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A SLIDING WEAR CONTACT between a rigid J>Unch and an elutic halfplane in presence 
of a thin aggregate film composed of solid debris and a lubricant fluid is studied. The 
model is based on any wear criterion and con&titutive law of the film suggested by mi· 
cromechanics approximation. The mechanical system is governed by the evolution of 
t.hc volume fraction of debris, considered as the internal state variable. The key step 
or iterative computations for solving the nonlinear system of equations is based on 
the solution of the fundamental linear integro-differential equation for the compressive 
normal stress (the W-equation). Uniqueness of the solution of the integro-dift'erential 
equation is then proved. It is shown that there is a profoUJld relationship between 
the latter equation and Prandtl's lifting equation in aerodynamics: both equations 
can be solved numerically by Chebyshev's series, and experimentally by similar elec
trical setups. Mathematically, it is found that. both equations are related to real and 
imaginary components of sorne complex potential, respectively, and to weakly adjoint 
integro-clifferentiaJ operators. 

1. Introduction 
A SLIDING WEAR CONTACT between two elastic solids is typically a nonlinear prob

lem, because of two reasons: on the one hand, the contact problem itself is non
linear even if there is no wear; on the other hand, the presence of debris or 

detached particles changes the load transfer conditions at the interface between 

two contacting solids. Following a terminology introduced in GODET (181 19), 
the interface is caUed "third-body,, and should be considered as an aggregate 
film composed of different particles and a lubricant fluid, having some nonlinear 

macroscopic rheology, which is not yet known. Different terminologies, interface 
or third-body, are simply a matter of scales used in describing the macroscopic 
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or mesoscopic behavior. On a thiner microscopic scale, damage and microcrad<
ing at the asperities are wear mechanisms feeding the third-body. Conditions 
for microscopie wear mechanisms to develop, depend on the macroscopic· contact 
stresses, which are determined by the rheology of the third-body, the internal 
variable of which is related to the wear rate. This is a fully coupling problem at 
different levels. 

In the literature, formulations of wear contact problems generally ignore this 
coupling aspect. For instance, by assuming a perfect contact between sound solids 
(GALIN (14), GALIN and GORIACHEVA (15)), one ignores the debris life in the 
contact zone or considers that the detached particles are removed instantaneously 
from the contact interface. 

The need of an understanding of third-body processes in order to model and 
predict wear on a macroscopic scale is expressed by several authors: GODET (18, 
19], GEORGES (16), SINGER and w AHL (29], BERI'HIER (3, 4], BERrHlER et al. (5), 
MENG and LUDEMA (24). For a comprehensive review of wear mechanisms on 
a microscopic scale, see Ko (21). A large amount of models are based on ex
perimental observations and depend on the test conditions. Most of them are 
derived from ARCHARD's relation (2). Such models cannot be predictive when 
the operating conditions cannot be close to the common use conditions of machine 
components. 

Experiments on wear friction contact, as observed in Stribeck's curves, pro
vide a relation between the friction coefficient µ. = T/p and the lubricant co
efficient L = qV/p (where fl is the iluid viscosity, V the relative velocity, p 
the pressure, T the shear stress). Three regimes are observed in Stribeck's curves 
(Fig. 1): {I) Coulomb's friction law with constantµ,; (II) instable regime occuring 
probably in earthquakes (SCHOLZ [28]); (III) hydrodynamic regime, for instance 
µ(L) �a+ bL, as proposed in DANG VAN's criterion (8), or µ(L) � bL, as in vis-
cous laminar ftow corresponding to mild wear. Stribeck 's curves clearly suggest 

µ 
I : 

'f1V/p 
F10. 1. Stribeck's curve. 
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an interaction between the debris and the elastic solids, through the evolution of 
some internal state variables governing the third-body, which is the proportion of 
solids' debris, defined either by volume fractions or by mass fractions of species. 
By a simple theory of mixture, one can get an idea on the third-body: consti· 
tutive laws, free energy, dissipation, etc ... That approach is recently provided in 
DRAGON-LOUISET (11) for a wear model of regime (III), in the presence of incom
pressible fluid. A similar approach was given by STUPKtEWlCZ and MROZ [31] 
for modeling abrasive wear. 

The content of this paper is as follows. In the first part, for the consistency of 
the paper, we reconsider briefly the general equations of the contact-sliding mild 
wear model based on micromechanical considerations, given in (11]. The model 
is applied to the contact-sliding between a circular rigid solid and an elastic 
halfplane Sl2 = {z,y � -e(z) � O} in presence of fluid (Fig. 2). 

'interface 

elastic half plane 
FIG. 2. A punch sliding on an elastic balfplane and their interface. 

