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Abstract

In this paper, we consider a Lagrange-Galerkin scheme to approximate a two
dimensional fluid-rigid body problem. The equations of the system are the Navier-
Stokes equations in the fluid part, coupled with ordinary differential equations for
the dynamics of the rigid body. In this problem, the equations of the fluid are written
in a domain whose variation is one of the unknowns. We introduce a numerical
method based on the use of characteristics and on finite elements with a fixed mesh.
Our main result asserts the convergence of this scheme.

1 Introduction.

The aim of this paper is to analyze a Lagrange-Galerkin approximation of the equations
modelling the motion of a two-dimensional rigid body immersed in a fluid. We first briefly
describe the equations modelling this system. Assume that the system fluid-rigid body
occupies a bounded domain O in R

2 with a regular boundary ∂O. The solid is supposed
to occupy at each instant t a closed connected subset B(t) ⊂ O which is surrounded by
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a viscous homogeneous fluid filling the domain Ω(t) = O\B(t).
The motion of the fluid is described by the classical Navier-Stokes equations, whereas
the motion of the rigid body is governed by the balance equations for linear and angular
momentum (Newton’s laws). More precisely, we consider the following system coupling
partial differential and ordinary differential equations.

ρf
∂u

∂t
− ν∆u + ρf (u · ∇)u + ∇p = ρf f , x ∈ Ω(t), t ∈ [0, T ], (1.1)

divu = 0, x ∈ Ω(t), t ∈ [0, T ], (1.2)

u = 0, x ∈ ∂O, t ∈ [0, T ], (1.3)

u = ζ ′(t) + ω(t)(x − ζ(t))⊥, x ∈ ∂B(t), t ∈ [0, T ], (1.4)

Mζ ′′(t) = −
∫

∂B(t)

σn dΓ + ρs

∫

B(t)

f(x, t) dx, t ∈ [0, T ], (1.5)

Jω′(t) = −
∫

∂B(t)

(x− ζ(t))⊥ · σn dΓ + ρs

∫

B(t)

(x− ζ(t))⊥ · f(x, t) dx, t ∈ [0, T ], (1.6)

u(x, 0) = u0(x), x ∈ Ω(0), (1.7)

ζ(0) = ζ0 ∈ R
2, ζ ′(0) = ζ1 ∈ R

2, ω(0) = ω0 ∈ R. (1.8)

In the above equations the unknows are u(x, t) (the Eulerian velocity field of the fluid),
p(x, t) (the pressure of the fluid), ζ(t) (the position of the mass center of the rigid body)
and ω(t) (the angular velocity of the rigid body). The domain B(t) is defined by

B(t) = {R−θ(t)y + ζ(t), y ∈ B},

where

θ(t) =

∫ t

0

ω(s) ds, (1.9)

B = B(0) and Rθ is the rotation matrix of angle θ. Moreover we have denoted by ∂B(t)
the boundary of the rigid body at instant t and by n(x, t) the unit normal to ∂B(t) at
the point x directed to the interior of the rigid body.

The constants ρf and ρs are respectively the density of the fluid and of the rigid body.
In the sequel, we assume that the densities of the fluid and of the solid are equal, that is

ρf = ρs = 1, (1.10)

and that the rigid body is a ball in R
2. Assumption (1.10) is clearly restrictive but it is

important for the forthcoming analysis, so that it is not clear that it can be removed (see
remarks 2.1 and 2.4 below). On the contrary, the assumption that the rigid body is a ball
is not essential but it avoids some technicalities.

The constants M and J are the mass and the moment of inertia of the rigid body and
the positive constant ν is the viscosity of the fluid. Moreover, f(x, t) is the applied force
(per unit mass).
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For all x =

(
x1

x2

)
, we denote by x⊥ the vector x⊥ =

(
x2

−x1

)
. If x, y ∈ R

2, then

x · y stands for the inner product of x and y and |x| stands for the corresponding norm.
We have also denoted by w′ and w′′ the derivatives of a function w depending only on the
time t.

Finally, the stress tensor (also called the Cauchy stress) is defined by

σ(x, t) = −p(x, t)Id + 2νD(u), (1.11)

where Id is the identity matrix and D(u) is the tensor field defined by

D(u)k,l =
1

2

(
∂uk

∂xl

+
∂ul

∂xk

)
.

The main difficulties of this problem are:

• the equations of the structure are coupled with those of the fluid,

• the domain of the fluid is variable and it is one of the unknowns of the problem (we
thus have a free boundary problem).

The wellposedness of this type of system has been recently studied in a large number
of papers (see, for instance, Desjardins-Esteban [6], Gunzburger-Lee-Seregin [17], San
Mart́ın-Starovoitov-Tucsnak [25], Grandmont-Maday [16], Takahashi [27] and the refer-
ences therein).

The literature on the numerical approximation of the solution of (1.1)-(1.8) also con-
tains a large number of recent papers. A part of these papers is based on an Arbitrary
Lagrangian Eulerian (ALE) formulation: see, for example, Grandmont-Guimet-Maday
[15], Nobile [22], Maury-Glowinski [21], Maury [19], Maury [20], Formaggia-Nobile [9],
Farhat-Geuzaine-Grandmont [8]. In the ALE method, at each time step, the mesh is
moved with an arbitrary velocity in the fluid in order to follow the motion of the rigid
body. The stability of the ALE method is studied in [9] (in the case of the finite element
context) and by [8] (in the case of the finite volume context). We also mention the work
of Gastaldi [11] where, in the case of an advection-diffusion equation in a moving two-
dimensional domain, a priori error estimates which are optimal both in space and time
have been obtained.

Another approach, developed by Glowinski et al.([14], [13]) is based on a fictitious
domain formulation: the rigid bodies are filled by the surrounding fluid and the constraint
of rigid body motion is relaxed by introducing a distributed Lagrange multiplier.

As far as we know, the only proof of the convergence of one of these methods is given
in [15] for a simplified problem in one space dimension. The main novelty brought in
by our paper consists in the fact that we construct a new approximation method using
a fixed mesh and that we prove a convergence result. This method is inspired by the
Galerkin-Lagrange approximation which is commonly used for Navier-Stokes equations.
(see Pironneau [23] and Süli [26]).
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The remaining part of this paper is organized as follows. In Section 2 we introduce some
function spaces and we semi-discretize our problem with respect to the time variable. In
Section 3 we give the full discretization of the problem and we state the main result.
Section 4 is devoted to the study of the finite element spaces which have been introduced in
the previous section. Section 5 is devoted to the study of a change of variables which plays
an important role in the proof of the main result. In Section 6 we proof the consistency
of our scheme. Finally, in Section 7 we give the proof of the main result.

2 Notations and preliminaries.

2.1 Notations and function spaces.

Throughout this paper, we shall use the classical Sobolev spaces Hs(Ω), Hs
0(Ω), H−s(Ω),

s > 0 and the space of Lipschitz continuous functions C0,1(Ω) on the closure of Ω. We
also define

L2
0(Ω) =

{
f ∈ L2(Ω) |

∫

Ω

f dx = 0

}

and denote by L2
0(Ω), Hs(Ω), Hs

0(Ω), H−s(Ω), s > 0 the spaces [L2
0(Ω)]

2
, [Hs(Ω)]2,

[Hs
0(Ω)]2, [H−s(Ω)]

2
. The usual inner product in L2(O) will be denoted by

(u,v) =

∫

O

u · v dx ∀u,v ∈ L2(O). (2.1)

If A is a matrix, we denote by A∗ its transpose. For any 2×2 matrices A,B ∈ M2×2, we
denote by A : B their inner product A : B = Trace(A∗B), and by |A| the corresponding
norm. For convenience, we use the same notation as in (2.1) for the inner product in
L2(O,M2×2), that is

(A,B) =

∫

O

A : B dx ∀A,B ∈ L2(O,M2×2). (2.2)

We also define the spaces

K(ζ) = {u ∈ H1
0(O) | D(u) = 0 in B(ζ)}. (2.3)

and
K̂(ζ) = {u ∈ H1

0(O) | divu = 0 in O, D(u) = 0 in B(ζ)}, (2.4)

where ζ ∈ R
2 and B(ζ) = {x ∈ R

2, |x− ζ| 6 1}. According to Lemma 1.1 of [29, pp.18],
for any u ∈ K(ζ), there exist lu ∈ R

2 and ωu ∈ R such that

u(y) = lu + ωu (y − ζ)⊥ ∀y ∈ B(ζ).

These spaces are specific to our problem. In fact, if the solution u of (1.1)-(1.8) is extended
by

u(x, t) = ζ ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)),
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then, we easily see that u(t) ∈ K̂(ζ(t)).

In all the sequel, the solution u of (1.1)-(1.8) will be extended as above.

We also notice that, by using (1.10), for any u,v ∈ K(ζ) we have

(u,v) =

∫

O\B(ζ)

u · v dx + M lu · lv + Jωu ωv. (2.5)

Remark 2.1. In the case of different densities ρF 6= ρS, the natural inner product to be
used seems to be

< u,v >ζ= ρF

∫

O\B(ζ)

u · v dx + M lu · lv + Jωu ωv,

which clearly depends on the position of the ball. This fact would considerably complicate
the further analysis.

An important ingredient of the numerical method we use is given by the characteristic
functions whose level lines are the integral curves of the velocity field. More precisely
(see, for instance, [23], [26]) the characteristic function ψ̃ : [0, T ]2 ×O → O is defined as
the solution of the initial value problem





d

dt
ψ̃(t; s,x) = u(ψ̃(t; s,x), t),

ψ̃(s; s,x) = x.

(2.6)

It is well-known that the material derivative Dtu = ∂u/∂t + (u · ∇)u of u at instant t0
satisfies:

Dtu(x, t0) =
d

dt

[
u(ψ̃(t; t0,x), t)

]
|t=t0

. (2.7)

Remark 2.2. By using a classical result of Liouville (see, for instance, Arnold [1, pp.251]),
if

ζ ∈ H2(0, T ), ω ∈ H1(0, T ), u ∈ C([0, T ]; K̂(ζ(t))),

then, we have that
detJ

ψ̃
= 1, (2.8)

where we have denoted by

J
ψ̃

=

(
∂ψ̃i

∂yj

)

i,j

the jacobian matrix of the transformation y 7→ ψ̃(y).
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2.2 Weak form and semi-discretization scheme.

In this subsection we give a weak form of (1.1)-(1.8) which is then used to discretize the
problem with respect to time.

The fact that equation (2.9) below is called ”weak formulation” of the system (1.1)-(1.8)
is justified by the following result.

