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MECHANICAL TRANSFORMATIONS AND 
DISCONTINUITIES ALONG A MOVING SURF ACE 

RACHEL-MARIE PRADEILLES-DUVALt and CLAUDE STOLZt 

Laboratoire de Mecanique des Solides, Ecole Polytechnique, 91128 Palaiseau Cedex-France 

Partial damage 1s considered m this paper. It 1s defined as a transformation of mechanical properties 
between two materials along a surface, in elasticity or anelastic1ty. The transformat10n is controlled by a 
generalized energy criterion of the Griffith type. The equilibrium state of the structure, the total dissipation 
with increasing loading and the associated rate boundary value problem are studied within the framework 
of generalized standard materials. A global formulation of the rate boundary value problem allows us to 
characterize the actual equilibrium state assumed to be known. Finally, the condit10n of stability and the 
possibility of bifurcation are given, as are applications to simple composite structures. 

1. INTRODUCTION

In the recent past, the propagation of damage has been studied in connection with 
fracture mechanics. Different approaches based on macroscopic or microscopic 
description of mechanical degradation properties have been proposed. 

Because of the loading, damage in continuum mechanics can be induced by the 
initiation and growth of micro-cracks and micro-cavities. According to empirical 
descriptions based on the concept of effective stress in the sense of Kachanov, many 
works describe damage with macroscopic parameters, in the context of a formalism 
similar to that used in plasticity (Dragon and Mroz, 1979; Lemaitre and Chaboche, 
1985). 

Several papers have also dealt with the relation between microscopic and macro­
scopic behavior. These descriptions, which are based on the evolution of microscopic 
properties, propose to take the growth of pores or micro-cracks into account, through 
the idea that when some threshold value of stress, strain or embedded energy is 
reached, the material can not support further tensile loading. Then, a connection with 
fracture mechanics can be made in an asymptotic sense (Bui and Ehrlacher, 1980). 
Variational formulations were performed to describe the evolution of the surface 
between the sound and damaged materials (Bui et al., 1981 ). Whatever the chosen
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criterion may be, among other problems, the evolution of the structure is studied. 
Some applications have been attempted for particular geometries of the initial 
defect and loading, including the study of stability of the response (Dems and Mroz, 
1985). 

In previous studies, two mechanisms were considered. The first involves a volume 
description of damage, the second is characterized by the evolution of a moving 
interface along which mechanical transformation occurs. This paper is concerned 
mostly with the latter description, but connections with the first approach will be 
explored. It turns out that the relationships between the discontinuities of mechanical 
fields give us the whole knowledge of the interface behavior. 

In the following development, partial localized damage will be considered, after the 
discussion of the general features of the model. At each time, two materials coexist in 
the structure, and the structure is heterogeneous. This study is concerned with the 
motion of the existing interface which separates the two phases. It is a perfect one. 
The emergence of the damaged material when the entire body is undamaged is not 
considered here. The aim of this paper is slightly different from the study of the 
nucleation process proposed recently by Lusk (1994). 

The equilibrium state is described using the stationarity of potential energy. When 
a threshold is reached, one material changes into another at the interface, which 
consequently becomes a moving surface along which the mechanical fields exhibit 
discontinuities. 

The conservation law of the total energy gives us the expression of the global 
dissipation appearing in the structure when the loading increases. It is related to the 
propagation of the interface and it yields the definition of the energy release rate 
associated with the transformation. Assuming that the phase transformation is gov­
erned by a generalized Griffith's energy criterion, the rate boundary value problem 
must be solved, taking into account the coupling between the mechanical behavior and 
the moving interface. The local equations are written first, then a global formulation is 
obtained, which is related to a variational inequality. 

Even if the local behavior is stable, the study of the existence and the uniqueness 
of the response to a prescribed loading path must be performed, in a global manner, 
with the help of the variational formulation. Those conclusions provide the charac­
teristics of the actual equilibrium state. The stability and the bifurcation analysis 
along a path of equilibrium are discussed via an appropriate extension of the analysis 
of Nguyen (1984), as proposed in Pradeilles and Stolz (1991), and more recently in 
Pradeilles-Duval (1992). 

Some applications are then discussed, in which the influence of the interface 
geometry is emphasized. It is to be noticed that a density of interfacial energy has an 
influence on the stability (Nguyen et al., 1989).

