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TWO POLYGRAPHIC PRESENTATIONS
OF PETRINETS

Yves Guiraud?

Abstract: This document gives an algebraic and two polygraphic translations of Petri nets, all
three providing an easier way to describe reductions and to identify some of them. The first one
sees places as generators of a commutative monoid and transitions as rewriting rules on it: this
setting is totally equivalent to Petri nets, but lacks any graphical intuition. The second one consid-
ers places a$-dimensional cells and transitions 2&limensional ones: this translation recovers

a graphical meaning but raises many difficulties since it uses explicit permutations. Finally, the
third translation sees places as degeneratdunensional cells and transitions &slimensional

ones: this is a setting equivalent to Petri nets, equipped with a graphical interpretation.

Outline

In this document, we study Petri nets in order to give two possible polygraphic presentations for them.
This work follows Albert Burroni’s intuitions: many computer science and proof theory objects have
natural translations into polygraphs. These are topology-flavoured objects consisting of collections of
directed cells of various dimensions, equipped with a rich algebraic structure.

In section 1, we recall some basic facts about Petri nets, describe their representations and associate
them reduction graphs, equipped with a relation that identifies paths that intuitively represent the same
sequence of operations.

In section 2, we recall a known algebraic account of Petri nets: they correspond to commutative
word rewriting systems (or presentations of commutative monoids) and both objects generate the same
reduction graph. Furthermore, in the latter, reductions have a name, which makes easier the definition of
a relation between similar paths. We prove a new result concerning stating that this relation is the same
as the one defined for Petri nets. All these facts are detailed in theorem 2.7.

In section 3, we craft @-dimensional object, a-polygraph, in which reductions of a Petri net can
be translated. This result is due to Albert Burroni and is formulated as theorem 3.13. We go beyond and
study the links between the relation on Petri nets paths and two relatichamows of the2-polygraph:
the first one corresponds to the relation on the Petri net, while the second one tries to solve the difficulties
raised by the presence of explicit permutations in2ipolygraph. The study of these properties is only
started here: much more work will be necessary to totally solve the encountered problems.

Finally, in section 4, we give a new, more natural polygraphic way to faithfully describe Petri nets.
We prove that they correspond3iepolygraphs with one cell in dimensi@dnand no cell in dimensioi.
Furthermore, both objects generate the same reduction graph, with the same equivalence relation on
paths. This is the main result, theorem 4.14.
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1. Basic notions on Petri nets

1 Basic notions on Petri nets

This section briefly recalls the basic notions about Petri nets: the definitions of a net, of its markings
and the usual associated graphical representations. It should be noted that there exist many possible
definitions of Petri nets, but a simple one has been chosen for this study. More of them can be found in
[Murata 1989] for example.

Definition 1.1. A Petri netis a quadrupleN = (X, T,w,w’) made of two finite setsX and T, and

two maps,w : X x T — Nandw’ : T x X — N. The elements oK and T are respectively called
placesandtransitions while the mapsv andw’ are theweights Beside this set-theoretic definition,

Petri nets are usually encountered as graphical objects. A decorated graph is associated to a given net
N = (X, T,w,w’) as follows:

0. Its objects are the places and the transitions. Places are pictured as circles, while transitions are
represented by double bars.

1. If x is a place andx a transition, there is an arrow fromto « whenevemw(x, &) > 0 and one
from « to x whenevemw’(«, x) > 0. Such arrows are decorated with the corresponding weight,
eitherw(x, ) orw’(«, x).

Example 1.2. Let us condider the Petri n&t = (X, T,w,w’) whereX = {x,y,z}, T = {«, B} and the
non-zero values ofv andw’ are given by:

wix, o) =1, wly,B) =2, wi(xy) =wl(xnz) =w(Bz) =1

Following the given graph construction recipe, this representation is buil for

So far, only the hardware part of a Petri net has been represented. On top of this one, the states of the
automaton are described:

Definition 1.3. Let N = (X, T, w,w’) be a Petri net. Anarkingof N is a map from the séxX of places

to the setN of natural numbers. The set of all markingsidfis denoted byM(N). A given marking

uw: X — Non a PetrineN = (X, T,w,w’) is represented as an extra decoration on the corresponding
graph: inside each place one putsi(x) token(s), pictured as black dots.

Example 1.4. With the same Petri net as in example 1.2, the markiragfined byu(x) = n(y) = 2
andu(z) = 0 is represented as follows (thereafter, the weights equalaie removed, together with
places labels, in order to make the representations clearer):
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] ;

x

Now, the whole static part of Petri nets has been introduced. Their evolutions are described as follows:

Definition 1.5. LetN = (X, T,w,w’) be a Petri net and let be a transition iff. Thereduction relation
associated tax is the binary relation—, on markings ofN, defined byu — v if, for every placex in X,
both following conditions hold:

nix) > wix, o,
v(x) = p(x) —wlx, «) +w'(a, x).

The union of all the relationss,, for all the transitionsx, is denoted by—. The reflexive and transitive
closure of— is denoted by, and called theeachability relation

The relation—, associated to a transitienhas a graphical interpretation. The first condition checks
if the markingu has at leastv(x, «) tokens in each place In that case, the second condition tells that
is entirely determined this way: in each placev(x, «) tokens are removed, then'(«, x) tokens are
added.

Example 1.6. Let N be the Petri net of example 1.2 andthe marking of example 1.4. The graph
pictured thereafter displays all the markings\bthat can be reached from

B
@ﬁ% @*@%
m s o R o4



2. Petri nets and commutative word rewriting systems

In order to compare Petri nets with the rewriting-flavoured objects to be introduced in the next three
sections, the notion of reduction graph appearing in example 1.6 is formalized:

Definition 1.7. Let N = (X, T, w,w’) be a Petri net. Itassociated reduction graph the graphG(N)
defined by:

0. The set of objects o6 (N) is the sefM(N) of markings ofN.
1. In G(N), there is an arrow from a markingto a markingv for each transitiorx such thait —.v.

In example 1.6, we have pictured a subgraph of the reduction gséph, whereN is the Petri net of
example 1.2. Let us consider the top-most square. We can see that the two vertical arrows, both labelled
by « are "intuitively" the same reduction: indeed, they consume the same tokens and produce the same
ones. This is also the case for the two vertjgdhbelled arrows. Furthermore, the horizontal and vertical
reductions apply on different tokens: there should be some relation between the two sequitrere?
andp-thenw. Let us define a congruence relation on such reduction paths:

Notation 1.8. Let N = (X, T,w,w’) be a Petri net. We denote by, the congruence relation on paths
of G(N) generated by the identification of subpaths

M1 —V1 =2 and g —pva —ep2,
such that the following equalities hold for a given markmnin M(N) and for every place in X:

mi(x) = plx) +wlx, o) +w(x, B, vi(x) = p(x)+w'(e,x) +wlx,B),
va(x) = p(x)+wlx, &) +w'(B,x), wa(x) = plx) +w'(a,x) +w'(B,x).

One can check that, in the reduction graph of the Petri net of example 1.2, the redatidantifies any

two paths with same source and same target one can form in the diagram of example 1.6. In each one of
the next three sections, we introduce a translation for Petri nets and study how it behaves with respect to
this congruence relation.

2 Petri nets and commutative word rewriting systems

In this section, an equivalence between Petri netscamdmutative word rewriting systerisproved.
The underlying idea of the translation is already present in [Caprotti Ferscha Hong 1995] and [Chandler
Heyworth 2001] and comes from the following remarks :

- The markings of a Petri net have a commutative monoid structure: the sum is given by addition of
the tokens in each place and the empty marking is a neutral element for this operation.