The coupled nonlinear equations of equilibrium are b� on the following ideas: 

i. The microscopic wear mechanisms occuring at the asperities level, describ
ing the detachment of particles from sound solids to the third-body, will be 
modeled on the macroscopic scale. The wear criterion and wear rate will 
be given in a general form. 

ii. The third-body on a. mesoscopic scale, in somewhat of a thin film thickness 
e(z) made of an aggregate of debris and Ouid, considered as an open ther
modynamical system, with mass transfer characterized by the wear rate 
v(z) feeding the interface. a.t the surfacer between sound material and the 
third-body. Parallel in-flow and out-flow of a two-phase aggregate occur 
in the third-body which behaves under shear load like a "viscous ftuid". In 
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considering the volume fraction VJ(Z) of debris, as suitable internal vari
ables of the contact zone film, the conservation laws of mass (solid and 
fluid) provide the relations between the volume fraction, the wear rate and 
the thickn�. 

ill. The two-phase aggregate has a specific rheology to determine, depending 
on the volume fraction. 

The coupled nonlinear equilibrium equations of the mechanical system, elastic 
solid, rigid punch and interface, provided that some reasonable assumptions are 
made, have the property that, at any step of the iterative computations, only one 
fundamental linear boundary integro-difl'erential equation has to be solved (the 
W-equation). 

In the second part of the paper, we shall focus our analysis on the latter 
equation. Using methods of complex representations of potentials, we establish 
a relation between the W-equation and the well-known Prandtl lifting equation 
in aerodynamics. This relation suggests us similar methods for solving both equ
ations, by Chebyshev's series expansion, using functions of the first kind and 
the second kind and also an intere.sting means for solving uperimentally the W
equation, just as the Prandtl equation has been solved experimentally in the past 
by Malavard's electrical analogy. 

2. The interface model for computational mechanics 
Having in mind the plane strain contact-sliding wear model for a. rigid punch 

and an elastic foundation, described later, we consider a thin interface made of a 
two-phase mixture of solid debris and fluid. The interface extends along Ox, -a � 
x �a, with the wake interface x 'a (Fig. 2). For simplicity, to any meso-scale 
quantity /(x,y) defined in the third-body -a � x �a, -e(x) � y' 0, we denote 
the corresponding average over the thickness e(x) at x, by the same notation /(x). 
Physically, the third-body is characterized by a proportion of solid debris s and 
fluid /. It can be characterized either by mass fractions or by volume fractions 
t,08(.z), 'l'/(x) = 1- tp8(x). The volume fraction, being a geometrical description 
of the third-body, allows consideration of stick phenomena. For example, the 
shear ftow is impossible for compact hexagonal arrangement of circular debris 
of equal radius, where 'Pa = 62%, DRAGON-LOUtSET [11). Hence, geometrical 
considerations allow the possibility of a threshold value of internal variables based 
on the volume fractions. beyond which stick phenomenon occurs. 

Before analysing the kinematics of the third-body, we first need a macro
scopic description of wear condition, i.e. the detachment of particles feeding the 
interface. 
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2.1. Macroscopic wear criterion aad wear rate 

The most general form of wear criterion, w� provided by DRAGON-LoUISET 
and STOLZ (12] who described in a thermodynamical manner the local quanti
ties involved in the wear phenomena and proposed a wear criterion (DRAGON
LOUISET (11)) similar to the well-known ene1Y1J release nite in Fracture Mechan
ics, applicable to elastic-brittle materials. Let us drop the index 2 for quantities 
defined in the elastic solid 02, denoted n; 

(2.1) 

(2.2) 

g = n · a· Vu· n - pt/J 
g3 = n . 0'3 • Vu3 . n - pt/)3 

(elastic solid), 

(damaged material adjacent to f), 
with n the outward unit vector normal to the boundary r of n, with a and a3 
the stresses, u and u3 the displacements vectors, 't/J and f/J3 the free energies of 
sound and damaged material respectively, p (or p8) the density of the solid. The 
displacements and the stress vectors a·n are continuous across r. Then, uswning 
the existence of a threshold energy g•, the wear criterion is G(u) = g-g3-g' < O, 
when the elastic solid does not lose material, and G(C1) = 9 - g3 - g• � 0 when 
it does. The wear rate is assumed to be given a priori by v = F(g,g3) = F(a) 
when the wear criterion is verified. In this analysis wear and frictional energies 
are dissociated: solids can slide without being affected by wear and the loss of 
material. 

This model is completed by the evaluation of average quantities such like 
stress and strain on the mesoscopic scale (depending on volume fraction of parti
cles, the presence of a lubricant, chemical reactions, ... ). Some models studied in 
DRAGON-LOUISET (11) provide explicitly the evaluation of g3 in terms of stress 
and strain of n and the rheology of the third·body. 

