy
type C [Straßburger 2005] which seems to come from a higher-dimensional version of the resources
management rules. This type of bureaucracy must be studied to check if it can be described easily in the
polygraphic language.

Higher-dimensional rewriting provides a common view on equations and computations between
proofs: they are seen as 4-dimensional cells between proofs. So one just has to choose the local com-
putations he wants to study, then the 4-dimensional rewriting theory can be used to see if the generated
calculus is terminating or not, confluent or not. Yet, some work will be necessary here to provide the re-
quired tools, such as a recipe to craft termination orders like the one in [Guiraud 2004] for 3-dimensional
rewriting. Another tool will concern the study of 4-dimensional critical pairs. This will be an adaptation
of one that is still under development for 3-dimensional critical pairs and will be described in a subse-
quent paper. In particular, these 3-dimensional and 4-dimensional tools will give answer on the existence
of a finite and convergent family of 3-cells which is equivalent to the union of the resources management
relations and of the structural equations, for SKS and for SLLS. If there is no such convergent family,
we should seek a finite equivalent family of 3-cells, with a 4-dimensional finite convergent rewriting
calculus on it.

Aside from these computational issues, proofs seen as 3-dimensional objects are naturally equipped
with a graphical representation, using 3-dimensional Penrose diagrams. The links between these pictures
and proof nets still have to be explored. For the moment, we can at least say that the proposed 3-
dimensional representations provide a completely different way to look at proofs.

Another comment is that the 3-dimensional translation of proofs relies on the calculus of structures
version of the considered logic. One consequence is that we have to consider 2-sorted terms and, thus,
polygraphs with two generating 1-cells. As we have seen, this always makes notations and constructions
(much) tougher. Another negative point is the fact that cut-elimination cannot be described locally,
which is disturbing for such an important relation between parallel proofs. A future work will propose a
direct 3-dimensional version of proofs, based on equivalences in the theory of boolean algebras, in which
cut-elimination will be a 4-dimensional computation.

The final comment concerns binders: for the time being, higher-dimensional rewriting is unable to
handle them. This is a major issue which is to be solved, either by proposing a polygraphic account of the
λ-calculus or by extending the higher-dimensional setting to encompass it. The main step to reach this
goal is to check if there exists a polygraphic presentation of the structure of cartesian closed category,
like the one that was found for cartesian categories and layed the bases of the field [Burroni 1993].

I wish to thank the referee for remarks that have greatly helped to improve the paper.

I also wish to thank all the people from Marseille and (formerly) from Dresden who

have (patiently) listened to these results and commented them.

37



References

References

FRANZ BAADER, TOBIAS NIPKOW

Term rewriting and all that, Cambridge University Press, 1998.

JOHN CARLOS BAEZ, JAMES DOLAN

Categorification, ArXiv preprint, 1998.

KAI BRÜNNLER

Deep inference and symmetry in classical proofs, Logos Verlag, 2004.

ALBERT BURRONI

Higher-dimensional word problems with applications to equational logic,
Theoretical Computer Science 115(1), 1993.

EUGENIA CHANG, AARON LAUDA

Higher-dimensional categories: an illustrated guide book, 2004.

JEAN-YVES GIRARD

Linear logic, Theoretical Computer Science 50(1), 1987.

ALESSIO GUGLIELMI

The problem of bureaucracy and identity of proofs from the perspective of deep inference,
Proceedings of Structures and deduction ICALP workshop, 2005.

A system of interaction and structure,
ACM Transactions on Computational Logic, to be published (2004).

YVES GUIRAUD

Présentations d’opérades et systèmes de réécriture, thèse de doctorat, 2004(T).
Termination orders for 3-dimensional rewriting,

Journal of Pure and Applied Algebra, to be published (2004).
Two polygraphic presentations of Petri nets, submitted preprint, 2005.

YVES LAFONT

Towards an algebraic theory of boolean circuits, Journal of Pure and Applied Algebra 184, 2003.

SAUNDERS MACLANE

Categories for the working mathematician, Springer, 1998.

FRANÇOIS MÉTAYER

Resolutions by polygraphs, Theory and Applications of Categories 11(7), 2003.

LUTZ STRASSBURGER

Linear logic and noncommutativity in the calculus of structures, PhD thesis, 2003.
From deep inference to proof nets, Structures and Deduction ICALP worshop, 2005.

38