- If «is a transition, ther- ,, is compatible with the commutative monoid structure on markings:
if @ —,p', thenu +~v —, 1’ + v holds for every marking.

Definition 2.1. Let X be a set. Théree commutative monoid generatedXys the setX] of all finite
formal sums of elements of;
a= Z ax.X,

xeX



2. Petri nets and commutative word rewriting systems

where thea, are natural numbers that entirely define The set[X] is a commutative monoid for the
following operation, which admits the empty sum as a neutral element:

Zax.x + be.x = Z(ax—l—bx).x.

xeX xeX xeX

A (finite) commutative word rewriting systésm pair(X, R), whereX is a (finite) set, called thalphabet
andR is a (finite) family of pairs of elements ¢X], called therules If « = (s(«),t()) is in R, the
reduction relation— ,, it generates is defined hy — ,b if there exists some formal sumsuch that
a =c+s(ax)andb = ¢ + t(«). To any commutative word rewriting systef¥X, R), one associates a
reduction graphG (X, R), defined by:

0. The objects of5(X, R) are the elements d¢X].

1. The arrows of5(X, R) are the pairgc, «) made of an elementof [X] and a rulex = (s(«x), t(x))
in R. Such an arrow has sourcet s(«) and target + t(«); it can be writterc + .

Remark 2.2. The arrows ofG (X, R) are contextual applications of rules: indeed, there is an afrpw)
in G(X,R) from atob if and only if a —,b. Furthermore, in this casejs the context of the application
of « at a: this is the part that remains unchanged after action of the rule.

Remark 2.3. In [Guiraud 2004(T)], commutative word rewriting systems are seen as presentations by
generators and relations of commutative monoids: indeed, such an object defines a commutative monoid
which elements are the connected components of its reduction graph. Conversely, every commutative
monoid admits a commutative word rewriting system as a presentation: the generators are the elements
of the monoid and the relations are given by the "multiplication” table of the sum.

Following the same idea as in section 1, let us define a congruence relation between paths of the reduction
graph of a commutative word rewriting system:

Notation 2.4. Let (X, R) be a commutative word rewriting system. The relatign ;, is the congruence
relation on paths of (X, R) generated by the identification of squares of the following shape,onatihd
B in R andc in [X]:

¢+ (o) +s(B) P L4 () + s(B)

(ct+s(x))+B (ct+t(ec))+B

Translations between Petri nets and finite commutative word rewriting systems are defined as follows:

Definition 2.5. Let N = (X, T,w,w’) be a Petri net. Itassociated finite commutative word rewriting
systemis denoted byD (N) and defined by:

- The alphabet ofo (N) is the seX of places ofN.
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- The rules of®(N) are the transitions d¥, seen as pairg = (s(«), t(«)) with:

s(a) = Zw(x,oc).x and t(a) = Zw’(oc,x).x.

xeX xeX

Conversely, letX, R) be a finite commutative word rewriting system. dissociated Petri nds denoted
by ¥(X, R) and defined by:

- The places o (X, R) are the elements &.
- There is one transition i (X, R) for each rule irR.

- The weightsv andw’ are given, on a placeand a transitionx = (s(«), t(c)), by:

w(x,x) = s(a)x and w'(o,x) = t(o)y.

Example 2.6. Let us consider the Petri net from example 1.2. The corresponding commutative word
rewriting system is the paitX, R), whereX = {x,y, z} andR consists of the two following rewriting
rulese : x - y+zandp : 2y — z. The marking from example 1.4 corresponds to the formal sum
2x 4 2y. The reduction graph from example 1.6 becomes:

2x+2y$2x+z

o+ 2y-+ac xhzto

X43y 4z vy 422

3y+z+a y+2z+a

4y + 2z Y+ o4y

2y+2z+p 3z+P3

One can check that, in this diagram, any two paths with same source and same target are identified by
the congruences x x,: the translation from Petri nets to commutative word rewriting systems seems to
preserve the congruence relation we have defined on Petri nets reduction paths.

The following result proves that, in essence, Petri nets and finite commutative word rewriting systems
are the same objects and generate the same reduction graphs:

Theorem 2.7. For every Petri nelN, the equality o ®(N) = N holds and the reduction graphis(N)
andG(®(N)) are isomorphic. Furthermore, this isomorphism identifies the congrueagcesid=, v .
Conversely, for every finite commutative word rewriting sygiéR), the equalityd o W(X, R) = (X, R)
holds and the reduction graplts(X, R) andG(¥(X, R)) are isomorphic. Furthermore, this isomorphism
identifies the congruencesy ), and=y x x)-
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Proof. Let us fixN = (X, T,w,w’) and prove the equalitf o ®(N) = N. The places o o ®(N)
are the elements of the alphabet®fN): these are the places df. The transitions o o ®(N) are
the rules of®(N): these are the transitions df. Let us fix a placex in X and a transitionx in T. Let
us denote byw andw’ the weighting functions o¥ o ®(N) and compare them withv andw’. By
definition of ¥ o ®(N):

w(x,a) = s(a)x and W'(x,x) = t(a)x.

And by definition of ®(N):

s(@) = > w(y,a)y and tla) = Y w'(e,y)y.

yeX yeX
Invoking the fact thatX] is free, one gets:
s(a)y = wix, ) and t(a)x = w'(x, ).

Hencew = w andw’ = w’. Now, let us prove thaG(N) andG(®(N)) are isomorphic graphs. We
define a graph morphismp from the former to the latter. Lat be a marking ofN and let us define an
elemento(u) in [X] this way:

o) = ) ulx)x.

xeX
Now, let us consider an arrofv: 1 — v in G(N). By definition of G(N), this arrow corresponds to a
transitiona such thajw —,v. By definition of the relation—, on markings, this means that:
r(x) > wix, o) and v(x) = p(x) —wix, o) +w'(a,x).

Let us prove thatp(u) —,@(v) is a reduction generated ¥, R). By definition of ¢ on markings:

O(p) = Z ux).x and @O(v)= Zv(x).x.

xeX xeX

Hence, provingp (1) —.@(v) is equivalent to prove that there exists i [X] such that:

Z ux).x =c+s(a) and Zv(x).x =c+t(a),

xeX xeX

Sinceu(x) > w(x, ) for every placex, the followingc is well-defined in[X]:

c=> (ux)—wlx a))x.

xeX

Then:
c+s(a) = Z(u(x) —w(x,a)).x + Zw(x, a).x = Zu(x).x.

xeX xeX xeX
Furthermore, using the fact thatx) = u(x) — w(x, &) + w’(«, x) holds for every, one gets:

c+tla) = Z(u(x)—w(x,cx)).x + Zw’(oc,x).x = Zv(x).x.

xeX xeX xeX
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Hencep (1) —,@(v) holds in[X]. By definition of G(®(N)), this reduction corresponds to an arrow of
the formc + «, with c in [X], going frome () to @(v) in G(®(N)). Let us definep(f) to be this arrow.
Let us define a graph morphisgnfrom G(®(N)) to G(N) and prove that it is inverse @f. Leta
be an element diX]. Theny(a) is defined as the marking(a)(x) = a, for every placex. Now, let us
consider an arrow + o in G(®(N)), which starts ati = ¢ + s(«x) and ends ab = ¢ + t(«). Then, for
every placex:
Pla)(x) = ax = cx+s(x)x = cx +w(x, «).