2.2. Comenation or mus 
The volume fraction of solid particles 'I'• is simply denoted cp. In the steady

state case, the one-dimensional conservation laws of mass, solid and fluid, can be 
written respectively as: 

(2.3) 

(2.4) 

8 
ax (e(x)cp(x)p.v:r(x)] - ap,v(x) = 0 (solid), 

lJ 
Bx [e(x)(l - cp(x))p/vz:(x)] = 0 (fluid), 

where v%(x) is the x-coordinate of the mean velocity of solid debris or fluid, equal 
to -V/2; r, == ap6v(x) is the source term coming from the detachment of debris 
at rate v(x) feeding the interface through r, and a is interpreted as the part of 
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debris whicli diffuses toward the third-body. The remaining part 1 - a being 
imprisoned in the asperities is moving out the contact zone, without makiiig any 
contribution to the third-body rheology, Pa and PJ are densities of solid and fluid, 
respectively. 

Since up-stream there is no wear, we have cp(a) = O. Hence, by assuming a 
and p, constant, we obtain from {2.3) the relation between the wear rate v(z), 
the volume fraction cp(z) and the thiclm� e(z) 

s 
(2.5) rp(z) = -V�z) 

J 11(z) dz (z (a). 
• 

For either incompressible fluid (PJ constant) or negligible variation of PJ(:&) along 

the interface, Eq. (2.4) can be reduced to .;.; (e(z)(l - cp(z))v:r{z)) � O. Now, 

by assuming classical quasi-linear one-dimensional Stokes tlow inside the third
body, between the fixed wall tlz(z,0) = 0 and the sliding one tlz(z, -e) = -V, 
we get the constant mean value vz(z) = -V/2 as mentioned above. This means 
that two-dimensional fluid flows near the end points of the contact interface are 
disregarded. We then obtain 

(2.6) 
eo e(z) = 

1 - cp(z). 

&:tuations (2.5) and (2.6) are equivalent forms of the mass conservation laws of 
solid particles and fluid, respectively. Provided that tJ(z) is known, E4s· (2.5) 
and (2.6) y ields an integral equation for determining cp(x) and then e(z) .. The 
volume fraction can be written as: 

% 
B(x) 2a J (2.7) cp(x) = 1 + B(x) 

with B(z) = - Veo 
v(x)dz. 

B(z) is a monotonic function of x, increasing as x decreases. Down·stream, the 
volume fraction is constant and equal to its maximum value <pmu = cp(- a). 
Generally the latter quantity is very small. A good approximation justified by 

the smallness of 
4
V
aa 

max lvl is simply given by (2.5) with approximate e(z) � eo, 
eo 

or cp(:i:) = B(x). 

2.3. Rheology of the third-body 

We assume that the compressive contact stress is given by the uniaxial law 

(2.8) 9(rp]11111 = c1 ( ut - u; ), with g{ <p) > 0 and c1 = 2(1 � 112), 
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where c1 is introduced for later use, Eis the Young modulus, 11 is the Poisson's 
ratio, ( +) sign for the punch and ( -) for the elastic halfplane. An explicit 
form can be given for the function g (rp) by micromechanical considerations. For 
example, by making use of Re�'s model of aggregate based on strain additivity 
or stress homogeneity, on the mesoscopic scale, the first law takes the form 

(2.9) 
[!£. 1 - cp ] eo _ + _ -
K + KI 1 - 'P "1111 - UV u, ' 

where K is the stiffness of the detached solid particles, KI is the stiffness of the 
fluid. For small cp, it follows from (??) and linearization g (cp) = c1eo(VJ/K + 1/ 
Kl). The incompressible case K1 = oo is considered in (llJ. The model (2.9) is 
rigorous when the fluid viscosity is infinitely small. A different model was given by 
STUPKIEWICZ and MR6Z (31) for studying abrasive wear due to asperities. The 
mesoscopic stresses are considered as microscopic stress averages. AB a matter of 
fact, their model of contact stress additionality corresponds to Voigt 's model of 
aggregate and is therefore the dual model to (2.9). 

The second law describes the viscous behavior of the thin film under shear 
load. As suggested by experiments, the shear stress can be a§utned in the form 
(a;fl = CTzy) 
(2.10) [ ] ( dut du; ) [ JV. a%fl = m 'P dt - dt � m v>. • 

where the relative velocity is approximated by V (the elastic velocity is negligible) 
and m[cp) is a material constant which can be evaluated by micromechanics. As 
shown later, this approximation justified by in-service conditions of wear allows 
for the decoupling of equations. 