Lemma 2.3. Assume that

u ∈ L2(0, T ;H2(Ω(t))) ∩ H1(0, T ;L2(Ω(t))) ∩ C([0, T ];H1(Ω(t))),
p ∈ L2(0, T ; H1(Ω(t))),

ζ ∈ H2(0, T ), ω ∈ H1(0, T )

and that u is extended by

u(x, t) = ζ ′(t) + ω(t)(x − ζ(t))⊥ ∀x ∈ B(ζ(t)).

Then (u, p, ζ, ω) is the solution of (1.1)-(1.8) if and only if u(t) ∈ K̂(ζ(t)) for all t and
(u, p) satisfies

(
d

dt

[
u ◦ ψ̃

]
(t), ϕ

)
+ 2ν (D(u(t)),D(ϕ)) −

∫

Ω(t)

(divϕ)p(t) dx

= (f(t),ϕ) ∀ϕ ∈ K(ζ(t)). (2.9)

We skip the proof of Lemma 2.3 since it is similar to the proof of the corresponding
result for the classical Navier-Stokes system (see, for instance, [24, Ch.12]).

Remark 2.4. In the case of different densities ρF 6= ρS, a similar weak statement can be
obtained (see for instance, [5]). In this case u in the first term of (2.9) should be replaced
by ρu where ρ = ρF in the fluid and ρ = ρS in the moving solid. Thus ρ would depend
on the time and a transport equation for ρ should be added to the system.

By using the weak formulation given above we can derive a semi-discrete version of our
system. For N ∈ N

∗ we denote ∆t = T/N and tk = k∆t for k = 0, · · · , N . Denote by

(uk, ζk) ∈ K̂(ζk)× R
2 the approximation of the solution of (1.1)-(1.8) at the time t = tk.

We approximate the position of the rigid ball at instant tk+1 by ζk+1 which is defined by
the relation

ζk+1 = ζk + uk(ζk)∆t. (2.10)

We then define characteristic function ψ associated to the semi-discretized velocity field
as the solution of 




d

dt
ψ(t; tk+1,x) = uk(ψ(t; tk+1,x)),

ψ(tk+1; tk+1,x) = x,

(2.11)

and we denote
X

k
(x) = ψ(tk; tk+1,x) ∀x ∈ O. (2.12)

One can easily check that X
k
(O) = O.
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We next define uk+1 ∈ K̂(ζk+1) as the solution of the following Stokes type system

(
uk+1 − uk ◦ X

k

∆t
, ϕ

)
+ 2ν

(
D(uk+1),D(ϕ)

)
= (fk+1,ϕ) ∀ϕ ∈ K̂(ζk+1), (2.13)

where fk+1 = f(tk+1).

The above equation can be rewritten by using a mixed formulation. To achieve this,
we first define:

M(ζ) =
{
p ∈ L2

0(O) | p = 0 in B(ζ)
}

, (2.14)

a(u,v) = 2ν

∫

O

D(u) : D(v) dx ∀u,v ∈ H1(O), (2.15)

b(u, p) = −
∫

O

div(u)p dx ∀u ∈ H1(O) ∀p ∈ L2
0(O). (2.16)

With the above notation, it is clear that (2.13) is equivalent to the system

(
uk+1 − uk ◦ X

k

∆t
, ϕ

)
+ a(uk+1, ϕ) + b(ϕ, pk+1) = (fk+1, ϕ) ∀ϕ ∈ K(ζk+1), (2.17)

b(uk+1, q) = 0 ∀q ∈ M(ζk+1), (2.18)

of unknowns (uk+1, pk+1) ∈ K(ζk+1) × M(ζk+1).

Remark 2.5. The requirement p = 0 in B(ζ) for the definition of M(ζ) allows us to define
the form b on the whole domain O. This extension does not affect the form b since
div(u) = 0 in B(ζ) for all u ∈ K(ζ).

It is well-known (see, for example, [12, Corollary I.4.1., pp.61]) that the mixed formu-
lation (2.17), (2.18) is a well-posed problem, provided that the spaces K(ζ), M(ζ) and
the bilinear form b satisfy an inf-sup condition. The fact that this inf-sup condition is
satisfied in our case follows from the result below.

Lemma 2.6. Suppose that ζ ∈ O is such that d(ζ, ∂O) = 1 + η, with η > 0. Then there
exists a constant β > 0, depending only on η and on O, such that for all q ∈ M(ζ) there
exists u ∈ K(ζ) with ∫

O

div(u) q dx ≥ β‖u‖H1(O)‖q‖L2(O). (2.19)

The proof of the result above can be obtained by slightly modifying the approach used
for the mixed formulation of the standard Stokes system (see, for instance [12, pp.81]), so
it is left to the reader.
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3 Full discretization and statement of the

main result.

In order to discretize the problem (2.17), (2.18) with respect to the space variable we
introduce two families of finite element spaces. We first define a family of finite element
spaces which approximate the space K(ζ) defined in (2.3). Let h denote a discretization
parameter, 0 < h < 1 and let P1 be the space of all affine functions in R

2.

Consider a quasi-uniform triangulation Th of O, as defined, for instance, in [2, p.106]
(this assumption will be accepted in the remaining part of this paper and will allows
us to make use of inverse estimates). If T ∈ Th is a triangle of vertices x1, x2, x3 we
denote by ϕ1(x), ϕ2(x) and ϕ3(x) the corresponding barycentric coordinates of x ∈ R

2

with respect to the vertices x1, x2, x3 (see, for instance, [4, p.45] for the definition of
barycentric coordinates). We associate to this triangulation two classical approximation
spaces used in the mixed finite element methods for the Stokes system. The first space,
classically used for the approximation of the velocity field in the mixed statement of the
Stokes system, is denoted by Wh and is defined as the subspace of H1

0(O) formed by the
P1-bubble finite elements associated to Th. More precisely ϕ ∈ Wh if and only if

ϕ(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx

λ ∀ x ∈ T

for some constant vectors α1, α2, α3, λ ∈ R
2. We may notice that all functions in Wh

are continuous.

The second space, classically used for the approximation of the pressure in mixed state-
ment of the Stokes system, is denoted by Eh and is defined by

Eh =
{
q ∈ C(O)

∣∣ q|T ∈ P1(T )
}

. (3.1)

For our problem we use two spaces which are related to the presence of the rigid body.
The first one, which is used for the approximation of the velocity field is denoted by Kh(ζ)
and defined by

Kh(ζ) = Wh ∩ K(ζ) ∀ζ ∈ O.

The second one, which is used for the approximation of the pressure, is denoted by Mh(ζ)
and is defined by

Mh(ζ) = Eh ∩ M(ζ) ∀ζ ∈ O.

We also define the finite element space (see [23])

Rh = {rot ϕh, ϕh ∈ Eh, ϕh = 0 on ∂O}.

We denote by P the orthogonal projection from L2 onto Rh. More precisely if u ∈ L2(O)
then Pu ∈ Rh satisfies

(u − Pu, rh) = 0 ∀rh ∈ Rh.

Let N be a positive integer. We denote ∆t = T/N and tk = k∆t. Assume that the
approximate solution (uk

h, p
k
h, ζ

k
h) of (1.1)-(1.8) at t = tk is known. We describe below the
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numerical scheme allowing to determinate the approximate solution (uk+1
h , pk+1

h , ζk+1
h ) at

t = tk+1. First, we compute ζk+1
h ∈ R

2 by

ζk+1
h = ζk

h + uk
h(ζ

k
h)∆t (3.2)

We denote by Puk
h the projection of uk

h onto Rh. Then, we define the characteristic

function ψ
k

h
associated to the fully discretized velocity field as the solution of





d

dt
ψ

k

h
(t; tk+1,x) = Puk

h(ψ
k

h
(t; tk+1,x)),

ψ
k

h
(tk+1; tk+1,x) = x.

(3.3)

We also define
X

k

h
(x) = ψ

k

h
(tk; tk+1,x) ∀x ∈ O (3.4)

and as for the problem (2.11), one can check that X
k

h
(O) = O (see Remark 3.1 below).

Then, we define (uk+1
h , pk+1

h ) ∈ Kh(ζ
k+1
h ) × Mh(ζ

k+1
h ) as the solution of the problem:

(
uk+1

h − uk
h ◦ X

k

h

∆t
, ϕ

)
+ a(uk+1

h , ϕ) + b(ϕ, pk+1
h ) = (fk+1

h ,ϕ) ∀ϕ ∈ Kh(ζ
k+1
h ), (3.5)

b(uk+1
h , q) = 0 ∀q ∈ Mh(ζ

k+1
h ), (3.6)

where fk+1
h is the L2-projection of fk+1 = f(tk+1) on (Eh)

2. We take ζ0
h = ζ0 and the

initial approximate velocity u0
h is the H1

0-projection of u0 onto Kh(ζ
0
h).

Remark 3.1. In (3.3), we use the projection of uk
h on Rh rather than the function uk

h itself
because div(Puk

h) = 0 in O. By using a classical result of Liouville, this implies that
detJ

ψ
k

h

= 1 and in particular that detJ
X

k
h

= 1. This property combined to the fact that

the velocity field Puk
h vanishes along the boundary ∂O entails the invariance property of

the whole domain O through X
k

h
i.e. X

k

h
(O) = O. Moreover, since Puk

h is constant in
each triangle, the initial value problem (3.3) can be solved exactly.

In the sequel, we suppose that

f ∈ C([0, T ];H1(O)), u0 ∈ H2(Ω), div(u0) = 0 in Ω,

u0 = 0 on ∂O, u0(y) = ζ1 + ω0(y − ζ0)
⊥ on ∂B.

(3.7)

The corresponding solution (u, p, ζ, ω) of problem (1.1)-(1.8) will be assumed to satisfy
the following regularity hypotheses





u ∈ C([0, T ];H2(Ω(t))) ∩ H1(0, T ;L2(Ω(t))),

D2
t u ∈ L2(0, T ;L2(Ω(t))), u ∈ C([0, T ]; C0,1(O))

p ∈ C([0, T ];H1(Ω(t))), ζ ∈ H3(0, T ), ω ∈ H2(0, T ).

(3.8)

Moreover, we assume that

dist(B(t), ∂O) > 0 ∀t ∈ [0, T ]. (3.9)

The hypotheses (3.8) and (3.9) imply the existence of η > 0 such that

dist(B(t), ∂O) > 3η ∀t ∈ [0, T ]. (3.10)

9



Theorem 3.2. Let C0 > 0 be a fixed constant. Suppose that O is the interior of a
convex polygon and that (u, p, ζ, ω) is a solution of (1.1)-(1.8) satisfying (3.8) and (3.9).
Moreover, assume that f and u0 satisfy (3.7). Consider the functions ζk

h, uk
h and pk

h

defined in this section. Then there exist two positive constants C and τ ∗ not depending
on h and on ∆t such that for all 0 < ∆t 6 τ ∗ and for all h 6 C0 (∆t)2 we have

sup
16k6N

(
|ζ(tk) − ζk

h| + ‖u(tk) − uk
h‖L2(O)

)
6 C∆t.