Thusy(a)(x) > w(x, o). Furthermore:
B(b)(x) = by = cx +tla)x = bla)(x) —w(x, a) +w'(e, x).

Hencey(a) —,(b) holds inM(N). This reduction corresponds to an arrondfN ), which we take
as\y(c + «). Checking thatp is a left and right inverse fop is straightforward.
In order to prove thatp(=y) is =4 (n), We prove thatp(= ) is included into= 4, and that
P (=o(n)) isincluded into=y. Furthermore, since and are graph morphisms, it is sufficient to prove
these inclusions on paths of minimal lenghts, such as given in the definitions of both congruences.
Hence, let us consider two paths —,vi —gu2 andp; —,v2 —H2 in G(N) such that there
exists a marking of N that satisfies the following four equalities for every place

milx) = plx) +wlx, o) +w(x, B, vilx) = p(x)+w'(axx) +wlx,B),
va(x) = p(x)+w(x, &) +W'(B,x), ma(x) = p(x) +w'(e,x) +w'(B,x).

Let us denote by the elementp(p) of [X]. Thene sends both paths onto the following ones, which are
identified by=4 n):

e+ s(0) +s(B) —PI o)+ s(B) SR () + ()

and:

(c+s(a))+p (c+t(B))+o

c+s(a)+s(B) c+s(a)+t(B) c+tla)+t(B).

Then, let us consider two paths@{®(N)) written as above, for a givanin [X]. Let us denote by the
markingy(c). Then, if the four markingg, 12, v andv, are defined as above, the graph morphism
sends both paths @(®(N)) ontop; —,vi — 2 andpy —,v2 —, 12t these two paths are identified
by =\.

Conversely, let us consider a finite commutative word rewriting sys€yR) and prove that the
equality® o Y(X,R) = (X, R) holds. By definition of the rewriting systed o W(X, R), its alphabet
is the set of places df(X, R): this is the alphabet ofX,R). The rules in® o W(X,R) are the pairs
(s(e), t(e)) for each transitionx in ¥(X, R), where:

S(a) = Zw(x,oc).x and t(x) = Zw'(oc,x).x.

xeX xeX

Furthermore, each transitianin W(X, R) comes from a rulés(«), t(«)) in R and:

w(x,a) = s(a)x and w'(a,x) = t(a)x.
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Thus,s(x) = s(x) andt(x) = t(«), so that the set of rules @b o ¥(X,R) is R. Hence, the two
commutative word rewriting systeniX, R) and® o W(X, R) are the same.

Let us prove that the two grapltg X, R) andG(¥(X, R)) are isomorphic. Sinc# (X, R) is a Petri
net, we already know tha& (W(X, R)) is isomorphic taG(® o ¥(X, R)): this graph isG(X, R) since the
equality® o Y(X, R) = (X, R) holds. Furthermore, this graph isomorphism is defined the same way as
@ andy in the first part of the proof. Henag(=y x &) IS equal to=x x,. If one applies), one gets the
equality of both congruences, x x, and(=x ) ).

¢

Remark 2.8. This equivalence between Petri nets and finite commutative word rewriting systems high-
lights the underlying algebraic structure of the formers: one immediate usage is that every arrow in the
reduction graph has an explicit name, suck as2y + «, giving the context of application of the ruée

Remark 2.9. Another more concrete concrete usage of the translation was developped in the afore-
mentioned [Caprotti Ferscha Hong 1995] and [Chandler Heyworth 2001]: there, it was decribed how
Grobner bases can be used to partially solve the reachability problem for Petri nets, when they are seen
as commutative word rewriting systems.

Remark 2.10. If N is a Petri net, the definition afy, is technical but intuitively simple. The unveiling of

the intrinsic algebraic structure of Petri nets makes this definition much simpler. Indeed, let us consider
a commutative word rewriting systeiX, R) and denote by the composition of paths in the graph

G (X, R). Note that this amounts at considering the cated@riyX, R)) freely generated b (X, R), as it

is defined in section 3. Then, the relatiap x, can be defined as the congruence GX, R)) generated

by the following identifications, for any in [X]:

(c+tlx) +B)ol(c+s(B)+a) = (c+t(B)+oa)o(c+s(x)+B).

Let us also note that such equations allow the suriXbfo be naturally extended to reductions+ 3
will be any side of the given equation for= 0. This is also the idea developped with polygraphs in
sections 3 and 4.

From now on, theorem 2.7 grants us the right to consider that a Peid adinite commutative word
rewriting system. In fact, the results to be proved are not limited to the finite case. Hence, thereafter, the
name Petri net stands for a commutative word rewriting system. Let us use this new equivalent definition
to give a different graphical account of Petri nets.

3 Petri nets as 2-dimensional objects

The goal of this section is to prove that Petri nets have strong links with a certain ctegsdifmensional
polygraphs The first result presented here, theorem 3.13, is essentially due to Albert Burroni, who gived
the idea of the translation. The behaviour of this translation with respect to the congruence on Petri nets
reduction paths is new and described in proposition 3.17. A discussion follows on many issues to be
studied in future work.

In order to translate Petri nets into polygraphs, we start by the interpretation of the markings of a Petri
net (the formal sums of its places) intedimensional objects. Let us recall the some classical notions
about graphs, free categories and monoids.
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Notation 3.1. If G is a graph, its set of objects is denoted By and its set of arrows going from
an objectx to another object) is denoted byG(x,y); for such an arrowf, sy(f) is the sourcex of f
andty(f) its targety. The set of all arrows oE is denoted byG; andG itself is often abusively denoted
by (Go, G1) only, assuming that the source and target mappings are giverGwyith

Definition 3.2. Let G = (G, G1) be a graph. Th&ee category generated Iy, denoted by G), is the
following (small) category:

0. The objects of G) are the objects of.

1. The arrows of G), from x to y, are all the finite paths iG going fromx toy. Their composition,
denoted by, is the concatenation of paths. The empty paths are local identities for this operation.

Such a category is often denoted (&) = ((G)o, (G)1) or just by(Gy, (G)1), assuming that the source
and target mappings are given with the dataGn, together with the identities and composition opera-
tions.

Example 3.3.Let G = (x, X) be a graph with only one object lenotes any single-element set); the set
of arrows can be any st with source and target being the only possible map fKotm=. Then the free
category(G) is the free monoidX) generated by: more precisely, the séG) (x, ), containing all the
arrows of(G), equipped with the composition and the identitypis isomorphic to the free monoiX).

A proof can be found in [MacLane 1998], for example.

Definition 3.4. Let C be a category. Two arrows hareparallel when they have same source and same
target. Arelationin C is a pair of parallel arrows d. If R is a family of relations ir, thequotient ofC
by R is the category denoted /R built this way:

0. The objects of2/R are the objects of.

1. The arrows fromx to y in €/R are the elements d®(x,y), modulothe reflexive-symmetric-
transitive closure=s of the relation—y defined by:f —g if there exist a relatiorfu, v) in R and
two arrowsh andk in € such thatf = k ouo handg = kov o h. The identities of2/R are the
equivalence classes of the identity@fThe composition 0€/R is induced by the one ifi.

Remark 3.5. The defined objed®/R is only a graph. One must check, through easy computations, that
the composition of is compatible with=¢: the result of the composition is independent of any choice

of representatives. Furthermore, it must be checked that induced composition satisfies the axioms of
associativity and left and right units of the category structure.

Example 3.6. Let G = (*, X) be a graph with one object. Q), one defineR to be the family of all
relations(x o y,y o x), for x andy in X. Then(G) /R is the free commutative monoiX] generated by
the seiX.