The case of a composite spheres assemblage where such an irreversible process 
occurs between the core and the shell is then analyzed. This description shows that it 
would be necessary to study the stability of the overall behavior when a homo­
genization procedure is performed in nonlinear mechanics, even if the relation between 
local and overall quantities can be performed in a general manner, thanks to some 
localization process (Bui et al., 1982; Pradeilles and Stolz, 1992; Stolz, 1983; Suquet
et al., 1983).
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Fig. l. General features of the problem. 

2. SOME GENERAL FEATURES

Let !11 denote the domain, composed of two distinct volumes !11 and !12 which 
are occupied by two materials with different mechanical characteristics. The perfect 
interface between them is assumed to be a regular surface and is denoted by C. 
Material 1 changes into material 2, along r1, by an irreversible process. Hence, f1 
moves with a normal velocity </J, positive along C. The external surface 0!11 is com­
posed of two parts oflu and o!1T on which the displacements A.ud and the loading A.Td 
are prescribed, respectively, in terms of a loading parameter A. (see Fig. 1). 

The subscript i is used to denote material i. The actual state is characterized by the 
displacement field u. It is associated to the strain field i; = *(Vu+ Vu1); the internal
variables a (which could represent plastic deformation, a volume damage parameter 
etc.) and the position of the interface r1• The total potential energy of the structure 
has the following form : 

where w, denotes the density of the free energy in the domain n, and is a function 
of a and of i:. rr denotes the stress tensor field that is thermodynamically associated 
with i:rr = owrf oi:, while A is the thermodynamic force associated with a: 
A = -ow,/oa. 

It is important to point out that the potential energy represents the global free 
energy in a thermodynamic description; then the position of the interface rl becomes 
an internal variable. 
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 In what follows, we adopt the following notations: 

• n is the vector normal to 8.Q,, exterior to .Q,;
• v is the vector normal to f'" external to .Q1; the pair ('r, q) denotes the orthonormal

right-handed basis off', such that -r A 'I= v;
• l[ f] lr is the jump off across f'r, l[ f]lr = f; -fz.

2.1. Characterization of the equilibrium state 

Assuming that, at time t, the spatial distribution of the two phases is known, the 
displacement field u is the field that solves the problem defined on a heterogeneous 
elastic structure by the stationarity of the potential energy : 

This means : 

£P0\ 0bU = 0, 't/ bU kinematically admissible With 0 On QQu·

0 = ± r a : v bu dw -f .nd. bu da,r-IJ� �T 
(2) 

V bu differentiable in .Q1 and .Q2, and bu is continuous across f', and bu = 0 on 8.Qu· 
This variational problem can also be described by the following set of local equa­

tions: 

• local constitutive relation

• equilibrium equations

ow 
a= ­

oc;,

div a = 0 over .Q,, 

l[a · v]lr = 0 on f',, 

a·n = A.Td on o!lr. 

• kinematic relations on admissible displacements

l[u]lr = 0 on f',,

• compatibility relation

2e =Vu'+ Vu. 

(3) 

(4) 

(5) 

(6) 

The condition of a perfect interface yields the continuity of the displacement [equation 
(5)] and of the stress vector [equation (4)] on f'r. Under the assumption of elastic 
stability, the previous problem has a unique solution that determines the actual 
equilibrium state. 
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Fig. 2. Propagation of the interfacer,. 

3. QUASI-STATIC EVOLUTION

Let us consider any positive loading rate 1 The inertia effects are neglected. Some
evolutions are induced in the mechanical quantities and the possible propagation of 
the interface must be studied according to a given evolution law, chosen in a manner 
that is appropriate to describe the irreversibility of the transformation. 

First, the conservation law of the total energy leads to the definition of the total 
dissipation. That shows the important role of the energy release rate linked with the 
propagation of the interface r,. The associated evolution law is given next. Finally, 
in order to characterize this evolution in terms of stability of the actual equilibrium 
state and bifurcations, the rate boundary value problem is formulated through a 
global formulation. 

3.1 .  Evolution of the interface 

Any variation of }. can create a propagation of r1, which is characterized by the 
normal velocity </J, assumed to be positive (Fig. 2). During the propagation of the 
interface, perfect contact between the two materials is assumed to be maintained. 
Thus, using the definition given in Appendix A, the compatibility equation of Had­
amard takes the following form : 

Di/>(l[u]lr) = l[vJlr-</Jl[Vu·vJlr = 0. (7) 

In the above formula, v denotes the velocity field v = (ou/ot). More generally, the rate 
of any quantity f is defined by j = (of/ot). 