Remark 3.3. For the Navier-Stokes system, the same type of result is obtained in [23] for
h 6 C0∆t and in [26] for h2 6 C0∆t 6 C1h

σ and σ > 1/2 (for h and ∆t small enough).

Remark 3.4. It can be easily checked, by using the fact that detJ
ψ

k

h

= 1, that our method

is unconditionally stable.

4 Some properties of the finite element spaces.

We next give some technical results on the finite element spaces introduced above. Through-
out this section we consider ζ ∈ O such that dist(B(ζ), ∂O) > 2η and we suppose that
h < η. Therefore, we have that

dist(B(ζ), ∂O) > 2h. (4.1)

Notice that, by definition, if q ∈ Mh(ζ) then q = 0 in B(ζ). Since q is a P1 function in
each triangle it follows that q|Ah

= 0, where

Ah =
⋃

T∈Th

◦

T∩
◦

B(ζ)6=∅

T.

Moreover, if we denote by Qh the union of all triangles T ∈ Th such that the three
vertices of T are contained in Ah then, by using again the fact that q is a P1 function in
each triangle, it follows that

q|Qh
= 0 ∀ q ∈ Mh(ζ).

A similar argument shows that

D(u)|Ah
= 0 ∀ u ∈ Kh(ζ).

In order to study the properties of the spaces Kh(ζ) and Mh(ζ) defined above we divide
the triangles in Th in four categories. These categories are defined as follows (see figure
1):

• F1 is the subset of Th formed by all triangles T ∈ Th such that T ⊂ B(ζ).

• F2 is the subset formed by all triangles T ∈ Th \ F1 such that T ⊂ Qh.
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F
F

F3

1
2 

F4 

F1

F2

F3

F4

This kind of triangles are not in-
cluded in Ah since T ∩ B = ∅.
But it’s included in Qh since its
three vertices are in Ah.

Figure 1: Splitting of the triangulation into four families of triangles.

• F3 is the subset formed by all triangles T ∈ Th such that T ∩ Qh 6= ∅ and T 6⊂ Qh.

• F4 = Th \ (F1 ∪ F2 ∪ F3).

Lemma 4.1. There exists a positive constant C1 (not depending on the position of B(ζ))
such that

inf
vh∈Kh(ζ)

‖v − vh‖L2(O) 6 C1h
3

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

inf
vh∈Kh(ζ)

‖v − vh‖H1(O) 6 C1

√
h

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
,

for all v ∈ K(ζ) ∩H2(O \ B(ζ)).

Proof. Let v ∈ K(ζ) ∩H2(O \ B(ζ)). This means, in particular, that

v(x) = l + ωx⊥ ∀ x ∈ B(ζ),

for some l ∈ R
2 and ω ∈ R. In the remaining part of this section we denote

R(x) = l + ωx⊥ ∀ x ∈ R
2.

We denote by vIh the unique function in (Eh)
2 which agrees with v at every node xj of

the triangulation Th (recall the definition of Eh in (3.1)). Then we consider the function
vh ∈ (Eh)

2 whose value in a node xj of Th is defined by

vh(xj) =

{
R(xj) if xj ∈ Ah

vIh(xj) if xj 6∈ Ah

Since vh is affine in each triangle, it follows that

vh(x) = R(x) ∀ x ∈ Qh. (4.2)
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We will show that there exists a positive constant C1 (not depending on the position
of B(ζ)) such that

‖v − vh‖L2(O) 6 C1h
3

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
, (4.3)

‖v − vh‖H1(O) 6 C1

√
h

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.4)

In order to prove the above inequalities, we divide the domain O into four parts:

O = B(ζ) ∪ (Qh \ B(ζ)) ∪
(

⋃

T∈F3

T

)
∪

(
⋃

T∈F4

T

)
.

Let us first remark that
v = R in B(ζ). (4.5)

On the other hand it is clear that Qh is contained in the closed ball of center ζ and of
radius 1 + h, denoted by Bh(ζ). Let us remark that the ball Bh(ζ) is included into the
domain O due to the condition (4.1). According to a classical result (see, for instance,
Lemma 5.11 in Fujita and Sauer [10]) there exists a universal constant C > 0, such that
for all ϕ ∈ H1(O \ B(ζ)),

‖ϕ‖L2(Bh(ζ)\B(ζ)) ≤ C
(√

h‖ϕ‖L2(∂B(ζ)) + h‖∇ϕ‖[L2(Bh(ζ)\B(ζ))]4

)
. (4.6)

The above relation with ϕ = v − R and (4.5) imply that

‖v − R‖L2(Bh(ζ)\B(ζ)) 6 Ch ‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 . (4.7)

By applying again Lemma 5.11 in [10] (this time for the function ∇ (v − R)) we obtain
that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 6 C
(√

h ‖∇ (v − R)‖[L2(∂B(ζ))]4

+ h ‖∇ (v − R)‖[H1(O\B(ζ))]4

)
.

The above inequality, combined with the trace theorem in Sobolev spaces gives that

‖∇ (v − R)‖[L2(Bh(ζ)\B(ζ))]4 ≤ C
√

h‖v − R‖H2(O\B(ζ)). (4.8)

From (4.7) and (4.8) it follows that

‖v − R‖L2(Bh(ζ)\B(ζ)) 6 Ch
3

2‖v − R‖H2(O\B(ζ)). (4.9)

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2), that

‖v − vh‖L2(Qh\B(ζ)) ≤ Ch
3

2‖v − R‖H2(O\B(ζ)). (4.10)

Consequently we have that

‖v − vh‖L2(Qh\B(ζ)) 6 C1h
3

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.11)
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On the other hand (4.8) and (4.9) imply that

‖v − R‖H1(Bh(ζ)\B(ζ)) ≤ Ch
1

2‖v − R‖H2(O\B(ζ)).

The above relation implies, by using the fact that Qh ⊂ Bh(ζ) and (4.2) that

‖v − vh‖H1(Qh\B(ζ)) ≤ Ch
1

2‖v − R‖H2(O\B(ζ)),

which clearly implies

‖v − vh‖H1(Qh\B(ζ)) ≤ C
√

h
(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.12)

Let us now consider a triangle T ∈ F3. In order to estimate the restriction of v − vh

to T we use the interpolating function vIh. More precisely we have

‖v − vh‖α ≤ ‖v − vIh‖α + ‖vIh − vh‖α, α ∈ {0, 1}, (4.13)

where ‖ · ‖α stands for the L2-norm or the H1-norm on T . We first estimate the second
term in the right hand side of (4.13). Since the function vIh − vh is affine in T we have

vIh(x) − vh(x) =
3∑

i=1

(vIh(xi) − vh(xi)) ϕi(x),

where (xi) are the nodes of T and (ϕi) are the corresponding Lagrange barycentric func-
tions. We have

‖vIh − vh‖α ≤
3∑

i=1

|vIh(xi) − vh(xi)| ‖ϕi‖α. (4.14)

A simple calculation shows that

‖ϕi‖L2(T ) ≤ Ch, (4.15)

and
‖∇ϕi‖L2(T ) ≤ C. (4.16)

Since the mesh is quasi-uniform the constant C can be chosen not depending on the
triangle. We now estimate |vIh(xi) − vh(xi)|. Since T 6⊂ Qh it follows that T has at most
two nodes in Qh and, consequently, at least one node such that vIh(xi) − vh(xi) = 0.
Therefore we tackle only the nodes in Qh. If xi is a node in Qh then

|vIh(xi) − vh(xi)| = |v(xi) − R(xi)| . (4.17)

Relations (4.14), (4.15) and (4.17) imply that

‖vIh − vh‖L2(T ) 6 Ch ‖v − R‖L∞(T )

6 Ch
(
‖v − vIh‖L∞(T ) + ‖vIh − R‖L∞(T )

)
.
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By using a classical interpolation error (see, for example, [2, Corollary 4.4.7]) and an
inverse estimate (see, for example, [2, Lemma 4.5.3]), the above inequality yields

‖vIh − vh‖L2(T ) 6 Ch
(
h ‖v‖H2(T ) + h−1 ‖vIh − R‖L2(T )

)

which implies that

‖vIh − vh‖L2(T ) 6 C
(
h2 ‖v‖H2(T ) + ‖vIh − v‖L2(T ) + ‖v − R‖L2(T )

)

6 C
(
h2 ‖v‖H2(T ) + ‖v − R‖L2(T )

)
.

Above we have used again a classical result on the interpolation error (see, for example,
[2, Theorem 4.4.4]).

Now, summing up the above relation for all triangles T ∈ F3 we obtain that

‖vIh − vh‖L2(
⋃

T∈F3
T) 6 C

(
h2 ‖v‖H2(O\B(ζ)) + ‖v − R‖L2(

⋃
T∈F3

T)

)
. (4.18)

In order to estimate the last term in the right-hand side of (4.18) we proceed as previously
by introducing the closed ball B2h(ζ) of center ζ and of radius 1+2h. This ball is included
in O thanks to (4.1). It is clear that all triangles of F3 are contained in B2h(ζ) \ B(ζ).
Then, we can use once again Lemma 5.11 in Fujita and Sauer [10] and prove an estimate
similar to (4.9) namely

‖v − R‖L2(B2h(ζ)\B(ζ)) 6 Ch
3

2‖v − R‖H2(O\B(ζ)). (4.19)

From (4.18) and (4.19) we deduce that

‖vIh − vh‖L2(
⋃

T∈F3
T) 6 Ch

3

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.20)

The above relation, combined to (4.13) and to interpolation error estimate (see [2, Theo-
rem 4.4.4]) implies that

‖v − vh‖L2(
⋃

T∈F3
T) 6 Ch

3

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.21)

Now we turn to the H1-estimate for the family F3 of triangles. From the usual inverse
inequality (see [2, Lemma 4.5.3]) and the L2-estimate (4.20) we obtain

‖∇ (vIh − vh)‖[L2(
⋃

T∈F3
T)]

4 ≤ C1h
1

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
, (4.22)

which implies together with (4.13) and with interpolation error estimate (see [2, Theorem
4.4.4]) that

‖∇ (v − vh)‖[L2(
⋃

T∈F3
T)]

4 ≤ C1h
1

2

(
‖v‖H2(O\B(ζ)) + ‖v‖H2(B(ζ))

)
. (4.23)

Finally, we consider the case of the triangles family F4. Interpolation error estimates
lead to

‖v − vh‖L2(
⋃

T∈F4
T) ≤ C1h

2‖v‖H2(O\B(ζ)), (4.24)
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and
‖∇ (v − vh)‖L2(

⋃
T∈F4

T) ≤ C1h‖v‖H2(O\B(ζ)). (4.25)

Relations (4.11), (4.21), (4.24) and the fact that v = vh in B(ζ) imply (4.3). Moreover,
(4.12), (4.23), (4.25) and the fact that v = vh in B(ζ) imply (4.4).