Hence, we have a graphical descriptionXjf However, the main idea behind higher-dimensional rewrit-
ing is to replace any equation betweemimensional objects by @ + 1)-dimensional object: equalities
are replaced by their proofs - this point of view was developped in both [Burroni 1993] and [Baez Dolan

10



3. Petri nets as 2-dimensional objects

1998]. Following this leading idea, equalities of the formy = y o x are replaced by-dimensional
cells, pasted between parallel paths in the grigpX), such as the following one:

Remark 3.7. In order to achieve commutativity, one may ask thay, is an isomorphism, with, . as
inverse: in this case, one getsategorifiedversion of the free commutative monoid. Another point of
view would be to replace the equalitieg x o Tx,y = idxgy andTy 0Ty x = idygx by their proofs: these
would be3-dimensional cells. This issue is discussed at the end of this section.

So far, we have described an object with Oreell, as manyl -cells as there are in our S€ftogether with
one2-cell T, for each pair(x, y) of distinct elements iiX. Now, let us consider the rute: x — y +z
from example 2.6. Such a rule is also translated Zslenensional cell:

N4

A choice has been made in order to represent thexuledeed, it could have been seen as transforming
into z+y, which is equal tay+z in the commutative monoilX]. This is the arbitrary part of the presented
2-polygraphic interpretation of Petri nets: it assumes that, for every elementX], a representative
has been chosen {iX).

Since we must use the axiom of choice, let us apply the equivalent Zermelo theorem and assume,
until the end of this section, that, for every Petri (8 R), the sefX comes equipped with a total order.
Then, every element of [X] has a unique decompositian= n{.x7 + - - - + ny.xy, where then; are
non-zero natural numbers and theare elements of such thatx; < - - - < xy.

*

Notation 3.8. Let X be a set and an element ofX]. Let us denote by;.x7 + - - - + ny.xx the unique
decomposition ofi. Thena denotes the representativ' ... x_* of ain (X), wherex™ is the product
in (X) of n copies ofx.

Until now, we have constructed a composite objeet (Xy, L4, X,), made of set&; of i-dimensional
cells. On top of these three selsalso contains boundaries informations: for example, thewggjlhas
sourcex o y and targetyy o x, while « has source and target o z.

Such an object is called@olygraph it is the central structure studied lrigher-dimensional rewrit-
ing. Here, the objeck is a2-dimensional polygraph at-polygraph for short. Its definition is recalled
from [Burroni 1993].

Definition 3.9. A 2-polygraphX is given by:

0. AsetX,of O-cells

11



3. Petri nets as 2-dimensional objects

1. A setX; of 1-cells together with two mapsop, to : £1 — X, called0-sourceandO-target The
arrows of the free categoffyty, (X)) are calledL-arrows The composition of followed by g is
denoted byf xo g or g og f in the general case arfdv g whenX, has only one element.

2. A setX; of 2-cells together with two maps;, t; : £; — (X);, called1l-sourceandl1-target and
such thakp o s1 = sg oty andtgy o s1 = tg o ty. The first equality givesa magp : X, — Xy and
the second one yieldg : £, — X,.

Definition 3.10. Let (X, R) be a Petri net, such thatis equipped with a total order. Ttepolygraph
associated withiX, R) is £2(X, R) defined this way:

0. There is on®-cell in (X, R), denoted by.
1. Thel-cells of Z?(X, R) are the elements of, with the only possiblé-source and-target maps.

2. The2-cells of £2(X, R) consist of all ther, y, for x # y in X, together with on@-cell « for each
rule inR. Thel-source and-target maps are given by:

s1{Txy) = x®Y, tlty) =y@x, si(a) = s(a), ti(a) = t(«).

In order to compare a Petri net to its associaqublygraph, we define a notion of reduction graph for
these objects. The idea is to see evigell of a2-polygraph as a rewriting rule ohirarrow, that can be
applied in any context: 2-cell « can be applied on anlrarrow of the shape ® s1(¢) ® v, in order to
produce thd-arrowu ® t;(¢) ® v. Let us formalize this idea.

Definition 3.11. Let X = (X, X1, ;) be a2-polygraph. Theeduction graph associated ©, denoted
by G(X), is defined this way:

0. The objects of5(X) are thel-arrows ofZL.

1. The arrows fronf to g in G(X) are the triplegh, ¢, k) whereh andk arel-arrows in(X); and¢
is a2-cell in £, such that the following equalities hold:

f =hxosi(@)xok and g = hxoti(@)*ok.

A triple (h, @, k) is denotedch xo @ *o k, andhxq (resp.xok) is dropped wher (resp.k) is an
identity (an empty path).

We want to prove that the two grapBgX, R) andG(Z2(X, R)) have strong links. To begin with, let us
note that the objects of the gragh £2(X, R)) are the elements of the free mongk), while the objects
of the graphG (X, R) are the ones of the free commutative mon{fl We definert : (X) — [X] to be
the canonical projection.

Lemma 3.12. Letu andv be two elements ifX) such thatt(u) = 7t(v). Then, there exists an arrofv
in G(X2(X, R)) with sourceu and targetv, such thatf has a decomposition of the form:

f = (LLn@Txn,yn ®Vvn)o---o(uy © Txq ®v1).

12



3. Petri nets as 2-dimensional objects

Proof. Since(X) is freely generated b, the elements. andv uniquely decompose as:
u=21®...0z, and v =21®...9z,,
with thez; andz{ in X. Sincert(u) = n(v), the following equality holds ifiX]:
214 Fzp =21+ 2

Hence, sincéX] is freely generated b), we get thap = p’ and that there exists a permutatioin &,,
such that, forevery € {1,...,p}, Zér(i) = z;. Let us consider a decomposition of the permutatiom n
transpositions:

o = Tino"'OTi])

where eachij isin{1,...,p — 1} andt, is the transposition that exchanggsindi;;. Let us fix the
following notations:

U = 219...02z4,-1, X1 = Zy, Y1 = Zij+1, V1 = Z{+2® ... Zp.
Then, the arrowf; = w1 ® Ty, y, ® vq of G(Z?%(X,R)) has source: and target:
Z180...02{;, 10 Z2{1+1 82, ®Z{;, 12X ... & Zp.

But this element ofX) can also be written s, (.. OZg . Hence, if we repeat this construction
for eacht;;, we prove, by induction on the Iength of the decomposmon ahat the target of the last
arrowf, = un ® Ty, y, ® vn, associated with;,, is

V= 2Z51) Q... Q Zg(p)

In conclusionf = f,, o - - - o f; satisfies the required hypotheses.

o

Now, the main result of this section can be proved. As mentioned earlier, this result formalizes a con-
struction due to Albert Burroni:

Theorem 3.13. Let (X, R) be a Petri net. The following equalities extend the canonical mapto a
surjective functor from the free categof@(Z?(X, R))) to the free categoryG(X,R)) :

TU® Txy ®V) = i) ixtytny) and mu®@ x®@v) = m(u) +7(v) + .

Proof. The equalities extenet so that it is now defined on every object and arrow of the reduction
graphG(Z2(X,R)) and takes its values into the free categ6B(X,R)). Hence, a classical categor-
ical argument tells us that uniquely extends into a functor, still denoted ty from the free cate-
gory (G(Z2(X,R))) to the free categoryG (X, R)). Now, let us prove that is surjective, which means
that both its restrictions on objects and on arrows are surjective. On objastihie canonical morphism
from the free monoidX) to the free commutative monoi&], which is surjective.