Again, an explicit form of the function m (cp) can be provided by clasical 
models of solid dispersion in viscous fluid. The viscosity coefficient of the mixture 
is given by Einstein's law fJ[VJ] = f]o(l +2.Scp) (see LANDAU and LIFCHITZ (22)), so 

that "ZJ/ = 'l['P] 
( � - d;:) /e(z) and using (2.6) and linearization, it follows 

m (cp) = 110(1 + 1.5cp)/eo. 
Finally, the third-body model is a medium having a hybrid behavior of an 

elastic solid in compression and a viscous ftuid in shear or a plastic solid with 
constant threshold (cp and V held fixed). It looks like a ball bearing, capable 
of transmitting a comp�ive force, but having some resistance in sliding. The 
volume fraction cp appears explicitly in the wear equations, making it possible 
to have a quantitative and predictive analysis of wear, for a given mechanical 
system. The macroscopic interface between a rigid punch and an elastic solid is 
characterized by properties summarized in the following box. 

7



INTERFACE MODEL ON THE MACROSCOPIC SCALE 

• Wear criterion G(u) ) 0 and wear rate v = H(G(u))F(u); with 
H the Heaviside function { if G(u) < 0, no wear and: v = 0, 

if G(u) ) O, wear rate: 1J = F(u) > 0. 

• Internal state variable cp( x} and mass conservation laws 

/z (e(x)cp(z)vz(x)] - at1(z) = 0 

/;, (e(z)(l - cp(z))v:r:(z)J = 0 

• Constitutive laws 

uZJJ = m[cp)V, with m[cp] > 0, 

(solid), 

(fluid). 

g[<p)o-w = c1('4 - u;>. with g[ip) > 0 and c1 = 2(1�112). 

3. Statement or the problem 

We consider a rigid circular punch of radius R, defined by the equation JI = 
/(x) = (x - x0)2/(2R) sliding on an elastic halfplane, (Fig. 2). In the previous 
section, we gave the description of the third-body on the mesoscopic scale, -a' 
x �a, -e(x) � 11 � 0. Here the interface is considered on the macroscopic scale 
and is defined by 11 = 0. The elastic body n is the halfplane {x, y ' O}. The 
vertical displacement of the upper third-body surface (r 1, y = 0) is 

(3.1) ut(x) = 6 + /(x) (6 < 0), 

where J is the imposed position of the punch and /(x) its profile. The vertical 
displacement of the lower surface (r2 , y = -e(x)) is u; equal to the displacement 
of the halfplane boundary. The strain £1111 of the interface medium is e1111 = 
(ut - u;)/e. 
For the present, neither the compressive load nor the contact zone -a' :z; 'a 
have been specified. The punch position xo is yet unknown. The following 
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assumption is only made -a � xo � a. The integral equations for boundary fields 
in plane strain are given by GALIN (13] (pv means "principal value") (u; = u%, 
u; = Uu) 

(3.2) 

(3.3) 

Q 
I 1 I dt c1 u;J:(x) = c2 aw(x) + pv - u:r11(t)--, 11" t -x 

-G 

where ci = E /{2(1 - v2)], c2 = (1 - 211)/(2(1 - 11)) and the prime (') means dif
ferentiation. Equations (3.2) and (3.3) establish the relations between tangential 
gradients of displacement, normal stress a1111 and shear CTz11 (cf. also BUI [7) for 
the reciprocal relations). Setting Ezz(x) = u�(x) in (3.2), i.e. the longitudinal 
strain parallel to the boundary, substituting (2.8), (2.10), (3.1) in (3.3), we obtain 
the set of equations: 

(3.4) 

a 1 1 dt 
c1 e:rz(x) = c2 O'yy(x) + pv - u%Jl(t)-t -, 11" - :z; 

-o 
4 

I d 1 1 dt 
(3.5) c1 f (x) - dx (g(cp)(x)uyy(x)] = -c2 m(cp)(x)V + pv 7r uw(t) t _ x' 

(3.6) a,�(-a) = atn'(a) = 0, 

with additional equations given previously as 

(3.7) a:&fl = m[�]V, 

:r 
(3.8) <p(x) = -;� J u(x) dx, 

G 

(3.9) v = H(G)F(a). 

-Cl 

The boundary conditions (3.6) come from the continuity assumption of stresses 
(no normal load at the fluid interface outside the punch area). In the energy 
release rate approach, G is expressed in terms of the elastic strain energy densities 
on both sides of the ph� changes line. It depends on aZll, a1111, e:rz of the sound 
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material and on the stresses <lz:r, <In of the damaged zone adjacent to the interface 
line. Its expression depends on particular models considered on the mesoscopic 
scale. Once the expression of G(<1z,,<1n,E.aa Y') in terms of its arguments is 
explicitly knownt it can be evaluated by quantities given by Eq. (3.4) to (3.9). 