Lemma 4.2. There exists a positive constant C2 (not depending of the position of B(ζ))
such that

inf
qh∈Mh(ζ)

‖q − qh‖L2(O) 6 C2h
1

2‖q‖H1(O\B(ζ)), (4.26)

for all q ∈ M(ζ) ∩ H1(O \ B(ζ)).

Proof. The proof of this lemma is similar to the one of Lemma 4.1. Consider a function
q ∈ M(ζ) ∩ H1(O \ B(ζ)). According to a classical result (see, for example, [3, Theorem
IX.7]), there exists q̃ ∈ H1(O) such that

q̃|O\B(ζ) = q, ‖q̃‖H1(O) ≤ C‖q‖H1(O\B(ζ)), (4.27)

and it can be proved that we can choose the constant C independent of the position of
B(ζ). Moreover, by a classical interpolation argument (see, for example, [2, Theorem
4.4.4]), there exists q̃h ∈ Eh such that

‖q̃ − q̃h‖L2(O) ≤ Ch‖q̃‖H1(O).

The above relation and (4.27) clearly imply that there exists a constant C > 0 such that

‖q − q̃h‖L2(O\B(ζ)) ≤ Ch‖q‖H1(O\B(ζ)). (4.28)

Denote by qh the function in Eh satisfying the conditions

qh(xi) = 0 if xi ∈ Ah,

qh(xi) = q̃h(xi) if xi ∈ Th \ Ah.

Then as in the proof of Lemma 4.1, we can show that

‖q − qh‖L2(O) 6 C2h
1

2‖q‖H1(O\B(ζ)).

We next show that the finite element spaces Kh(ζ), Mh(ζ) and the bilinear form b satisfy
a discrete inf-sup condition. This proves in particular that the approximate problem (3.5)-
(3.6) is well-posed (see [12, Theorem II.1.1., pp.114]). More precisely, the following result
holds.

Lemma 4.3. There exists a constant β∗ > 0 such that, for all qh ∈ Mh(ζ) there exists
uh ∈ Kh(ζ) with ∫

O

div(uh)qh dx > β∗‖uh‖H1(O)‖qh‖L2(O). (4.29)
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Proof. Let qh ∈ Mh(ζ). Since Mh(ζ) ⊂ M(ζ), Lemma 2.6 yields the existence of u ∈ K(ζ)
such that ∫

O

div(u)qh dx > β‖u‖H1(O)‖qh‖L2(O),

with β not depending on qh. In order to prove the conclusion of the lemma it suffices to
show the existence of uh ∈ Kh(ζ) such that

∫

O

div(uh)qh dx =

∫

O

div(u)qh dx, (4.30)

‖uh‖H1(O) 6 C‖u‖H1(O), (4.31)

where C is a constant independent of qh.

Note that (4.30) is equivalent to

∫

O

uh · ∇qh dx =

∫

O

u · ∇qh dx.

Since ∇qh is constant in each triangle and it vanishes in any triangle from F1 ∪ F2, in
order to check (4.30), it suffices to show that

∫

T

uh dx =

∫

T

u dx ∀ T ∈ F3 ∪ F4. (4.32)

Notice first that if uh ∈ Kh(ζ) then, for any triangle T ∈ Th of vertices x1, x2, x3 and of
corresponding barycentric functions ϕ1, ϕ2, ϕ3, we have

uh(x) = uh(x) +
ϕ1(x)ϕ2(x)ϕ3(x)∫

T

ϕ1ϕ2ϕ3 dx
λ ∀ x ∈ T, (4.33)

where uh ∈ C(O) satisfies

uh(x) = ϕ1(x)α1 + ϕ2(x)α2 + ϕ3(x)α3 ∀ x ∈ T, (4.34)

for some constant vectors α1, α2, α3, λ ∈ R
2 (these constants depend on the triangle

T ). Notice that, since the restriction of uh to triangles in F1 ∪F2 is a rigid velocity field,
the constant λ in (4.33) is equal to zero, for all triangles in F1 ∪F2. If uh satisfies (4.34)
and T ∈ F3 ∪ F4 then condition (4.32) holds provided that

λ =

∫

T

(u − uh) dx ∀ T ∈ F3 ∪ F4. (4.35)

Some simple calculations show that there exists a constant C > 0 (not depending on the
triangle) such that ∥∥∥∥∥∥∥∥

ϕ1ϕ2ϕ3∫

T

ϕ1ϕ2ϕ3 dx

∥∥∥∥∥∥∥∥
H1(T )

6
C

h2
. (4.36)
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Moreover, (4.35) and the Cauchy-Schwarz inequality imply that

|λ| 6 Ch‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4, (4.37)

for some constant C. From (4.33), (4.36) and (4.37) it follows that

‖uh‖H1(T ) 6 ‖uh‖H1(T ) +
C

h
‖u − uh‖L2(T ) ∀ T ∈ F3 ∪ F4. (4.38)

The remaining part of the proof is devoted to the construction of uh such that uh satisfies
(4.31). According to a classical result (see, for instance, [12, Theorem I.A.2., pp.101]),
there exists a function uc

h ∈ C(O) which is affine in each triangle T ∈ Th such that

‖u − uc
h‖L2(T ) ≤ Ch‖u‖H1(T ), (4.39)

‖uc
h‖H1(T ) ≤ C‖u‖H1(T ), (4.40)

with the constant C not depending on h. We are now in a position to define uh. This
function is defined by

uh(x) =





uc
h(x) if x ∈

⋃

T∈F4

T

R(x) if x ∈
⋃

T∈F1∪F2

T

(4.41)

where R is the extension of u|B(ζ) (which is a rigid velocity field) to R
2. We remark that

relation (4.41) also defines the values of uh in the triangles of F3. Indeed, the vertices of
each triangle in F3 are also vertices of a triangle in either F2 or in F4. In order to prove
(4.31) we estimate the terms in the right hand side of (4.38). We first consider a triangle
T ∈ F4. By using the fact that uh = uc

h in T , (4.39) and (4.40) we obtain that

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) ∀ T ∈ F4, (4.42)

with the constant C not depending on u. We next consider a triangle T ∈ F3. We first
notice that

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ ‖uc

h‖H1(T ) +
1

h
‖u − uc

h‖L2(T )

+ ‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ∀ T ∈ F3. (4.43)

The first two terms in the right hand side of (4.43) can be directly estimated by using
(4.39) and (4.40). Moreover, by using inverse estimates (see, for example, [2, Lemma
4.5.3]), there exists a positive constant C not depending on h such that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) 6 C ‖uc
h − uh‖L∞(T ) ∀ T ∈ F3.
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The above relation and the fact that uh is equal either to R or to uc
h in the vertices of a

triangle T ∈ F3 imply that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤ C ‖uc
h − R‖L∞(T ) ∀ T ∈ F3.

The above inequality, combined once again, with an inverse inequality implies that

‖uc
h − uh‖H1(T ) +

1

h
‖uh − uc

h‖L2(T ) ≤
C

h
‖uc

h − R‖L2(T ) ∀ T ∈ F3. (4.44)

On the other hand

‖uc
h − R‖L2(T ) ≤ ‖uc

h − u‖L2(T ) + ‖u − R‖L2(T ) ∀ T ∈ F3. (4.45)

Combining (4.39), (4.45), (4.44) and (4.43) we obtain

‖uh‖H1(T ) +
1

h
‖u − uh‖L2(T ) ≤ C‖u‖H1(T ) +

C

h
‖u − R‖L2(T ) ∀ T ∈ F3. (4.46)

We recall that all triangles of F3 are contained in B2h(ζ)\B(ζ). Therefore, by taking the
sum of the above relation for all T ∈ F3 and by using (4.6), combined to the fact that
u = R on ∂B(ζ), we obtain

‖uh‖
H1

 
⋃

T∈F3

T

) +
1

h
‖u − uh‖

L2

 
⋃

T∈F3

T

) ≤ C‖u‖H1(B2h(ζ)\B(ζ)). (4.47)

Now by combining (4.42) and (4.47) in (4.38) we obtain

‖uh‖
H1

 
⋃

T∈F3∪F4

T

) ≤ C‖u‖H1(O\B(ζ)). (4.48)

We next consider the triangles T ∈ F1 ∪ F2. By using the fact that uh = uh = R in T
we obtain that

‖uh‖
H1

 
⋃

T∈F1∪F2

T

) = ‖R‖
H1

 
⋃

T∈F1∪F2

T

).

A simple calculation shows that the right hand side of the above relation is bounded by
C‖u‖H1(B(ζ)), where C is a constant not depending on h. We thus obtain

‖uh‖
H1

 
⋃

T∈F1∪F2

T

) ≤ C‖u‖H1(B(ζ)). (4.49)

If we join (4.48) and (4.49) we see that the function uh satisfies (4.31). This ends up the
proof of the Lemma.

Now, we are in position to introduce a projector in Kh(ζ) × Mh(ζ) that will be a key
ingredient in the proof of the convergence result.
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Lemma 4.4. Suppose that V ∈ K(ζ) and that P ∈ M(ζ). Then there exists a unique
couple (Vh, Ph) in Kh(ζ) × Mh(ζ) such that:

{
a (V − Vh, ϕ) + b (ϕ, P − Ph) = 0 ∀ ϕ ∈ Kh(ζ)

b (V − Vh, q) = 0 ∀ q ∈ Mh(ζ).
(4.50)

Moreover, if we suppose in addition that V|O\B(ζ) ∈ H2 (O \ B(ζ)) and that P|O\B(ζ) ∈
H1 (O \ B(ζ)) then there exists a positive constant C such that

‖V − Vh‖L2(O) 6 Ch.

Proof. The result in Lemma 4.3 combined to Theorem 1.1 in [12, p.114] implies the
existence and uniqueness of (Vh, Ph) in Kh(ζ) × Mh(ζ) satisfying (4.50) together with

‖V − Vh‖H1(O) + ‖P − Ph‖L2(O) 6 C

{
inf

v∈Kh(ζ)
‖V − v‖H1(O) + inf

q∈Mh(ζ)
‖P − q‖L2(O)

}
.