Let us consider two objecta andb in (G(X,R)): they are elements of the free commutative
monoid [X]. Let f be an arrow in(G(X,R)) from a to b. By definition of G(X,R) and of the free
category it generates, this means thahiquely decomposes as:

f=(cx+ou)o---o(ct+aq),

13



3. Petri nets as 2-dimensional objects

with thec; in [X] and thex; in R, such that the following relations hold [X]:
c1+s(xr) = a, cit+tlag) = cipr+s(oir), cxttlox) = b.

Let us denote by; the arrowc; ® «; in G(Z%(X, R)): it has sourc&; ® s(«;) and target; @ t(«y).
Hence, the equalities(s(f1)) = a andz(t(f,,)) = b hold. There remains to link all th& in order to
conclude. Indeed, the relatiafif;) = s(f;1) does not necessarily hold for everyso thatf; andf; 4
are not composable in general.

However, the relatiom(t(f;)) = 7t(s(fi1)) holds, by assumption, for evety By application of
lemma 3.12, we know that there exist arrowss . .., gi_1 in (G(Z%(X,R))) such that each one is a
composition of arrows of the formu ® T, ® v) and such that the following diagram is an arrow
of (G(Z?(X,R))):

1 — 2 gk—1 fr

A etf) =0 s(f) —> > r ® s(fx) —>b.

Finally, from the definition of the functar, we conclude that:
n(gy) = idCiJFt(fi) = idci+]+s(fi+]] and 7n(fy) = ci+ 4.

Hencen(frogro---0gqofy) =T, sothattis a surjective functor.

o

So far, we have built a new graphical obje&tZ?(X,R)) in which every path represents a possible
evolution of the Petri netX, R) and in which every possible evolution has a representative.

But G(X2(X,R)) is not the natural object one would build from thgolygraphZ?(X,R): indeed,
such a polygraph is a presentation oR-&ategory, which is a quotient ofG(Z%(X,R))) by some
topology-flavoured relations. Furthermore, we will see that these relations are the ones that identify
the intuitively equal paths from examples 1.6 and 2.6.

Here we only define the notion &ee 2-categorygenerated by a-polygraph with on-cell, while
the complete construction is in [Burroni 1993] and [Métayer 2003]. After the formal algebraic definition,
we give the topological intuition that underlies it.

Definition 3.14. Let © = (%, X¢, L) be a2-polygraph with oné-cell. Thefree 2-categorygenerated
by X, denoted byX), is the following2-polygraph:

0. It has oned-cell.
1. Its 1-cells are thd-arrows ofZ, which are the elements ¢L);.

2. Its 2-cells, called2-arrows from u to v are the paths in the reduction gra@tX), modulothe
congruence=,, generated by the followingxchange relationfwhereg o f is written with f on
top of g in order to match the graphical representations to be introduced):

uR e (vesi(h)ow) (L@si(e)@v)opew

(¢] O

(ueti(e)@v)ebow U e vVet(h) ew)

for every2-cells ¢ and, everyl-arrowsu, v andw and where> denotes the composition of
paths inG(X).

14



3. Petri nets as 2-dimensional objects

The2-arrows, collectively denoted byr),, are equipped with two compositions: the first one,ishe
operation yielded by the composition of pathg3fir); the second one is an extensionsafallowed by
the exchange relations, which is defined by functorial extension of:

(uesi(ep)eveau)e e @V
U eev)® (u e @Vv) = o
U e veou @ti(e)ev)

Remark 3.15. This definition can be quite obscure and tharrows of the fre€-category are hard
to represent with the traditional cellular graphical representation. However, they become really easy to
handle when using a dual representation, making2tdemensional arrows appear as circuits. Let us
explain how this representation is built in the case ?@olygraphZ = (x, X1, X,) with one0-cell.

Each1-cell x is drawn as a vertical wire, labelled with(or with any symbol or color associated to
thel-cell x). A T-arrow is drawn as the horizontal juxtaposition of the wires representiniytieds it is
made of. Hence, the empty path id pictured as an empty diagram and tharrowx; ® ... ® x, as:

X1 X2 Xn—-1 Xn

A 2-cell @ : u — v is pictured as a circuit component, with the wires corresponding ¢o top, the
ones forv at the bottom, such as:

v

A 2-arrow is pictured as a circuit built from the circuit components corresponding thdh#s it is made
of. The two compositions) ando are respectively represented as horizontal juxtaposition and vertical
branching:

VRV

w

The circuits are identifiechodulohomeomorphic deformation, which exactly corresponds to the equa-
tions of the2-category structure. For example, the exchange relations are pictured this way:

15



3. Petri nets as 2-dimensional objects

Example 3.16.Let us consider the Petri neX, R) from example 1.2. Its associat2gpolygraph is made
of one0-cell x, threel-cellsx, y andz and eigh2-cells pictured as:

X yuy Xy Yy x X z zZ X Yy z zy

Z N A T S T e T e

Yy z z Yy x Xy z X X z zy Yy z

x B Ty Tyx  Txz  Tzx  Tyz  Tzy

Then one considers the reduction graph from examples 1.6 and 2.6. As we have seen, all the paths in
this diagram can be lifted to representatives in the free catdgiiy’(X, R)). These representatives are
organized in a diagram such as the following one:

x2®|3
x? @ y? X2 ®z
aRx@Y? aRXRZ
YRzxy? YEZINEP YRZzRAX® 2z
YR2zQ aQy? YRz xRz
,  yezEyezep 2
YyRzR®UYR®zRY yR®zRuyYz
y@'rz,y ®Z®UZ U®Tz,y ®Zz
v RZ2 0B
y2®22®y2 y2®z3
Bz @y’ BRZ*QY?
z3®[5
23 ® yz z*,

In this diagram, all parallel paths only differ by the order of application of the sao®ls in different

parts of the samé-arrows: hence they are identified by the exchange relations, which means that they
become equal in the frekcategory generated B2 (X, R). For example, thé-arrow corresponding to

any composite front? @ y2 to z* is written as( ® z3) o (Y ® T,y ® z2) o (« ® x ® B) and is pictured

as the following more-readable circuit:
X X Yy
z zZ Z z

From this example, it seems that the congruenregs;, in (G(X,R)) and=,,; in (G(Z?(X,R))) are
linked in some way. For that, we denote ®§X, R) the quotient categoryG (X, R))/ =x )

Proposition 3.17. Let (X, R) be a Petri net. The functar : (G(Z%(Z,R))) — (G(X,R)) induces a
functorm : (X%(X,R)) — G(X,R).

Proof. We have to check that, whenevieand g are parallel arrows i (£%(X, R)) such thatf =,,g,
we havert(f) =« ¢ 7t(g). Letu, v, w be 1-arrows andx, § be2-cells inZ2(X, R). Then, by definition

16



3. Petri nets as 2-dimensional objects

of the functorr, the following four equalities hold:

Tu@avesi(B)ew) = (u+tv+w+si(B)) + «,
Tuaveti(p)ew) = (ut+v+w+t1(B)) + «,
nu®si(a)@vepeow) = (utv+w+si(a))+ B,
mudti(d) @vapew) = (Ut+v+w+ti(a))+p

Thus, the functorr satisfies:

U e (vesi(h) @w) (u@si(e)@v)ahew
T o =(x.R) T o
(u@ti(@)@V)@P W u® e (veti(h) ow)

Sincertis a functor, we get that(f) =« x,7t(g) for any two parallef andg such thatf =, g.

%

For the moment, we have seen that Petri nets can be translalegogyraphs: = (x, 27, X, I Sy, )
whereX; and X, are finite sets and whe&x denotes the set of all-cells T ,,, with x andy distinct
elements irfX.