Let us specify now the data for the whole mechanical system for solving the 
nonlinear system of Eqs. {3.4) - (3.9). Instead of giving the total compressive 
force, we specify the contact zone -a � z � a and then determine the corre
sponding compression load given by 

4 
(3.10) P(a) = - J u,.(t) dt, 

-o 
the shear force 4 
(3.11) T(a) = - J u""(t) dt, 

-G 
and the punch position :to. 

It is worth noticing that the key step of the iterative computation is to de
termine the normal stress <11111 and that for each iteration, until convergence, only 
one equation, namely (3.5), has to be solved. Other quantities of interest for 
the wear criterion (3.9) are derived explicitly from Y' and "'n by computations of 
integrals. For detailed analysis or the nonlinear algorithm, we refer to DRAGON
LOUISET (11). 

Here we shall focus on this linear integro-differential equation for the normal 
stress (3.5), which is referred to as the W-equation. 

4. The W .. equation 

4.1. The atep (0) algorithm 

For a given volume fraction cp(x) and a given contact zone -a' x 'a, we 
consider the function aW satisfying the following equations, with m{tp)V = ("IO/ 
eo)V 

(4.1) 

{4.2) 

With a Holderian function in the right-hand side, {4.1) is a classical Hilbert's 
equation, treated in MUSKHELISHVILI (25]. The corresponding homogeneous 
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equation possesses a non-zero solution of the type C(a2 -z2)-l. Hence, to 
obtain a bounded solution (in fact vanishing at z =±a), there is a consistency 
condition to be satisfied 

(4.3) 

0 J [cil (t) + o.i:v] (a2 -t2)-l dt = o, 
-c 

where /'(x) = (z - xo)/R. From the consistency condition (4.3) we obtain 
xo = C2110VR/(c1eo), which is independent of a, hence a good candidate for 
starting the step (0) algorithm, provided that zo (a. The last condition can be 
sati&iied by choosing appropriately the velocity V. The solution of (4.1) is then 
given by MUSKHELISHVILt (25], 

(4.4) 

or CT�(:t) = -(c1/R)(a2 -z2)i. This is a Hertzian distribution of load with the 
corresponding linear force given by 

(4.5) 

4 

I (0) W'Ct o2 Po(a) = - "w (t) dt = 2R • 
-4 

If the first term of (3.5), ! (g(cp)(z)un(:t)) is small in comparison with the 

remaining ones, the zere>-order solution O'I:{x) provides a good approximation 
of the actual solution, except near the end points x = ±a where the derivative 

1; [ crW ( x)] is singular (this is mathematically a singular perturbation problem 

not addressed here). In what follows, we outline the method of solving (3.5) using 
Chebyshev's series expansion suggested by the analogy with Prandtl 's equation. 

4.2. Chebyshev's series aolution 

Having determined the approximate center position zo, it is advantageous to 
solve the W-equation for the actual streM D'n(z), written in the form 

G d 11 � 
(4.6) di (g[cp](x)O'w(x)) +JN;: uw(t) t _ z 

-G 

= *(z -zo) + C2m[cp](z)V = b(:z:) • 
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We set the following change of variables: t = -a cos(8), :t = -a q(w.), with 8 E (0,-n'). The function a_.(w) satisfying (4.6) is expanded in truncated:FOurier 
sine series, ANDERSON (1): 

(4.7) 
N 

uw(6) = E An sin(n8), 0 � 9 � "'· 
n=l 

Using the Chebyshev identity of the first kind 

1f f sin( nlJ) sin( 8) ..in _ _ { ) cos( 8) -cos(w) au - "'cos nw ' 
0 

and by setting b(z) = b(x = -cos(w)), we obtain 

(4.8) :f: aA,, oos(nw) sin(w) + :f: A,. dfg(w):,n(nw)] 
n=l n=l 

-asin(w)b(w) = 0, 0 < w < "'· 

Generally the linear system {4.8) is solved by the collocation method. This 
method however is unsatisfactory in the choice somewhat arbitrary of the collo
cation points, 0 <wt < 1r (k = 1, .. , N). It is of interest to consider instead the 
Galerkin method. In order to use the Fourier 2n-periodic functions, the functions 
appearing in the left-hand side of (4.8), defined only in the interval 0 < w < -., 
must be extended to -'Ir < w < 11' in such a way that the extended functions are 
et1en. For instance, the first term cos(nw)sin(w) of (4.8) is odd and has to be 
extended to -'Ir < w < w by the function sgn(w) cos(nw) sin(w). Only odd func
tions have to be extended in this way, by multiplication with the sign-function sgn(w). Then, by using the Fourier cosine functions cos(kw), we obtain the set 
of equations for An 

( 4.9) � (A,. I {a oos( nw) sin(w) + � fg(w) sin(nw))} cos( kw) dw) 
1" -j asin(w)b(w)cos(kw) dw = 0, 

0 
k = 1, .. , N. 