Using Lemmas 4.1 and 4.2 we obtain

‖V − Vh‖H1(O) + ‖P − Ph‖L2(O) 6 Ch1/2
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.

Moreover, by applying the usual Aubin-Nitsche duality argument (see for example [12,
pp.119]), one can easily prove

‖V − Vh‖L2(O) 6 Ch
{
‖V‖H2(O\B) + ‖V‖H2(B) + ‖P‖H1(O)

}
.

5 Definition and properties of the change of vari-

ables.

In order to prove Theorem 3.2, we should be able to compare the exact solution which is
rigid in the ball B(ζ(tk)) with the approximate solution which is rigid in the ball B(ζk

h).
This will be achieved by the use of a change of variables which maps the exact ball onto
the approximate one. This section is devoted to the description and main properties of
this transformation.

5.1 Change of variables.

In this section, we suppose that O is convex. In the sequel, we need a change of variables
transforming a function in K̂(ζ1) into a function in K̂(ζ2), where ζi ∈ O are such that

dist(ζi, ∂O) > 1 + 2η, i ∈ {1, 2}, with η > 0. (5.1)

In this case, B(ζi) is contained in O and the distance between B(ζi) and ∂O is greater
than 2η. Let ξ ∈ C∞(R2, R) be a compactly supported function such that
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• ξ = 1 if x ∈ O and dist(x, ∂O) > 2η

• ξ = 0 if x 6∈ O or dist(x, ∂O) 6 η

Let Λ be the mapping defined by

Λ(x) =
[
(ζ1 − ζ2) · x⊥

]
(rot ξ) + ξ(ζ1 − ζ2) ∀x ∈ R

2. (5.2)

We need several properties of the field Λ and of the associated flow. Since these properties
are similar to those proved in [27] we state them here without proof.

Lemma 5.1. Let Λ be the mapping defined by (5.2). Then we have

(i) Λ = 0 outside O,

(ii) divΛ = 0 in R
2,

(iii) Λ(x) = ζ1 − ζ2 if x ∈ O and if dist(x, ∂O) > 2η.

In other words, the restriction of Λ to a neighbourhood of ∂O is zero and Λ is a
translation when restricted to points of O at distance to ∂O larger than 2η.

We consider next the initial value problem:





d

dλ
ψ(λ) = Λ(ψ(λ)), λ > 0

ψ(0) = y,

(5.3)

with Λ given by (5.2).

Lemma 5.2. For all y ∈ R
2, the initial value problem (5.3) admits a unique solution

ψ(λ,y) on [0, 1]. Denote
Xζ2,ζ1

(y) = X(y) = ψ(1,y) (5.4)

Then X is a C∞-diffeomorphism from O onto itself and X(B(ζ2)) = B(ζ1). If we denote
by

JX =

(
∂Xi

∂yj

)

i,j

the jacobian matrix of the transformation y 7→ X(y), then the above change of variables
satisfies:

detJX(y) = 1 ∀y ∈ R
2. (5.5)

We denote by
Yζ2,ζ1

= Y = X−1 (5.6)

the inverse of X on O.
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5.2 Properties of the change of variables.

In this subsection, we use the change of variables defined by the mapping X in Lemma
5.2 to transform functions in K̂(ζ1) (resp. K(ζ1), M(ζ1)) into functions in K̂(ζ2) (resp.
K(ζ2), M(ζ2)). We also give the expressions of ∆u and of ∇p after the transformation.

Consider (u, p) ∈ H1(O)×L2(O) and define as in [18] the functions (U, P ) ∈ H1(O)×
L2(O) by

U(y) = JY(X(y))u(X(y)) ∀y ∈ O, (5.7)

P (y) = p(X(y)) ∀y ∈ O. (5.8)

We can easily check, by using the definition of Λ that

X(y) = y + ζ1 − ζ2 ∀y ∈ B(ζ2), (5.9)

Y(x) = x − ζ1 + ζ2 ∀x ∈ B(ζ1), (5.10)

Consequently, if u ∈ K(ζ1) then U ∈ K(ζ2) and that if p ∈ M(ζ1) then P ∈ M(ζ2).

By using (5.5), we obtain the following result (see, for instance, [18, Proposition 2.4]).

Lemma 5.3. If X is defined by (5.4), then for all u ∈ H1(O), the function U defined as
above satisfies the following relation:

div [U(y)] = div [u(X(y))] ∀y ∈ O.

This lemma implies in particular that if u ∈ K̂(ζ1) then U ∈ K̂(ζ2).

In order to write down the expressions of ∆u and ∇p after change of variables, we
define (see [18])

[LU]i =
∑

j,k

∂

∂yj

(gjk ∂Ui

∂yk

) + 2
∑

j,k,l

gklΓi
jk

∂Uj

∂yl

+
∑

j,k,l

{
∂

∂yk

(gklΓi
jl) +

∑

m

gklΓm
jlΓ

i
km

}
Uj, (5.11)

[GP ]i =
2∑

j=1

gij ∂P

∂yj

, (5.12)

where we denote (see, for instance, [7])

gij =
∑

k

∂Yi

∂xk

∂Yj

∂xk

(metric contravariant tensor), (5.13)

gij =
∑

k

∂Xi

∂yk

∂Xj

∂yk

(metric covariant tensor), (5.14)

and

Γk
ij =

1

2

∑

l

gkl

{
∂gil

∂yj

+
∂gjl

∂yi

+
∂gij

∂yl

}
(Christoffel symbol). (5.15)

We are now in position to write down the expressions of ∆u and of ∇p after change of
variables (see again [18] for details).
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Proposition 5.4. Suppose that

(u, p) ∈ H2(O \ B(ζ1)) × H1(O \ B(ζ1)).

Then, we have that

(U, P ) ∈ H2(O \ B(ζ2)) × H1(O \ B(ζ2)).

Moreover, for all y ∈ O \ B(ζ2), we have that

[LU](y) = JY(X(y)) [(∆u) ◦ X] (y), [GP ](y) = JY(X(y)) [(∇p) ◦ X] (y).

In the remaining part of this section, we denote by C a positive constant which may
depend only on ξ and O. We give below (without proofs) several estimates on the depen-
dence of the change of variables defined in (5.4) on the points ζ1 and ζ2. For the proofs
of these estimates, we refer to [27] and to [28].

Lemma 5.5. Let Λ be the function defined by (5.2). Then, for all ζ1, ζ2 ∈ O satisfying
(5.1) we have:

‖Λ‖L∞(O) 6 C |ζ1 − ζ2| , ‖∇Λ‖[L∞(O)]4 6 C |ζ1 − ζ2| ,
∥∥∥∥

∂2Λ

∂xi∂xj

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| ,
∥∥∥∥

∂3Λ

∂xi∂xj∂xk

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| .

Lemma 5.6. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Then the functions X and Y defined by
(5.4) and (5.6) satisfy the following inequalities:

‖X‖L∞(O) 6 C, ‖Y‖L∞(O) 6 C,

‖JX − Id‖[L∞(O)]4 6 C |ζ1 − ζ2| , ‖JY − Id‖[L∞(O)]4 6 C |ζ1 − ζ2| ,
∥∥∥∥

∂2Yi

∂xj∂xk

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| ,
∥∥∥∥

∂2Xi

∂yj∂yk

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| ,
∥∥∥∥

∂3Yi

∂xj∂xl∂xk

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| ,
∥∥∥∥

∂3Xi

∂yj∂yl∂yk

∥∥∥∥
L∞(O)

6 C |ζ1 − ζ2| .

Lemma 5.7. Let Λ, ζ1, ζ2 be as in Lemma 5.5. Moreover, suppose that

(U, P ) ∈ H2(O \ B(ζ2)) × H1(O \ B(ζ2))

and that L and G are given by (5.11) and (5.12). Then we have

(i) ‖ν[(L − ∆)U]‖L2(O\B(ζ2)) 6 C |ζ1 − ζ2| ‖U‖H2(O\B(ζ2))

(ii) ‖[(∇− G)P ]‖L2(O\B(ζ2)) 6 C |ζ1 − ζ2| ‖P‖H1(O\B(ζ2))
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6 Consistency of the fully discretized scheme.

This section is devoted to the consistency of our fully discretized scheme. The main
result in this section asserts that the solution (u, p, ζ, ω) of (1.1)-(1.8) satisfies the scheme
(3.2)-(3.6) with consistency errors that will be estimated. Since (u(tk), p(tk)) belongs to
K(ζ(tk))×M(ζ(tk)) and not to K(ζk

h)×M(ζk
h), we need the change of variables introduced

in the previous section.

6.1 Consistency in time.

In this subsection we show that the exact values at instants t = tk of a strong solution
of (1.1)-(1.8) satisfy a perturbed version of the semi-discretized problem introduced in
Subsection 2.2 and we estimate these perturbations with respect to the time step. The
precise statement is given in Lemma 6.1 below.

Consider the solution (u, p, ζ, ω) of (1.1)-(1.8) and assume (3.8) and (3.10) hold. In the
sequel, we will use the notation:

X̃(x) = ψ̃(tk; tk+1,x) ∀x ∈ O, (6.1)

where ψ̃ is defined by the relation (2.6). Note that X̃(O) = O.
Let εk, δk, αk, βk, γk be quantities defined by:

εk = ζ(tk+1) − ζ(tk) − ζ ′(tk)∆t, (6.2)

δk(t,x) = u(ψ̃(t; tk+1,x), t) − u(ψ̃(t; tk+1,x), tk), (6.3)

αk =
u(tk+1) − u(tk) ◦ X̃

∆t
− d

dt

[
u ◦ ψ̃

]
(tk+1), (6.4)

βk =
ζ ′(tk+1) − ζ ′(tk)

∆t
− ζ ′′(tk+1), (6.5)

γk =
ω′(tk+1) − ω′(tk)

∆t
− ω′′(tk+1). (6.6)

By using the fact that u (ζ(tk), tk) = ζ ′(tk) and relations (2.6), (1.1), (1.5) and (1.6)
together with the above definitions, we infer that the exact solution (u, p, ζ, ω) satisfies

ζ(tk+1) = ζ(tk) + u (ζ(tk), tk)∆t + εk, (6.7)





d

dt
ψ̃(t; tk+1,x) = u

(
ψ̃(t; tk+1,x), tk

)
+ δk(t,x),

ψ̃(tk+1; tk+1,x) = x

(6.8)

for all x ∈ O and for all t ∈ [tk, tk+1], together with

u(tk+1) − u(tk) ◦ X̃

∆t
− ν∆u(tk+1) + ∇p(tk+1) = fk+1 + αk, in O \ B(ζ(tk+1)), (6.9)
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M
ζ ′(tk+1) − ζ ′(tk)

∆t
= −

∫

∂B(ζ(tk+1))

σ(tk+1)n dΓ +

∫

B(ζ(tk+1))

fk+1 dx + βk, (6.10)

J
ω(tk+1) − ω(tk)

∆t
= −

∫

∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σ(tk+1)n dΓ

+

∫

B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · fk+1 dx + γk. (6.11)

Moreover, if we denote

θ(t) =

∫ t

0

ω(s) ds

and by Rθ the rotation matrix of angle θ, then we also define the matrix Ek by

Rθ(tk+1)−θ(tk) = Id − ∆t ω(tk+1)R−π/2 + Ek (6.12)

By using the Taylor-Lagrange inequality, we easily obtain the following consistency
error estimates.