Because the evolution is assumed to proceed without a shock, every state during 
the quasi-static evolution is an equilibrium state. Thus, the continuity of the stress 
vector across r, is maintained when the front moves. Thus, the second Hadamard's 
relation is obtained. In the three-dimensional case, it is written: 

Di/>(l[a·v]!r) = l[O-·v]lr+divr,(l[a<f.>Jlr) = 0, 

where divr,U) = div (f)-v · Vf · v = t' • Vf· t'+'I · Vf · '1· 
In the two-dimensional case, one obtains: 

(8) 
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. oJ(a • T</>]Jr 
Dq,(J[a · v]Jr) = J(a · v]lr+ os

= 0. 

3.2. Analysis of the total dissipation 

(9) 

Taking into account the conservation law for the total energy during the evolution 
of the system, the total dissipation associated with the loading rate J. is :

(10) 

where P denotes £P01 at the equilibrium state. In this case, using the properties of the
equilibrium solution and Hadamard's relations, the total dissipation may be divided 
into two terms such that 

D = ,t, t,Aadw+ L G<j>da 
= ,t L,Aadw+ L (i[w]lr-(v·a)·J[Vu·v]Jr)</>da

The first term is the volume dissipation due to the evolution of internal variables (it 
could be plastic dissipation, etc. ). The second is due to the transformation between 
the two materials; it is a surface density defined along r1 and linearly dependent on 
the normal velocity <j>. Two quantities appear here : the energy release rate G which 
corresponds to the thermodynamic force associated with the normal velocity of the 
interface and the thermodynamic force A associated with the internal variables. The 
energy release rate of the propagation of the interface is defined by: 

G = J[w]lr-(v·a)·J[Vu·v]lr· 

This quantity has an analogous form to the driving traction acting on a surface of 
strain discontinuity proposed by Abeyaratne and Knowles (1990). The criteria which 
guide the evolution of the internal variables and of the interface may be written in 
terms of these quantities. 

3.3. Criterion and evolution law 

To study the evolution of the system, complementary relations must be considered 
to describe irreversibility. In this paper, an energy criterion is chosen as a generalized 
form of the well-known theory of Griffith. We assume: 

• if g ( G (s)) < 0, then no propagation can occur; thus </>(s) = 0;
• if g (G (s)) = 0, then propagation can occur and </>(s) � 0.
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Here s denotes a point on r1• This is a local energy criterion. The function g ( G) is 
assumed to be convex and associated with the set C ( G), defined by : 

C(G) = {G such that g (G),,;; OJ. 

Thus. at each equilibrium state, the interface r1 can be divided into two subsets where 
the propagation is either possible or not. They are denoted by rrupt and r,;rrurt· 
respectively, and are defined by: 

Curt= is Er, such thatg (G(s)) = O} and C/Cupt = {sEr1 such thatg (G (s)) < 0). 

In the same spirit. the evolution criterion of the internal variable is written as 
follows. 

• Ifj;(A(x)) < 0, then there is no evolution of 1:1, at the point x, so &(x) = 0.
• If f,(A(x)) = 0, then the evolution of er: is possible at x, so &(x) # 0.

It is highlighted that the criteria in the different materials can be different when they 
are associated with different convex sets: 

C,(A) = {A, such that_f,(A) ,,;; 0}.

An example of useful sets is: 

n,P = {x EO,, such thatf,(A) = O}.

3.4. Normality law 

The previous assumptions (Section 3.3) ensure that the framework of generalized 
standard materials (Nguyen, 1984) can be used. Then the rate of the internal variable 
and the normal velocity of the interface are prescribed by the normality flow rules 
associated with the criteria given previously. Thus, one is lead to the definition of 
Lagrangian multipliers c and µ which verify the following relations : 

on r,, 

on n,, 

� 

}
</J(s) = c (s) 

oG 
with g ( G (s))c(s) = 0 and c(s) ?! 0; 

( 11) 

&(x) = µ(x) :� under the assumptionf,(A(x))µ(x) = 0 andµ?! 0.