Conversely, given ang-polygraph of the fornk = (%, X1, X, I S5, ) with X1 andX; finite, one can
build a Petri net with alphabét; and rules given by the projection through () — [X] of the2-cells
of X,. Furthermore, it can be proved that the two transformations between Petri négahgraphs
of this form are inverse to each other.

Hence, we could state that Petri nate 2-polygraphs of the fornk = (x, X, X, I S5, ). However,
this would be quite excessive since there are much rRaeows in(XZ) than rewriting paths in the
corresponding Petri net.

Example 3.18.0nce again, let us consider the Petri net from example 1.2 and the {&(tK,iR) given
in examples 1.6 and 2.6. In example 3.16, we have already s2emraw of (£2(X, R)) representing
this reduction path. The following parall2larrows are also possible representatives for this path:

z zz z z zZ Z z zZ Z z z

Hence, even if there is a correspondance between Petri nes@olglgraphs: = (x,Xq, X, II S5, ),
both objects do not naturally generate the same reduction graphgEfidgR)) is bigger thar§ (X, R).
There are many possible solutions to this problem. One possibility is to add relations between parallel
2-arrows ofZ that represent the same path in the Petri net reduction graph: we are going to sketch such
a study in the rest of this section. Another really different solution is studied in section 4, where we use
the fact that commutative monoids correspond to a special claspalfygraphs.

For the moment, let us considerZepolygraphZ = (x,Xq,XZ; II Sy, ), but whereSs, now also

contains explicit permutations  for everyl-cellx in £;. This extension does not change the properties
studied so far if we extend the functemwith 7t(Ty ) = idx1x. We denote byX;, X,) the corresponding
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3. Petri nets as 2-dimensional objects

Petri net. The following result gives a family of relations for some par@Hatrows corresponding to
the same Petri net reduction. Its proof is straightforward and uses the factsishatfunctor and maps
eachr, , onto an identity.

Lemma 3.19. The functorr is compatible with the congrueneegenerated by the following relations,
given for all1-cellsx, y andz and every2-cell o
XYz XYz X

LT B- by

where the generalized explicit permutations used in the third relation are defined inductively from the
permutation2-cells in a graphically intuitive way.

Remark 3.20. The first relation states that, in a given marking of a Petri net, two tokens in the same
place are totally indiscernible: for example, one cannot tell if a given transition has consumed one given
token or another one in the same place.

Remark 3.21. We conjecture that the congrueneealso satisfies the converse propertyf &ndg are
two parallel2-arrows in(X) such thatt(f) = 7(g), thenf = g. However, we do not yet have a proof of
this fact.

So far, we have a set of equations relatitigrrows we wish to identify. However this raisea
dimensional word problerfBurroni 1993]: given two parallel-arrows in(X), are they equahodulothe
congruences or not? One way to build a decision procedure for such a problem is to follow the method-
ology developped in [Lafont 2003] and [Guiraud 2004] and build a conveypotygraphequivalent

to the given equational presentation.

Remark 3.22. Here, we do not recall basic notions about rewriting: they can be found in [Baader
Nipkow 1998] for example. Let us say that, for this sectiof;@olygraph is specified by Zpolygraph
equipped with rewriting rules between parallehrrows. These rules are in fagtells, but we postpone

all definitions until section 4 since we only need the intuition of it being a "circuit rewriting system" here.

We would like to craft a convergedtpolygraph for the congruence on the2-category(X). However,

the fact that2-cells may have several inpudsid several outputs at the same time makes the rewriting
study much different than in the already-encountered cases. We give here a possible starting point for
future work.

Remark 3.23. For this introduction, we limit ourselves on several points:

- First of all, we only consider the congruensg generated by the last third families: we remove
the relationsr, x = idxgx since we still do not know how to handle them. This must be seen as a
first step towards the study ef.

- The second limitation is that we assume thaidoes not contain and~cell with an empty output:
the corresponding Petri net cannot have any transition that do not produce any token.

18



3. Petri nets as 2-dimensional objects

- Finally, we suppose that evepycell in £, with an empty input has only one output. This is not
a real limitation since, in a Petri net, we can replace a transitior — yq + - - - + yn by two
transitionst — zandz — yi1+- - -+yn, With z a new place. The Petri net one gets fully simulates
the original one.

The idea is the following one: instead of giving an answer to the questiang directly in (X), we
translate2-arrows ofX into a 3-polygraph in which we know a decision procedure and such that the
translation preserves the congruerce

Notation 3.24. We denote by the2-polygraph with one cell in dimensidh with £; as its set ofi-cells
and with the following families o2-cells:

Xy X X1 Xn
= A&
Yy x X X Ui

The first family (1) is indexed by all possiblé-cellsx andy; the second familys,) by every1-cell
x; the last ond ;) by every2-cell o : x7...xm = yi1...ynandeveniin{l,... n}

On top of the2-category(X), we denote byR the family made of the following-cells, given for
every possible coloration of the wires bycells:

STR-EN s
e s A T F
B AR A T

The generalized duplication in the topmost-rightmost family is inductively built from local duplications
and local permutations in a inductive way described in [Guiraud 2004] for example. We densate by
the congruence relation generatedibgn parallel2-arrows of(X).

Following the same method as the one presented in [Guiraud 2004] and using the coloration technique
sketched in [Guiraud 2005], one proves that 3agolygraphZ is convergent. Hence, given parallel
2-arrowsf andg in (Z), one can decide whethér=, g holds or not.

Furthermore, we conjecture here that it is possible to defidduactor @ : (X) — (I) such that
f =,g holds if and only if® (f) =, ®(g) holds. Here we define &functor ® which is a good candidate
for this réle and check the easy part of the claim.

Notation 3.25. We define &-functor® : (£) — () by giving its values on the cells &
0. It sends the onlg-cell of & onto itself.

1. It sends each-cell x of X onto itself.
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3. Petri nets as 2-dimensional objects

2. It sends each, ,, onto itself and, for everg-cell o : x7...xm = y71...ynin Ly withn > 2, we
define:
Do) = (1 ®...® xn) 085, xn

whered?, . isthe only generalized duplication from ... xm to (x1 ... xm)™ thatis in normal
form with respect tR.

Then we have:
Proposition 3.26. The congruencé (=, ) is included into=.

Proof. We check that, for every relatioh= g defining=,, we haved(f) =, ®(g). This is immediate
for the two relations that only involve local permutations. And for the third family of equations:

Example 3.27. Let us consider the Petri net from example 1.2. Its associxmulygraphX has the
following 2-cells, beside the nine explicit permutatidns &) ¢/cix.y 2

X X Yy X y z
B e Y A A 4
y z z XX Yy zz
o o P O T

Once translated int@, the four representative we have seen of the Petri net reduction of example 1.6
have the following respective normal forms:

A elY WY

If the announced conjecture is true, then this will prove that the first and the third representatives are
identified by=, and hence by=.

The 2-polygraphic translation of Petri nets we have built in this section has the advantage of having
graphical representations that are easy to draw and interpret. However, as we have seen, the explicit
way in which it handles the intrinsic commutativity of the net raises many issues we have only started to
study here. The non distinction of tokens might be even worse since relatigns idyg« Will create
many nasty critical pairs when added to a rewriting system. However, future work will be devoted to a
thorough study of these polygraphs.

The next section is devoted to a much more natural translation of Petri nets that unveils their intrinsic
3-dimensional nature.