Lemma 6.1. The elements αk, βk, γk, δk, εk and Ek defined by (6.2)-(6.6) satisfy the
following inequalities:

|εk| 6 C (∆t)2 , ‖δk‖L2(O×(tk,tk+1)) 6 C∆t

∥∥∥∥
∂u

∂t

∥∥∥∥
L2(O×(tk,tk+1))

,

‖αk‖L2(O) 6 C
√

∆t

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

,

|βk| 6 C∆t, |γk| 6 C∆t, |Ek| 6 C (∆t)2 .

(6.13)

6.2 Transformed system.

We need to compare u(tk) ∈ K(ζ(tk)), which is a rigid velocity field in B(ζ(tk)) with
uk

h ∈ K(ζk
h) which is a rigid velocity field in B(ζk

h). This will be done by using the change
of variables introduced in Section 5.1. To this end, we suppose that |ζk

h−ζ(tk)| < η. This
hypothesis and (3.10) imply that

dist(B(ζ(tk)), ∂O) > 2η. (6.14)

With this assumption, we can transform u(tk) by using the change of variables introduced
in Section 5.1: we denote (see (5.4), (5.6))

Xk = Xζk

h
,ζ(tk), Yk = Yζk

h
,ζ(tk). (6.15)

We also define (see (5.7) and (5.8))

Uk(y) = JYk(Xk(y))u
(
Xk(y), tk

)
, P k(y) = pk(Xk(y)),

Sk = −P k Id + 2νD(Uk), Fk(y) = JYk(Xk(y))f(Xk(y), tk).
(6.16)
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We recall that, according to Lemma 5.3, Uk ∈ K̂(ζk
h) and that P k ∈ M(ζk

h). We introduce
the following notations that will be useful in the sequel:

X̂ = Yk ◦ X̃ ◦ Xk+1. (6.17)

and
Ĵ =

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
(6.18)

Before stating the main result of this section, let us give some properties on the char-
acteristics. First note that, according to Lemma 5.2, we have

Xk+1(B(ζk+1
h )) = B(ζ(tk+1)), (6.19)

Yk(B(ζ(tk))) = B(ζk
h),

Moreover, we can easily check that the function X̃ defined by (6.1) satisfies

X̃(x) = ζ(tk) + Rθ(tk+1)−θ(tk)(x − ζ(tk+1)) ∀x ∈ B(ζ(tk+1)). (6.20)

Consequently, we have
X̃(B(ζ(tk+1))) = B(ζ(tk)),

and therefore, we obtain
X̂(B(ζk+1

h )) = B(ζk
h). (6.21)

We summarize some of the above properties in the following diagram:

B(ζk+1
h )

Xk+1

−−−→ B(ζ(tk+1))

X̂

y
yX̃

B(ζk
h) ←−−−

Yk

B(ζ(tk))

Next, we turn to the main result of this subsection: we show that Uk+1 and P k+1 satisfy
a mixed weak formulation with test functions in K(ζk+1

h ) and M(ζk+1
h ).

Proposition 6.2. The functions (Uk+1, P k+1) defined by (6.16) satisfy

(
1

∆t

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
, ϕ

)
+ a(Uk+1,ϕ) + b(ϕ, P k+1)

= (fk+1
h ,ϕ) + (Ak, ϕ) ∀ϕ ∈ K(ζk+1

h ), (6.22)

b(Uk+1, q) = 0 ∀q ∈ M(ζk+1
h ), (6.23)

with

‖Ak‖L2(O) 6 C
(
|ζ(tk+1) − ζk+1

h | + h + ∆t + C
√

∆t

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
. (6.24)
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Proof.
First Step: Transformation of the equation (6.9).

By using Proposition 5.4, we have that Uk+1 and P k+1 satisfy

(
JYk+1 ◦ Xk+1

) u(tk+1) − u(tk) ◦ X̃

∆t
◦ Xk+1 − ν[Lk+1Uk+1] + [Gk+1P k+1]

=
(
JYk+1 ◦ Xk+1

)
(f(Xk+1, tk+1)) +

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1),

in O \ B(ζk+1
h ).

The above relation and (6.16) imply

1

∆t

[
Uk+1 −

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)(
Uk ◦ X̂

)]
− ν∆Uk+1 + ∇P k+1

= ν[(Lk+1 − ∆)Uk+1] + [(∇− Gk+1)P k+1] + Fk+1 +
(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1),

in O \ B(ζk+1
h ), (6.25)

where X̂ is defined by (6.17)

By taking the inner product of the previous equation with ϕ ∈ K(ζk+1
h ) and by using

(6.18), we obtain

∫

O\B(ζk+1

h
)

(
1

∆t

[
Uk+1 − Ĵ

(
Uk ◦ X̂

)]
· ϕ

)
dy

−
∫

O\B(ζk+1

h
)

(
divSk+1 · ϕ

)
dy =

∫

O\B(ζk+1

h
)

Fk+1 · ϕ dy + A1 (6.26)

with

A1 =

∫

O\B(ζk+1

h
)

(
ν[(Lk+1 − ∆)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫

O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1)

)
· ϕ dy. (6.27)

Second Step: We transform the integral

∫

B(ζk+1

h
)

Uk+1 − Ĵ
(
Uk ◦ X̂

)

∆t
· ϕ dy.

by using equations (6.10)-(6.11). From (5.3) (with Y as in (6.15)), combined to (5.9) and
to (5.10) we obtain that:

JYk+1(x) = Id ∀x ∈ B(ζ(tk+1)). (6.28)

The above relation, (6.16) and (5.9) imply that for all y ∈ B(ζk+1
h ),

Uk+1(y) = u
(
y + ζ(tk+1) − ζk+1

h , tk+1

)
. (6.29)
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In particular, we have that

Uk+1(y) = ζ ′(tk+1) + ω(tk+1)(y − ζk+1
h )⊥ ∀y ∈ B(ζk+1

h ). (6.30)

Similarly, we have

Uk(y) = ζ ′(tk) + ω(tk)(y − ζk
h)

⊥ ∀y ∈ B(ζk
h). (6.31)

Relations (6.19) and (6.21) yield

(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
= Id , in B(ζk+1

h ). (6.32)

Simple calculations combined with relations (5.9), (6.20) yield

X̂(y) = Rθ(tk+1)−θ(tk)(y − ζk+1
h ) + ζk

h ∀y ∈ B(ζk+1
h ).

The above relation, (6.32) and (6.31) imply that for all y ∈ B(ζk+1
h ), we have that

Ĵ(Uk ◦ X̂)(y) = ζ ′(tk) + ω(tk)Rθ(tk+1)−θ(tk)(y − ζk+1
h )⊥.

By using (6.12), the previous equality can be written as

Ĵ(Uk ◦ X̂)(y) = ζ ′(tk) + ω(tk)(y − ζk+1
h )⊥

+ ∆t ω(tk)ω(tk+1)(y − ζk+1
h ) + ω(tk)Ek(y − ζk+1

h )⊥ ∀y ∈ B(ζk+1
h ).

By taking the inner product of the above relation with ϕ ∈ K(ζk+1
h ) and by integrating

on B(ζk+1
h ), we obtain that

∫

B(ζk+1

h
)

Ĵ(Uk ◦ X̂)(y) · ϕ dy = M lϕ · ζ ′(tk) + Jω(tk)ωϕ

+ ω(tk)

∫

B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy (6.33)

Relation (6.30) implies that, for all ϕ ∈ K(ζk+1
h ), we have

∫

B(ζk+1

h
)

Uk+1 · ϕ dy = M lϕ · ζ ′(tk+1) + Jω(tk+1)ωϕ.

The above equality and (6.33) yield that for all ϕ ∈ K(ζk+1
h ), we have

∫

B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

∆t
· ϕ dy = M lϕ · ζ ′(tk+1) − ζ ′(tk)

∆t

+ J
ω(tk+1) − ω(tk)

∆t
ωϕ − ω(tk)

∆t

∫

B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy.

27



The above relation and (6.10)-(6.11) imply that

∫

B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

∆t
· ϕ dy = −lϕ ·

∫

∂B(ζ(tk+1))

σk+1n dΓ

− ωϕ

∫

∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ + lϕ ·

∫

B(ζ(tk+1))

fk+1 dx

+ ωϕ

∫

B(ζ(tk+1))

(x − ζ(tk+1))
⊥ · fk+1(x) dx

+ lϕ · βk + ωϕγk −
ω(tk)

∆t

∫

B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy. (6.34)

On the other hand, by using relations (5.9), (5.10) and (6.28), we easily obtain that
∫

∂B(ζk+1

h
)

Sk+1n dΓ =

∫

∂B(ζ(tk+1))

σk+1n dΓ

and that
∫

∂B(ζk+1

h
)

(y − ζk+1
h )⊥ · Sk+1n dΓ =

∫

∂B(ζ(tk+1))

(y − ζ(tk+1))
⊥ · σk+1n dΓ.

