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4th May 2005 – Modified: 18th November 2005

TERMINATION ORDERS FOR 3-POLYGRAPHS
Yves Guiraud1

Résumé : Cette note présente la première classe connue d’ordres de terminaison adaptés
aux3-polygraphes, ainsi qu’une application.

Abstract: This note presents the first known class of termination orders for3-polygraphs,
together with an application.

Polygraphs are cellular presentations of higher-dimensional categories introduced in [Burroni 1993].
They have been proved to generalize term rewriting systems but they lack some tools widely used in
the field. This note presents a result developped in [Guiraud 2004] which fills this gap for some3-
dimensional polygraphs: it introduces a method to crafttermination orders, one of the most useful ways
to prove that computations specified by a formal system always end after a finite number of transforma-
tions.

1 Notions about 3-polygraphs

The formal definition of polygraphs can be found in [Burroni 1993]. Here, we restrict ourselves to the
case of a2-polygraph with one 0-cell and one 1-cell: this is a graphΣ over the set of natural numbers.
Elements ofΣ are called2-dimensional cellsor circuits. Two 2-cells areparallel when thay have the
same source and the same target. A2-dimensional cellϕ : m → n is graphically pictured as a circuit
with m inputs andn outputs:
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Given such a2-polygraphΣ, one builds another2-polygraph〈Σ〉: its 2-cells are all the circuits one can
build from the ones inΣ, by either (horizontal) juxtaposition or (vertical) plugging. These two operations
are pictured this way:
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These constructions are consideredmodulo isotopy(or homeomorphic deformation):
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2. Crafting termination orders for 3-polygraphs

Definition 1.1. A 3-polygraph with one 0-cell and one 1-cellis a pair(Σ, R) such thatΣ is a2-polygraph
with one0-cell and one1-cell andR is a graph over〈Σ〉 made of arrows between parallel circuits. An
element ofR is called a3-cell.

The reduction relation generated byR is the binary relation on circuits of〈Σ〉 defined byf →R g

whenever there exists a3-cell α : f0 → g0, together with two circuitsh andk, such that the following
relations have a meaning and hold:
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One says that the3-polygraph(Σ, R) terminatesif there exist no family(fn)n∈N of circuits of〈Σ〉 such
thatfn →R fn+1 for every natural numbern.

Therafter, we assume that every polygraph we consider has one0-cell and one1-cell. As for any kind
of rewriting system, the easiest way to prove that a3-polygraph terminates is to produce a well-chosen
termination order.

Definition 1.2. A termination orderon a2-polygraphΣ is a strict order> on parallel circuits such that
there exist no family(fn)n∈N of circuits withfn > fn+1 for everyn and such that, for any circuitf, the
mapsf ∗0 (·), (·) ∗0 f, f ∗1 (·) and(·) ∗1 f are strictly monotone.

Proposition 1.3. Let (Σ, R) be a3-polygraph and> be a termination order onΣ. If, for any3-cell α
from f to g, the inequalityf > g holds, then(Σ, R) terminates.

2 Crafting termination orders for 3-polygraphs

Proposition 1.3 would remain useless without a recipe to build termination orders, such as the ones
that exist for term rewriting. Moreover, even though circuits are deeply linked with terms, there exist
obstructions to directly transpose techniques from term rewriting to polygraphs. However, it is possible
to adapt them.

Let us give the rough idea. Given a2-polygraphΣ, circuits of 〈Σ〉 are compared according to the
"heat" they produce when presented with some "courant intensities". The courants are plugged into
each input and each output of a given circuitf. Then, they propagate throughf to reach all the circuit
components (elements ofΣ) used to buildf. Each component produces some heat, depending on the
intensities of the courants it receives. The heat produced byf is the sum of all the heats produced by
the components off. Given another circuitg, parallel tof, f will be declared greater thang if it always
produces more heat thang when both receive the same courant intensities.

In order to formalize these ideas, we use two non-empty ordered setsX andY, for the courants:X is
for descending courants, or courants going from the inputs to the outputs, andY for ascending courants.
We need also a commutative monoidM, equipped with an order relation, such that the sum is strictly
monotone in both arguments: this is used to express heats. Finally, for each2-cell ϕ in Σ, we require
threemonotonemapsϕ∗ : Xm → Xn, ϕ∗ : Yn → Ym and [ϕ] : Xm × Yn → M, respectively
expressing howϕ transmits descending courants, howϕ transmits ascending courants and how much
heat it produces.
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3. Termination orders at work

Definition 2.1. The three interpretations(·)∗, (·)∗ and[·] are extended from2-cells to circuits this way:

n∗ = IdXn n∗ = IdYn [n](~x,~y) = 0

(f ⋆0 g)∗ = (f∗, g∗) (f ⋆0 g)∗ = (f∗, g∗) [f ⋆0 g](~x,~x ′,~y,~y ′) = [f](~x,~y) + [g](~x ′,~y ′)

(f ⋆1 g)∗ = g∗ ◦ f∗ (f ⋆1 g)∗ = f∗ ◦ g∗ [f ⋆1 g](~x,~y) = [f](~x, g∗(~y)) + [g](f∗(~x),~y)

One has to prove that the three interpretations(·)∗, (·)∗ and[·] are well-defined on every circuit and that,
for each circuitf, the three mapsf∗, f∗ and[f] are monotone [Guiraud 2004]. Now we define an order
on parallel circuits and prove the main result.

Definition 2.2. With the same notations, one defines a binary relation> on parallel circuits of〈Σ〉: let f
andg be two circuits withm inputs andn outputs. Thenf > g if, for any ~x ∈ Xm, ~y ∈ Yn, the
inequalitiesf∗(~x) ≥ g∗(~x), f∗(~y) ≥ g∗(~y) and[f](~x,~y) > [g](~x,~y) hold.

Theorem 2.3. Let us keep the aforegiven notations and let us assume that the order relation on the
commutative monoidM does not admit infinite strictly decreasing sequences. Then, the binary relation>

on parallel circuits of〈Σ〉 is a termination order onΣ. In particular, if every3-cell α in R from f to g

satisfiesf > g, then the3-polygraph(Σ, R) terminates.

3 Termination orders at work

The theorem 2.3 has been used in [Guiraud 2004] in order to prove two conjectures from [Lafont 2003].
We present one of them here: it states the termination of the3-polygraph L(Z2), which is a presentation
of the structure ofZ/2Z-vector space. This is an important point for polygraphs since such a presentation
cannot exist in the term rewriting formalism.

The polygraph L(Z2) has six2-cells , , , , and , together with sixty-seven3-cells, pictured
in figure 1. In order to prove the termination of L(Z2), we considerX = Y = N, equipped with its natural
order, whileM is the free commutative monoid generated byN

∗, equipped with themultiset order: this
is the smaller order strictly compatible with the sum such thatp.n < n + 1, for everyp andn and
wheren denotes the natural numbern seen as a generator ofM.

An application of theorem 2.3 shows that the following interpretations generate a termination order
that proves the conjecture. For each2-cell α, the first two diagrams giveα∗ andα∗, while the third one
gives[α]:
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Figure 1: The sixty-seven3-cells of L(Z2)
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