Remark that the solution (4.7) contains the factor sin(9), hence the normal stress 
o-w(z) has the square root behavior aw(z) � (a2 - z2)i as lxl -+a. It can be 

shown that the zero-order solution a�(x) is an approximation of the first term 
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of the series (4.7). The method outlined here is an adaptation of the one given 
in DRAGON-LOUISET (11). 
4.3. Uniqueness considerations 

Having determined a solution satisfying (3.6) and the corresponding total 
load P(a) by (3.10)1 we are concerned with the uniqueness of the solution of the 
W-equation (4.6). It is nec�ary to specify the space of functions to which the 
solution belongs. We need the class of Holderian functions of Muskhelishvili to 
give a sense to Cauchy integrals, satisfying a1111(±a) = 0 and regular in -a � 
z ' a. Suppose that there a.re two solutions a1, o2, corresponding to the same 
total load P( a). Then, E = a1 - <72 satisfies the homogeneous W-equation with b(x) = 0, E{±a) = 0 and f�a E(t) dt = 0. As shown below, the uniqueness 
theorem states that E(x) = 0, provided that g[rp] > 0. 

il.4. Proof of uuiquenea 
Let us prove the theorem by considering the complex function F(z) defined 

in the upper complex plane z = x + iy, (y � 0): 
4 

(4.10) F(z) = � J iE(t) Jn(z - t) dt = fl(a:, y) + i'll(:z:, 11), 

(4.11) 

-4 

x,y inn+= {x,1J) O}, 
Cl 

F'(z) = - 2� f iE(t)� = vz(x,y) -i v11(x,y), 
17r t - z 

-· 

Cl 
( 4.12) �(x. o+) = 2� f I:( t) Jn 111: - ti dt, 

-a 

(4.13) 1111(11:, o+i = : (x, o+i = �I:(a:), for o � la:I �a, 

(4.14) 1111(11:,0+) = �(x,o+) = O, for la:I;;. a. 
The density E(z) is assumed to satisfy the following equation with some H(x): 

4 
(4.15) g(ip)(x)I:(a:) - ! J I:(t) In It -:z:I dt = H(x), 0 � la:I �a. 

-a 
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Differentiating (4.15), we find that E(z) satisfies the W-equation 

G 
d 11 dt I 

(4.16) di [g(cp)(z)I!(z)] + pv r I:(t) t _ 
x 

= H (z). 

Now Eq. (4.15) can be written equivalently as 

(4.17) 

To investigate the uniqueness, we consider the homogeneous&). (4.16) for E(z), 
with H' = 0, or the homogeneous boundary condition (4.17), with H = 0, for 
the harmonic function •(z, 11) in o+ 

(4.18) 

The function +(x,y) is the real part of an holomorphic function F(z), regular at 
a 

infinity, because in view of j E(t) dt = 0, the logarithmic part of F(z) vanishes 

-a 
at infinity. Hence IF(z)I � 0(1/lzl) and IF (z)J � 0(1/lz21). Rewriting (4.18) 
with the outward unit norm.al too+, 8/l>y = -8/IJn, we obtain 

(4.19) 

Integrating �8+ / lJn on the whole boundary of the upper-half plane an+, noticing 
that +M/IJn = 0 for lzl � a, +M/<Jn � 0(1/fz31) at infinity, we obtain on the 
one hand, since g > 0 

and on the other hand, since 9 is harmonic : 

We conclude that + = 0 is the unique solution for the homogeneous boundary 
condition ( 4.17) and that E = 0. 
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5. Prandtl's lifting equation in aerodynamics 

5.1. Prandtl'a equation 
Let us recall the well-known Prandtl equation for calculating the circulation 

distribution of vortex r(x) along a finite wing (-a, a]: 

(5.1) 

a .!. rcx> - .!. I df'(y) = -4V. J(z) "'R(x) yu 71' 11- x 00 
-4 

where R(z) > 0 is the radius of the Kutta-Joukovski circle, corresponding to the 
section profile of the wing at s, V00 is the up-stream velocity and J(x) is the 
local geometric angle of attack of the wing. Here the derivative of r(x) appears 
inside the Cauchy integral. Equation (5.1) is an integro-differential equation, in 
which the unknown is r(x); all the other quantities are known, ANDERSON (1), 
MANDEL (23}. It is well-known that the solution of is {5.1) unique. 