The above relations and (6.34) yield that

∫

B(ζk+1

h
)

Uk+1 − Ĵ(Uk ◦ X̂)

∆t
· ϕ dy = −

∫

∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ

+

∫

B(ζk+1

h
)

Fk+1 · ϕ dy + lϕ · βk + ωϕγk −
ω(tk)

∆t

∫

B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy. (6.35)

Third Step: By integrating by parts, we have that

2ν

∫

O\B(ζk+1

h
)

D(Uk+1) : D(ϕ) dy −
∫

O\B(ζk+1

h
)

P k+1div(ϕ) dy

=

∫

∂B(ζk+1

h
)

(
Sk+1n

)
· ϕ dΓ −

∫

O\B(ζk+1

h
)

div(Sk+1) · ϕ dy. (6.36)

Summing (6.36), (6.35) and (6.26) yields (6.22) with

(Ak, ϕ) = (Fk+1 − fk+1
h , ϕ) + lϕ · βk + ωϕγk −

ω(tk)

∆t

∫

B(ζk+1

h
)

Ek(y − ζk+1
h )⊥ · ϕ dy

+

∫

O\B(ζk+1

h
)

(
ν[(Lk+1 − ∆)Uk+1] + [(∇− Gk+1)P k+1]

)
· ϕ dy

+

∫

O\B(ζk+1

h
)

(
JYk+1 ◦ Xk+1

)
(αk+1 ◦ Xk+1) · ϕ dy.

The above relation, combined with relation (3.7), Lemma 5.6, Lemma 5.7 and Lemma
6.1, imply the Proposition.
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6.3 Some results on characteristics.

In this subsection, we give some results on the functions Xk, X̂ and X
k

h
, that will be

used in the proof of the main result.

Lemma 6.3. There exists a positive constant C independent of h and k such that

‖Xk+1 − Xk‖L∞(O) 6 C
(
‖uk

h − Uk‖L2(O)∆t + |εk|
)
.

Proof. We denote by Λk (resp. Λk+1) the mapping defined by (5.2) with ζ1 = ζ(tk) and
ζ2 = ζk

h (resp. ζ1 = ζ(tk+1) and ζ2 = ζk+1
h ). Let ψk and ψk+1 be the solution of (5.3)

corresponding to the velocity fields Λk and Λk+1 respectively.
By using (5.3), we have that

(ψk+1 − ψk)(λ) =

∫ λ

0

Λk+1(ψk+1(µ)) − Λk(ψk(µ)) dµ.

Therefore, by Lemma 5.5, there exists a positive constant C such that for all λ ∈ [0, 1],
we have that

∣∣(ψk+1 − ψk)(λ)
∣∣ 6 ‖Λk+1 − Λk‖L∞(O) + C

∫ λ

0

∣∣(ψk+1(µ) − ψk(µ))
∣∣ dµ.

The above inequality and Gronwall’s lemma yield

∣∣(ψk+1 − ψk)(λ)
∣∣ 6 C‖Λk+1 − Λk‖L∞(O),

for all λ ∈ [0, 1]. In particular, for λ = 1, we have that

‖Xk+1 − Xk‖L∞(O) 6 C‖Λk+1 − Λk‖L∞(O). (6.37)

By using relation (5.2), there exists a positive constant C such that

‖Λk+1 − Λk‖L∞(O) 6 C|ζ(tk+1) − ζk+1
h − ζ(tk) + ζk

h|.

The above relation, combined with (3.2) and (6.7), yields

‖Λk+1 − Λk‖L∞(O) 6 C|uk
h(ζ

k
h) − u (ζ(tk), tk)|∆t + C|εk|. (6.38)

On the other hand, by (6.29), we have u (ζ(tk), tk) = Uk(ζk
h) and moreover uk

h − Uk ∈
K(ζk

h). Then, owing to (2.5), we readily check that

|uk
h(ζ

k
h) − Uk(ζk

h)| 6
1√
M

‖uk
h − Uk‖L2(O). (6.39)

Therefore, the above relation and (6.38) imply that

‖Λk+1 − Λk‖L∞(O) 6 C‖uk
h − Uk‖L2(O)∆t + C|εk|. (6.40)

Relations (6.37) and (6.40) yield the conclusion of the lemma.
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A similar estimate holds for the jacobian matrices JXk+1 and JXk . Since the proof of this
estimate is completely similar to the proof Lemma 6.3 we give below only its statement
and we skip the proof.

Lemma 6.4. There exists a positive constant C independent of k and h such that

‖JXk+1 − JXk‖L∞(O) 6 C
(
‖uk

h − Uk‖L2(O)∆t + |εk|
)
.

The functions X̂ and X
k

h
are close to the identity in the sense made precise below.

Lemma 6.5. The functions X̂ and X
k

h
defined by (6.17) and (3.4) satisfy the following

estimates:

‖X̂ − Id‖L2(O) 6 C
(
|εk| + ∆t‖Uk − uk

h‖L2(O) +
√

∆t‖δk‖L2(O×(tk,tk+1)) + ∆t
)

, (6.41)

‖X̂−X
k

h
‖L2(O) 6 C

(
|εk| + ∆t‖Uk − uk

h‖L2(O) +
√

∆t‖δk‖L2(O×(tk,tk+1)) + h∆t
)

. (6.42)

Proof. Let us define
ψ̂(t; tk+1,y) = Yk(ψ̃(t; tk+1,X

k+1(y))), (6.43)

where ψ̃ is defined by (2.6). Note that ψ̂(tk; tk+1,y) = X̂(y) for all y ∈ O.

We have that

d

dt
ψ̂(t; tk+1,y) = JYk(ψ̃(t; tk+1,X

k+1(y)))
d

dt
ψ̃(t; tk+1,X

k+1(y)).

By using (6.8) we obtain that

d

dt
ψ̂(t; tk+1,y) =

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
u

(
Xk

(
ψ̂(t; tk+1,y)

)
, tk

)]

+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
.

The above relation and (6.16) yield

d

dt
ψ̂(t; tk+1,y) = Uk(ψ̂(t; tk+1,y))

+
[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
. (6.44)

On the other hand, we have that

ψ̂(tk+1; tk+1,y) = Yk ◦ Xk+1(y). (6.45)

Therefore, by using (6.44) and (6.45), we get

X̂(y) − y = Yk ◦ Xk+1(y) − y −
∫ tk+1

tk

Uk(ψ̂(t; tk+1,y)) dt

−
∫ tk+1

tk

[
JYk ◦ Xk

]
(ψ̂(t; tk+1,y))

[
δk

(
t,Xk

(
ψ̂(t; tk+1,y)

))]
dt
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which yields

‖X̂ − Id‖L2(O) 6 ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

tk

∥∥∥Uk(ψ̂(s))
∥∥∥
L2(O)

ds + C
√

∆t‖δk‖L2(O×(tk,tk+1)). (6.46)

By Lemma 5.6, there exists a positive constant C such that

‖Yk ◦ Xk+1 − Id‖L2(O) 6 C‖Xk+1 − Xk‖L∞(O).

The above relation and Lemma 6.3 yield

‖Yk ◦ Xk+1 − Id‖L2(O) 6 C
(
∆t‖uk

h − Uk‖L2(O) + |εk|
)
. (6.47)

Relations (6.46) and (6.47), together with (3.8) and (6.16), imply

‖X̂ − Id‖L2(O) 6 C
(
∆t‖uk

h − Uk‖L2(O) + |εk|
)

+ C∆t +
√

∆t‖δk‖L2(O×(tk,tk+1)).

Therefore, we deduce (6.41).

Now we turn to the proof of (6.42): by using (3.3), (6.44) and (6.45), we obtain that

ψ̂(t; tk+1,y) − ψ
k

h
(t; tk+1,y) = Yk ◦ Xk+1(y) − y

−
∫ tk+1

t

(
Uk(ψ̂(s; tk+1,y)) − Puk

h(ψ
k

h
(s; tk+1,y))

)
ds

−
∫ tk+1

t

(JYk ◦ Xk)(ψ̂(s; tk+1,y))
[
δk

(
s,Xk

(
ψ̂(s; tk+1,y)

))]
ds

which yields

‖ψ̂(t) − ψ
k

h
(t)‖L2(O) 6 ‖Yk ◦ Xk+1 − Id‖L2(O)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h
(s))

∥∥∥
L2(O)

ds + C
√

∆t‖δk‖L2(O×(tk,tk+1)). (6.48)

Relations (6.48) and (6.47) imply

‖ψ̂(t) − ψ
k

h
(t)‖L2(O) 6 C

(
∆t‖uk

h − Uk‖L2(O) + |εk|
)

+

∫ tk+1

t

∥∥∥Uk(ψ̂(s)) − Puk
h(ψ

k

h
(s))

∥∥∥
L2(O)

ds + C
√

∆t‖δk‖L2(O×(tk,tk+1)).

By using (3.8) and Remark 3.1, we have that

‖ψ̂(t) − ψ
k

h
(t)‖L2(O) 6 C

(
∆t‖uk

h − Uk‖L2(O) + |εk| + ∆t‖Uk − Puk
h‖L2(O)

)

+ C

∫ tk+1

t

∥∥∥ψ̂(s) − ψ
k

h
(s)

∥∥∥
L2(O)

ds + C
√

∆t‖δk‖L2(O×(tk,tk+1)).
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Therefore, by Gronwall’s lemma, we get that

‖ψ̂(t) − ψ
k

h
(t)‖L2(O) 6 C

(
∆t‖uk

h − Uk‖L2(O) + |εk| + ∆t‖Uk − Puk
h‖L2(O)

+
√

∆t‖δk‖L2(O×(tk,tk+1))

)
.

In particular for t = tk, we obtain that

‖X̂ − X
k

h
‖L2(O) 6 C

(
∆t‖uk

h − Uk‖L2(O) + |εk| + ∆t‖Uk − Puk
h‖L2(O)

+
√

∆t‖δk‖L2(O×(tk,tk+1))

)
. (6.49)

Since P is an orthogonal projection in L2(O), we have that

‖Uk − Puk
h‖L2(O) 6 ‖Uk − uk

h‖L2(O) + ‖PUk − Uk‖L2(O). (6.50)

Now, since Uk ∈ H1
0(O) and div(Uk) = 0, there exists a stream function ψ ∈ H2(O)∩

H1
0 (O) of Uk, i.e. Uk = rot ψ. Let ψh be the Lagrange interpolated function of ψ on the

triangulation Th. We denote Ũk
h = rot ψh. Since Ũk

h ∈ Rh, we have that

‖PUk − Uk‖L2(O) 6 ‖Ũk
h − Uk‖L2(O) = ‖rot (ψ − ψh)‖L2(O)

6 Ch‖ψ‖H2(O) 6 Ch‖Uk‖H1(O).

The above equation and (6.49), (6.50) imply the result.

7 Proof of the main result.

We can now prove Theorem 3.2.
First Step. Assume that h ≤ C(∆t)2. We first show that if (3.10) holds and if

dist(B(ζk
h), ∂O) > 2η, dist(B(ζk+1

h ), ∂O) > 2η, (7.1)

then there exist two positive constants C0 and C1 independent of ∆t and h such that the
error ek

h = ‖Uk − uk
h‖L2(O) + |ζ(tk) − ζk

h| satisfies the following inequality

ek+1
h 6 ek

h(1 + C0∆t) + C0∆tβk
h (7.2)

where
N∑

k=0

βk
h 6 C1.