20



4. Petri nets as 3-dimensional objects

4 Petri nets as 3-dimensional objects

In this section, we prove that Petri nets are exagttifmensional polygraphs with one cell of dimension

and no cell of dimensioi. The2-cells are the places of the net, while theells are its transitions:

there is no need of extra explicit permutation cells. This is due to a topological properties of this class of
polygraphs which comes from the folkloric result of algebra, attributed to Hilton:

Lemma 4.1. Let M be a set equipped with two monoid structufese) and (x, 1) such that, for every
elementx, y, zandt in M, the relation(x ey) x (zet) = (x xz) e (y x t) holds. Then the two monoid
structures are equal and commutative, which meansdhatl and thatxey =xxy =y ex =y x x.

Proof. Let us start by proving the equality = 1. Let us apply the hypothesis with =t = e and
y=2z=1,whichgives(fee1)x(Tee) =(ex1)e(1xe). Onone hand, we hae e 1) x (1 ee) =
1% 1 =1, sincee is a bilateral unit fore and sincel is a left (or right) unit forx. But, on the other hand,
(ex1)e(1xe) =eee = e, sincel is a bilateral unit for and sincee is a left (or right) unit fore.
Hencee = 1.

In order to prove that both operatiomsndx are the same, let us fix two elemertandy in M. We
have the following chain of equalities, using the hypothesis together with the facts ihatbilateral
unit for x and fore:

xoey = (xx1)e(lxy) = (xe1)x(ley) = xxy.
Finally, we prove that the operatieris commutative, using the same arguments:
xxy = (lex)x(yel) = (I1xy)e(xx1) = yex = yx*x.
¢

Remark 4.2. The proof does not use the associativityeafior x. It works with a set with two binary
relations such that each one admits a bilateral unit.

Let us translate the lemma 4.1 in our setting:

Corollary 4.3. LetX = (x,X1,X,) be a2-polygraph with oné-cell. Then the two compositions
ando are equal and commutative on the §Ej};(id., id.), which is the set of all th-arrowsid,. — id.,
of the free2-category(XL).

Proof. On (X),(id,id,) both compositions ando induce a monoid structure. We already know that
both structures have the same neutral elemegt, ifurthermore, the exchange relation gives, for any
four f, g, h andk in (Z),(id.,id,):

(f®g)o(h®k) = (foh)®(gok).
Then, one applies lemma 4.1 to conclude. &
Notation 4.4. Let £ = (x,X;,X,) be a2-polygraph with oné-cell. Thel-arrow id. is denoted by

and, by a slight abuse, so is th@rrow idg, . The common restriction afand® to (X),(0, 0) is denoted
by +.
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4. Petri nets as 3-dimensional objects

Remark 4.5. A 2-arrow with source and target equaltads represented as a circuit with no input wire
and no output wire. The proof that both compositions are equal and commutative on this kiadoivs
corresponds to the following moves:

Explicitely:
f@eg = (fe0)o(0®g) =fog = (0®f)o(gr0) = g&f = (gR0)o(0®f) = gof.

This means that such a spedahrrow can turn around another one: there is no wire, hence no limitation
to their homeomorphic movement.

Using corollary 4.6, we give a polygraphic description of the free commutative monoid generated by a
given set:

Proposition 4.6. LetX be a2-polygraph of the fornf«, (), £,). Then the setZ),(0, 0) contains all the2-
arrows of(X) and, equipped with the structufe-, 0), is isomorphic to the free commutative moniaig]
generated by ;.

Proof. Since there is on@-cell and nol-cell in the 2-polygraphX, the only1-arrow of the free2-
category(X) is id, = 0: indeed, there is only one path in the gradph()) with one object and no arrow,
the empty one. Hence, evetyarrow of (X) starts and ends at

By application of corollary 4.3, we know that both compositiorsd® are equal and commutative,
so that((Z),, +,0) is a commutative monoid. Furthermore, each element,df represented iZ),:
this inclusion induces a unique monoid morphism fridrg| to (X),. This morphism is surjective, since
every2-arrow of (X) is built from 2-cells (elements oX,) using only the operations ando, both equal
to +. Hence, every-arrowf of (£) admits a decomposition:

f = Z f(x).x,
XEX)

where thef(x) are natural numbers. In order to conclude the proof, one must prove that this decomposi-
tion is unique. Let us assume thdhas another decomposition:

f = Z f/(x).x.

xX€X)

Let us fix a2-cell x € £, and assume thdifx) = f’(x) + k, with k a natural number. Then:

f—f'(x).x = Zf(y).y +kx = Zf’(y).y.
Y#£x y#Fx

Hence, in the first decomposition 6f- f’(x).x, there arek copies of the2-cell x, but there are no in
the other. However, in a frekcategory, two arrows are equal if and only if they differ only by a limited
number of applications of the rules of associativity, units and exchangediod®: all these operations
leave the number of generati@ecellsx unchanged. Hende = 0 andf(x) = f’(x). Finally, there are
only a finite number ok such thatf(x) # 0: an induction on this number conludes the proof.

%
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4. Petri nets as 3-dimensional objects

Now, we have a correspondance between the elemefi$ @fd the2-arrows of the fre@-category gen-
erated by(x, (), X). Then, transitions of a Petri net, through their rewriting representation, are translated
as3-cellsin a 3-polygraph

Definition 4.7. A 3-polygraphis a family L = (Zo, X1, £, X3) of sets, equipped with an additional
structure of2-polygraph on(X, £, £,) and with a graph structure, t, : X3 — (X), such that:

s108y = sjoty and tjosy; = tyoty.

Remark 4.8. Usually, the3-cells are seen adirected volume®etween parallel circuits (circuits with
the samd-source and the sanietarget).

Let us formalize the translation from Petri nets idtpolygraphs:

Definition 4.9. Let (X, R) be a Petri net. Th8-polygraph associated X, R), denoted byL3(X, R), is
the 3-polygraph(x, 0, X, R), where each rewriting rule = (a, b) is seen as &-cell with 2-source the
circuit representing. and2-target the circuit representirig

Conversely, lek = (x,(), X5, X3) be a3-polygraph with oné-cell and nol-cell. Its associated Petri
netis the paitN(X) = (X5, £3).

In order to compare a Petri net and its associdt@alygraph, a notion of reduction graph is defined,
which conveys the idea of reduction under a context - see [Guiraud 2004(T)] for a study of contexts for
circuits:

Definition 4.10. Let £ = (x,Xq, X5, X3) be a3-polygraph with oned-cell. Its associated reduction
graphis the graphG(X) defined this way:

0. The objects of5(X) are the2-arrows of(X),.

1. The arrows ofG(X) from u tov are all the triplegf, «, g), made of twa2-arrowsf andg of (X),
and one3-cell x of X3, such that the two following equalities are defined and hold:

el _ . =10

These triples are consideratbdulothe followingdeformationequations, given for every possible
2-arrowsf, g andh and3-cell o

T i [ i

E
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4. Petri nets as 3-dimensional objects

A triple (f, «, g) is denoted by o « o f, with (of) and/or(go) dropped wherf and/org is an identity.
We denote by the composition of the free categof§ (X)), with A x B standingA followed by B.

Once again, the reduction graph is not the natural object one associatéptdygraph: we prefer the
3-category it generates. We give a formal definition and, then, its underlying graphical intuition.