It is worth reconsidering the method actually used for solving the Prandtl's 
equation. Putting y = -a cos(9), x = -a cos(w), E:q. (5.1) is solved for r(y) by 
truncated Fourier sine series 

(5.2) 
N 

r(B) = E Bn sin(n8), 0 � fJ � 'Ir. 
n=l 

The pv-integral at the station w can be written in a simple form. Using Cheby
shev's formula of the second kind 

(5.3) 

'A" f cos(n8) dlJ _ sin(nw) 

cos(8) - cos(w) ='Ir sin(w) ' 
0 

we obtain 

(5.4) 
1 � . � n sin(nw) 

R( ) L-J Bn sm(nw) + L-J -B,. . 
( ) 

= -4V00J(w), 0 < w < 1f. 1r W n=l n=l a SID w 
Choosing N different stations w1, w-.z, . . . , WN for a collocation method, Eq. (5.4) 
provides a linear system of N independent algebraic equations with N unknowns, 

Bi, 82, ... , BN 
1 � . � n sin(nwt) 

(5.5) R( ) � Bn S1D(tUc1A:) + L-J -B.,,, . ( ) 1f w1c n= 1 n= 1 a s1n w1c 
= -4V00J(wA:), (k = 1 •.. , N). 
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In this fashion, the system ( 5.5) provides the actual solution of Praadtl's equation 
as used in aerodynamics. Finally, we remark the analogy between both methods 
used in Secs. 4. 2 and 5.1, respectively. As a matter of fact, there � e. profound 
relationship between the W-equation and Prandtl's lifting equation. 

S.2. Mala'ftl'd'a analogical method 
Let us recall first how Prandtl's Eq. (5.1) can be solved e�entall71 by 

analogous Malavard's method1 MANDEL (23). An electric conducting medium 
occupies the halfplane y � 0. The potential �(x,O) is the trace on 11 = 0 of a 
harmonic function 't(x, y), regular in the halfplane y > 0. The wing position 
is divided into N equal segments, centered at Zi, each of them being coilnected 
to a resistance p(xt), while the other end of the resistance is subjected to the 
potential E(xk)· For simplicity, we shall omit the indices k 0£ x1e. In order to 
choose these quantities, we introduce the complex potential F(�), z = x + i fl 
and consider the values of potential and velocity Vy = a+/ 8y on fl = 0, x ' o 

4 
F(z) = �w J ln(z -t) dI'(t), 

-G 

G 
v.,(x) = _2

1 pv J dr(t) . 11" t - x  
-a 

The electric potential ib = 0 is applied to the segments (xi � a. We set the 
potential E(z) = 2wRV00J(x) to the resistance p(x) = wR(x) > 0. Then we 
measure the electric current c = v11(x) provided by Ohm's la.w E -� = pc., 
corresponding to (5.1) 

(5.6) 2E -2it = p2c <=> 4V00J(x)1rR(x) + r(x) 
4 

= 1rR(x)-pv · . 1 I dr(t) 
1f' t -x 

-a 

The measurement of the potential + at the other end of the resistance provides 
the distribution of line vortex with density r' (x). 
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5.3. Experimental �tup £or solving the W-equation 
By integrating the W-equation for the stress S(x) 

Q 
(5.7) �- [g(x)S(x)) + pv .!. j S(t)� = h(x}, (£;li' 7r t -x 

-a 
with respect to x in the interval (a, x], taking account of S(a) = 0, we obtain 

4 G 
(5.8) g(z)S(z) - ! j S(t) In It -zl dt = -! j S(t) lo It - al dt + H(z), 

-Cl -4 
:t 

where H(z) = j h(x) dz. We can write 
G 

4 
(5.9) g(z)S(z) -! j S(t) In It - zl dt = H(z) + C 

-4 

Q 
(5.10) C = -! J S(t) In It - al dt. 

-o 

The constant C is not known beforehand, since it depends on the solution S(t). 
Suppose that for a given C, there is a solution S(x;C). Equation (5.10) expresses 
the implicit condition for determining C 

G 
(5.11) C = -; J S(t;C) In It - al dt. 

-a 

Let us show how (5.11) can be exploited experimentally. 
We introduce the complex potential F(z) of a distribution of line source (or 

sink) with density S(t). The corresponding values of potential and velocity are 

a 

F(z) = 2�,.. J iS(t; C) ln(z -t) dt = �(z, 11) + i �(z, 11), 
-4 

a a 
F1 (z) = -2� 1· iS(t; C) dt t = --2� j iS(t; C) t dt = t1%(x, y) - i u11(x, 11), nr z - iw -z 

-Cl -o 
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A 
lll(z,O\C) = 2� j S(t;C) lnlz - ti dt, 

-� 

1 v11(z,o+) = 2s(x), y = 0, x �a, 
v,(z,o+) = 0, 11 = O, x �a. 