Let us remark that assumption (7.1) together with (3.10) allows us to perform the
change of variables defined in Section 5 and to define Uk, Uk+1 and P k+1 (see (6.16)).

By using (4.50), there exists (Uk+1
h , P k+1

h ) ∈ Kh(ζ
k+1
h ) × Mh(ζ

k+1
h ) such that

{
a

(
Uk+1 − Uk+1

h , ϕ
)

+ b
(
ϕ, P k+1 − P k+1

h

)
= 0 ∀ϕ ∈ Kh(ζ

k+1
h )

b
(
Uk+1 − Uk+1

h , q
)

= 0 ∀q ∈ Mh(ζ
k+1
h ).

(7.3)
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Substracting (7.3) and (3.5) from (6.22) yields

1

∆t

(
Uk+1 − uk+1

h , ϕ
)

+ a(Uk+1
h − uk+1

h , ϕ) + b(ϕ, P k+1
h − pk+1

h )

=
1

∆t

(
Ĵ

(
Uk ◦ X̂

)
− uk

h ◦ X
k

h
,ϕ

)
+ (Ak,ϕ) ∀ϕ ∈ K(ζk+1

h ),

b(Uk+1
h − uk+1

h , q) = 0 ∀q ∈ Mh(ζ
k+1
h ).

In particular, for ϕ = Uk+1
h − uk+1

h and q = P k+1
h − pk+1

h , we easily obtain that

∥∥Uk+1
h − uk+1

h

∥∥
L2(O)

6

∥∥∥Ĵ
(
Uk ◦ X̂

)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

+∆t‖Ak‖L2(O) +
∥∥Uk+1 − Uk+1

h

∥∥
L2(O)

. (7.4)

On the other hand, since

Ĵ =
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
,

we have that∥∥∥Ĵ
(
Uk ◦ X̂

)
− uk

h ◦ X
k

h

∥∥∥
L2(O)

6 C
∥∥∥
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X̂ − Uk ◦ X

k

h

∥∥∥
L2(O)

+
∥∥∥Uk ◦ X

k

h
− uk

h ◦ X
k

h

∥∥∥
L2(O)

. (7.5)

Since
(
JYk+1 ◦ Xk+1

)
JXk+1 = Id , we infer from Lemma 5.6 that

∥∥∥
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

6 C‖X̂ − Id‖L2(O) |ζ(tk) − ζk
h|

+C‖JXk − JXk+1‖L2(O).

By using Lemmae 6.4, 6.5 and the above inequality, we obtain that
∥∥∥
(
JYk+1 ◦ Xk+1

) (
JXk ◦ X̂

)
− Id

∥∥∥
L2(O)

6 C
(
∆t|ζ(tk) − ζk

h|

+ ∆t‖uk
h − Uk‖L2(O) +

√
∆t‖δk‖L2(O×(tk,tk+1)) + |εk|

)
. (7.6)

By using (3.8) and Lemma 5.6, we easily check that

‖Uk ◦ X̂ − Uk ◦ X
k

h
‖L2(O) 6 C‖X̂ − X

k

h
‖L2(O).

The above inequality, relations (7.4), (7.5), (7.6), Lemma 6.5 and the fact that detJ
X

k
h

= 1

imply that

‖Uk+1
h − uk+1

h ‖L2(O) 6 C
(
∆t|ζ(tk) − ζk

h| + ∆t‖uk
h − Uk‖L2(O)

+
√

∆t‖δk‖L2(O×(tk,tk+1)) + |εk| + h∆t
)

+ ‖Uk − uk
h‖L2(O) + ∆t‖Ak‖L2(O) + ‖Uk+1 − Uk+1

h ‖L2(O). (7.7)
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By using Lemma 4.4, Proposition 6.2 and Lemma 6.1, we have the following inequalities

‖Uk+1 − Uk+1
h ‖L2(O) 6 Ch,

‖Ak‖L2(O) 6 C
(
|ζ(tk+1) − ζk+1

h | + h + ∆t + C
√

∆t

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
,

‖δk‖L2(O×(tk,tk+1)) 6 C∆t

∥∥∥∥
∂u

∂t

∥∥∥∥
L2(O×(tk,tk+1))

,

|εk| 6 C (∆t)2 .

The above inequalities and (7.7) yield that

‖Uk+1 − uk+1
h ‖L2(O) 6 ‖Uk − uk

h‖L2(O) + C
(

(∆t)2 + h∆t + h

+ ∆t|ζ(tk+1) − ζk+1
h | + ∆t‖Uk − uk

h‖L2(O)

+ (∆t)3/2

∥∥∥∥
∂u

∂t

∥∥∥∥
L2(O×(tk,tk+1))

+ (∆t)3/2

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
. (7.8)

On the other hand, (3.2), (6.7), (6.31) and (6.39) imply that

|ζ(tk+1) − ζk+1
h | 6 |ζ(tk) − ζk

h| + ∆t|uk
h(ζ

k
h) − u (ζ(tk), tk)| + |εk|

6 |ζ(tk) − ζk
h| + C∆t‖uk

h − Uk‖L2(O) + |εk|. (7.9)

Combining (7.8) and (7.9), we obtain that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |
6 (1 + C∆t)

(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C
(
h + (∆t)2 + h∆t + (∆t)3/2

∥∥∥∥
∂u

∂t

∥∥∥∥
L2(O×(tk,tk+1))

+ (∆t)3/2

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
L2(O×(tk,tk+1))

)
.

The above inequality and the hypothesis h 6 C (∆t)2 imply the existence of a positive
constant C0 such that

‖Uk+1 − uk+1
h ‖L2(O) + |ζ(tk+1) − ζk+1

h |
6 (1 + C0∆t)

(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C0∆t

(
∆t +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(tk,tk+1))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
,

which is exactly (7.2).

Second Step. We show that if ∆t is small enough, then the error ek
h = ‖Uk − uk

h‖L2(O) +

|ζ(tk)− ζk
h| satisfies ek

h 6 C1∆t with a constant C1 independent of k, ∆t and h. This fact
implies, in particular, that (7.1) holds.
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Define

C1 = C0 exp (C0T )

(∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(0,T ))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,T ))

)
+ exp (C0T ).

It can be easily checked that

(1 + C0∆t)n C0

(∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(0,T ))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,T ))

)

+ (1 + C0∆t)n − 1 6 C1 ∀n ∈ {0, . . . , N}.

Moreover, there exists a positive constant C2 such that

‖Uk‖L2(O) 6 C2.

Let N0 ∈ N be such that (2C1 + C2)∆t < η, for all N > N0. We next prove by induction
over k that, for N > N0 and for k ∈ {0, . . . , N} we have

|ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) 6

[
(1 + C0∆t)k − 1

+ C0 (1 + C0∆t)k

(∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(0,tk))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,tk))

)]
∆t. (7.10)

The relation (7.10) is true for k = 0. Suppose that we have shown (7.10) for a given
k > 0. Then, we deduce that

|ζ(tk) − ζk
h| 6 C1∆t < η, (7.11)

and therefore, by using (3.10), we have that dist(B(ζk
h), ∂O) > 2η.

By using (3.2) and (3.10), we also have that

|ζk+1
h − ζk

h| 6
1√
π

(
‖Uk − uk

h‖L2(O) + ‖Uk‖L2(O)

)
∆t

6
C1 + C2√

π
∆t.

The above relation, the fact that (2C1+C2)∆t < η and (7.11) imply that dist(B(ζk+1
h ), ∂O) >

2η.
Thus, we can apply the first step of the proof to obtain that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O)

6 (1 + C0∆t)
(
|ζ(tk) − ζk

h| + ‖uk
h − Uk‖L2(O)

)

+ C0∆t

(
∆t +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(tk,tk+1))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
.
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The above relation and (7.10) imply that

|ζ(tk+1) − ζk+1
h | + ‖uk+1

h − Uk+1‖L2(O) 6 (1 + C0∆t)[(1 + C0∆t)k − 1]∆t

+ C0(1 + C0∆t)k+1

(∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(0,tk))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(0,tk))

)
∆t

+ C0∆t

(
∆t +

∥∥∥∥
∂u

∂t

∥∥∥∥
2

L2(O×(tk,tk+1))

+

∥∥∥∥
d2

dt2
[u ◦ ψ̃]

∥∥∥∥
2

L2(O×(tk,tk+1))

)
,

which implies (7.10) for k + 1.

Third Step. From the previous steps we conclude that if ∆t is small enough and if
h 6 C(∆t)2 then

|ζ(tk) − ζk
h| + ‖uk

h − Uk‖L2(O) 6 C1∆t ∀ k ∈ {0, . . . , N}.
The above relation, Lemma 5.6, (3.8) and Lemma 4.4 imply that if ∆t is small enough
and if h 6 C(∆t)2 then

|ζ(tk) − ζk
h| + ‖uk

h − u(tk)‖L2(O) 6 C∆t ∀ k ∈ {0, . . . , N},
which is the conclusion of the theorem. ¤

8 Concluding remarks

We implemented the numerical method we proposed and several numerical tests have
been performed. Let us briefly describe the results obtained in the case of a rigid ball
falling vertically under the action of a vertical force oriented downwards. At instant t = 0
the velocity field in the fluids and in the solid is supposed to vanish.

We use a mesh with 1432 triangles and 752 vertices (see Fig. 2 below).

Far from the ball the space discretization parameter is h1 ≈ 0.57 whereas in the neigh-
borhood of the ball it is given by h2 ≈ 0.12 we choose the time step ∆t = 0.1 Moreover,
we choose the radius of the ball equal to 0.3, the viscosity µ = 1 and the downwards force
of intensity equal to one (all quantities are given in International System (IS) units). In
Figure 3 we represented the configuration of the system for k = 460 (corresponding to
t = 46.0).

We repeated the calculation twice by dividing each the mesh size by two (this means
that each triangle was each time divided in four smaller triangles). More precisely, we
used the meshes described in the table below.

h Triangles Vertices CPU Time

Mesh 1 0.12 1432 752 3 hours
Mesh 2 0.06 5728 2935 11 hours
Mesh 3 0.03 22912 11597 8 days

The last column represents the time used by a Pentium IV computer with a 2.4 GHz CPU
clock to achieve the calculation.

In Figure 4 we represented the height of the center of the ball versus the time t for the
different meshes.

36



Figure 2: Initial position and mesh

k=460,   t=46.0,   Vmax=0.021087

Figure 3: Position and velocity field at time t = 46.0
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