Definition 4.11. LetX = (x, L4, X, X3) be a3-polygraph with on@-cell. Thefree 3-category generated
by I is denoted byZ) and is made of th@, 1 and2-arrows ofZ, together with a family oB-arrows
which are the paths of the reduction graph-) modulothe congruences; generated by the following
exchange relations:

(A®s2(B)) * (t2(A)®@B) =5 (s2(A) ® B) x (A @ t2(B)),
(Bosy(A)) *(t2(B)JoA) =y, (s2(B) o A) * (Bota(A)).

These equations allow one to extend the two compositibardo on equivalence classes of paths in the
graphG(X), with A ® B being given by either side of the relatien, andB o A by either side ofs,,.

Remark 4.12. Let us give a more graphical account of the f@eategory(X) generated by &-
polygraphZ. Its 3-arrows are generated by tBecells of £ seen as blocks:

On these generators, one can use the three following constructors, called compositions:

A®B Bo A A xB

n

If they are sliced, these compositions appear this way:

] ————»

Eﬂ # Eﬂ #
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4. Petri nets as 3-dimensional objects

All the constructions are identified modulo the following moves:

R

o

N

=o2

5P -

0y
gt
@

)

o
Il

N

q
[
U

This picture contains three families of moves, one for each exchange redatipss,, and=,,, where
the relation=,, is induced by the deformation relations and the other two exchange relations.

Remark 4.13. In the case of &-polygraphX with one0-cell and nol-cell, there are only two ways to
composea-arrows, namely andx, sinceo and® are the same and denoted by As a consequence,
there is only one family of exchange relations:

(A+s2(B))*(t2(A) +B) = (s2(A) +B)x (A +t2(B)).

We prove that the reduction graphs of a Petri net and of its assoéigtelygraph are the same. More-
over, the3-arrows of the3-category generated by the latter are exactly the equivalence classes of Petri
net reductionsnodulothe congruence relation we have defined on them.

Theorem 4.14. Let (X, R) be a commutative word rewriting system. TRéE3(X,R)) = (X,R) and
the graphsG(Z3(X, R)) and G(X, R) are isomorphic. Furthermore, this isomorphism identifies the con-
gruences= x x, and = ;s ,,. Conversely, given any-polygraphL = (x,0,%,,13), the equality

¥3(N(X)) = X holds and the graph&(Z) and G(Z3(N(X))) are isomorphic. Furthermore, this iso-
morphism identifies the congruences and=y;,.

Proof. Let us fix a Petri netX, R). The equalityN(X3(X,R)) = (X, R) is immediate. The objects of
both graphss (X, R) and ofG(Z3(X, R)) are the same: the elements of the free commutative mdXbid
Then, the arrows fronw to v in G(X, R) are thec + «, made of an element of [X] and a rulex
in R, such thatu = ¢ + s(«) andv = ¢ + t(«). To such an arrow + «, we associate the arrow
e(c+ a) = (c,,0)in G(Z3(X,R)).
Conversely, letus consider an arr6fyx, g) in G(Z3(X, R)). Let us prove graphically thaf, «, g) =
(f + g, &, 0), using the fact that all th2-arrows of(X3(X, R)), have source and targét

B - ® - _m e
@@EEE
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4. Petri nets as 3-dimensional objects

Let us denote by the map that sends eath «, g) ontof + g + « and let us check tha is an inverse
for ¢:
Poplc+a) = Ple,,0) = c+0+a = c+ «.
And:
po(f,a,9) = @(f+g+a) = (f+9,%0) = (f,«g).

Let us prove thatp(=(x x) is included into=,; , . For that, we fixc in [X] and, § in £3. Theng
sends the following square &f(X, R)

(c+s(B))+o

c+s(a)+s(P) c+t(a) +s(P)

(c+s(x))+PB (c+t(x))+P

c+s(a) +t(B) WC—I—HW) +t(B)

onto the following square of (Z3(X, R)):

(c+s(B),ex,0)
_—

c+s(a)+s(P) c+t(a) +s(P)

(c+s(e),3,0) (c+t(),B,0)

c+s(a)+t(B) ; c+tla) +t(B).

(c+t(B),00,0
Using the already-known properties 8fZ3(X, R)), we get the following two equations:

{(c+s(r3),oc,0)*(c+t(oc),6,0) = ¢+ ((a+s(B))* (tla) +B)),
(c+s(x),B,0)*(c+t(B),o,0) = c+ ((s(x)+p)*(x+t(B))).

Thus, two paths irG(X, R) identified by= x x, are sent byp on two paths inG(Z3(X, R)) identified
by =;3x x)- The inclusion ofip(=s 4 ) INto = x x) is proved similarly, starting from the last two
equations, in the case= 0, and moving upwards to a square whose paths are identifieg, by, .

Now, let us fix a3-polygraphL = (x, #, 5, £3). The equalityz3(N(Z)) = X is once again immedi-
ate. Sincé\(Z) is a Petri net, we know thad (N(Z)) is isomorphic toG (Z3(N(X))), which is the same
asG(X). Furthermore, this graph isomorphism is defined the same wagya®d) in the first part of
the proof. Hencep(=y;x)) is equal to=;. We apply to get the equality betweeny s, andip(=;).

¢

This result allows the informal statement "Petri nats exactlythe 3-polygraphs with on€@-cell and no
1-cell" for the following reasons:

- There is a correspondance between the presentations, given by the interpretation of places as
cells and of transitions ascells.
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Comments and future directions

- Both presentations generate the same reduction graph, so that each one can simulate the evolutions
of the other one.

- There is a correspondance between the congruences that identify, in each graph, the paths that only
differ by the order of application of the same transitions/3-cells.

Another, more categorical way to formulate this correspondance is to say that the c&3€§oRy
generated by a Petri net is isomorphic to the category whose objects and arrows are respectively the
2-arrows and-arrows of(Z3(X, R)).

Comments and future directions

We have proved that Petri nets have two natural interpretations in terms of polygraphs. Let us informally
compare them.

The first one, using 2-polygraph, is really convenient to use, since the circuit-like representation is
now well-understood and user-friendly. The only difficulty comes with the explicit permutations: one
has to choose a way to identify two paths that only differ by permutations. We have discussed possible
starting points in order to reach a solution for this issue. And, as we have seen, this is non trivial and is
postponed to further work. Nonetheless, this is an important new challengelforensional rewriting,
since the polygraphs involved provide a new class of rather different examples.

The second polygraphic interpretation we have studied, usidimensional polygraph, provides,
at least theoretically, a better description of the intrinsic algebraic structure of Petri nets: they do not
require any extra cell, apart from the ones given with the Petri nets. However, these objects are hard to
handle for the moment and this mainly comes from the lack of graphical representations: indeed, the
first ones have been constructed in [Guiraud 2005] to represent classical proofs, but they remain hard
to produce and handle in a convenient way. For that reason, part of the future work will concern these
3-dimensional representations: the goals are to improve the ones already known, to automatize their
production and, maybe, to search for other ones. In the case of Petri nets, the representations should
be really interesting since their shape will strangely be close to diagrams used in superstring theory to
represent interactions between superstrings.

Let us finish by a more general comment on polygraphs. The results presented here constitute another
clue of the expressive power of polygraphs in theoretical computer science, proof theory and universal
algebra. Indeed, it is already known that polygraphs generalize word and term rewriting systems, equa-
tional presentations of algebraic structures, Reidemeister moves on knots and tangles, formal proofs of
classical logic. The interested reader can find more information about the translations of all these objects
into polygraphs in the following documents: [Burroni 1993], [Lafont 2003], [Métayer 2003], [Guiraud
2004(T), 2004, 2005].

| wish to thank Albert Burroni and Yves Lafont for many discus-
sions and advices and the referees for their comments that have
helped to improve this document.
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