Here, the infinite lines 11 = 0, lxl � a are stream lines vu = � / {Jy = O. On the 
line y = 0, -a' x �a, (5.9) can be rewritten as 

G 
lll(z) - E(z) = p(z)c(z) <* g(z)S(z) - � j S(t) In It -zl dt 

-4 

= B(z) +C, 
with the electric potential E(x) = -(H(x) + C)/2, applied to the resistance p(z) = g(z) > 0, the current c(z) = v11(x) = S(z)/2 and the potential •(x) = 

G 

2� j S(t) lnlz -ti dt. Far from the resistance, the potential is set to zero. The 

-o 
compatibility condition (5.11) is written as 

c -2 = +(o, o+; C). 
Hence to satisfy the above condition, experimentally, one adjusts the potential 
E(x) by varying C in such a manner that the measured potential •(a, o+; C) at 
x =a is equal to -C/2. Since H(a} = 0, we see that E = -C/2 = +{a,o+;C) 
or equivalently c( a) = O. Hence the adjustment of C is done in such a way that 
there is no current in the resistance at x = a. 
5.4. Relation between the Pnmdtl's equation and the W-equation 

As shown in the above sections, the Prandtl's equation and the W-equation 
are related together through complex potentials of line vortex of density r' (�) 
and line source or sink of density S(t), respectively. This does not mean that 
Eqs. (5.1) and (5.7) are adjoint equations, in the strictly mathematical sense. 
As a matter of fact, there is only a weak relation of the adjoint type. 

Consider the set of functions { . (1rX) (21rX) . (37rX) (4'11'%) } B = sin 2a ' cos 2a , SID 2a  ' 
cos 2a , . .. . 
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IfI:k(x) is the kth element, we get E;(x) = -(k2r /(4a2))Et(x) and E�(±a) = 0. 
Denote the Prandtl operator by Pt(r} 

2 
4 

Pt[rJ := � r(z) - .!.. J dr(t) 
k27r3 R(z) 1r pv t - x 

-a 

where the 6rst term in the left-hand side of (5.1) is divided by �. Similarly, 

denote the W-operator by W(S] 
G 

d 1 I dt 
W[S] := di (g(x)S(x)) + pv ; S(t) t _ :1:. 

-o 

The kernels of Cauchy integrals of Pk[r], W[SJ are adjoint and there is a 
permutation of functions and derivatives. Then we obtain an equivalence of the 
adjoint type 

Q G J Et(z)W(S)(z) dz = J Et(z)h(z) d:i; 
-G -o 

4 Q 
# J E�(z)l\(S](z) dz = - J E�(z)h' (z) dz. 

-4 -o 

However, there is an incomplete equivalence in weak forms, because: 1. we make 
use of only one particular function Et(z); 2. the set Bis not complete. 

6. Conclusion 
The mechanics of sliding mild wear contact between a rigid punch and an 

elastic halfplane considered in this work is characterized by the following features: 
{l) any wear criterion and wear rate can be used; (2) the constitutive behavior 
of the thin aggregate film composed of solid debris and a lubricant fluid, on the 
mesoscopic scale, can have any general form; it is characterized by an elastic law 
in compression and a fluid viscosity in shear; (3) the interface on the macroscopic 
scale is characterized by the elastic law in compression and a plastic law in shear; 
(4) the mechanical system is governed by the volume fraction of solid debris, 
which satisfies a nonlinear system of equations. 

It was shown that the key step of the iterative algorithm for solving the latter 
nonlinear system is the linear integro-differential equation for the normal contact 
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stress. There is a profound relation between this equation and Prandtl's lifting 
equation found in aerodynamics: both equations can be computed using similar 
Chebyshev's series of the first and the second kind respectively, and can be solved 
experimentally by similar electrical setups. These equations are related to real 
and imaginary components of some complex potential respectively, and to weakly 
adjoint integro-differential operators. 

By describing the formation of debris1 using for instance the wear energy 
release rate criterion, and their evolution via the balance equation of mass, by 
averaging the behavior law of the aggregate film, via a micromecbanical model, we 
were led to a predictive model of mild wear. There are still remaining questions 
about an effective solution of the nonlinear system of equations. Such questions, 
particularly mathematical aspects on the converyence of the nonlinear algorithm, 
will be addressed in a forthcoming paper, DRAGON-LOUISET (11). 
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