During the transformation, characterized by the normal velocity¢ of the interface. 
the criterion must be satisfied. It follows that the consistency equation 

must be satisfied. It is necessary to study the evolution of the energy release rate 
according to¢. By using Hadamard's relations and other properties of the mechanical 
fields along 11, we can derive the following formulas : 
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Dq,(G) =  l[i-· er]lr · (Vv1·i-)-(v·0-2) · l[Vu · v] · lr-l[Ati]lr+ cf>l[A(Voc · v)]lr 
-¢{ ( T. 0�2 ) -1[vu. v]lr-(T. er1). ol[V;; v]lr + l[er: (V e. v)-(v. er). (VVu. v). v)]lr) .

in the 20 case, and 

Dq,(G) = l[i-·er]lr·(Vv1 ·i-)+l[rrer]lr·(Vv1 "'1)-(v·0-2)·l[Vu·v]lr-l[Ati]lr 
-¢{ divr,er2 • i[Vu · v]lr-(T · er1) · Vl[Vu · v]lr • T-('1 · er1) · Vl[Vu · v]lr · 11} 
-cf>{l[er :(Ve· v)-(v ·er)· (VVu · v) · v)]lr-l[A(Voc · v)]lr }, 

in the 30 case. 

3.5. Formulation of the rate boundary value problem during a quasi-static evolution 

During the quasi-static evolution of the system, the loading is increased step by 
step so that each state of the body is in equilibrium. At a given equilibrium state, we 
study the evolution of the system associated with some prescribed loading rate. The 
velocity, v, the Lagrangian multipliers associated with the rate of internal variables, 
µ, and the normal velocity of the interface, c, need to be determined. The velocity v is 
a solution of the variational problem : 

Find v continuous and differentiable in n , and n2, 

v = �ud on anu, 

}I Mr = cf>l[Vu.v]lr on r,,

SUCh that :
t 
(£P0\0bU) = 0, \fbU kinematically admissible With 0 On anu-

The latter relation means that : 

(12) 

I f -diva·Judw+ f j[v·a·<5u]lr-l[er: V<5uJlr¢ da+ f (n·a-�Td)· <5u da = 0,• - 1 J� Jr 1nT 
for every bu kinematically admissible with 0 on anu. 

In order to determine µ and c, (12) must be completed by the evolution laws due to 
the normality flow rules associated with the criteria of anelasticity and of propagation of 
r,. 

3.5.1. Local formulation. The rate boundary value problem may also be written in 
terms of a system of local equations defined on the actual geometry of the system. Find 
(v, c, µ) such that: 

• equilibrium equations :

div a = 0 in n,, (13) 

• constitutive law :
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or 

[. A'] "[· of,] . ,.... <J,- = w, e,µ 
oA 

In��,, 

• compatibility relation :

• boundary conditions :

on r,. 

e = �(Vv + Vv') in !l,,

on o!lu, v = �ud, 
on O!lr, iJ • n = �Tc1, 

(Jg 
l[v]lr-c 

oG l[Vu ·v]lr = 0,

l[iJ·v]lr+divr, (l[<J]lrc :�) = 0, 

• local evolution law on the interface :

og D,p(G)(c'(s)-c(s)) 
(JG

;::;; 0,

where C (s) ?;:: 0 and \::/ c' (s) ?;:: 0 on r rupt and C (s) = c' (s) = 0 if SE r,/ r  rupt• 
. a1; A(µ'(x)-µ(x)) 

oA
;::;; 0, 

where µ(x):;;::: 0 and\::/ µ'(x) ?::: 0 in !l,P andµ=µ' = 0 in !l1/{!l1P u !l2P}.

(14) 

( 15) 

(16) 

( 17) 

(18) 

The previous set of equations defines a problem of heterogeneous elasticity with respect 
to v with internal constraints due to the anelasticity and propagation of r, given by(µ, c). 

It is highlighted that the non-homogeneous boundary conditions on r, are linearly 
dependent on c. The structure studied here is the same used in the solution of the 
equilibrium state in Section 2.1. 

3.5.2 Global formulation. In order to perform the solution of the rate boundary value 
problem from the point of view of existence and uniqueness of the solution which means 
stability of the actual equilibrium state and non-bifurcation in the evolution, a global 
formulation is developed next. It is shown that the solution of the previous problem is 
the same as that of the following one : 

Find (v,µ,c) EK such that:

M M M I I 
ov 

(v' -v)+ oµ 
(µ' -µ)+ oc 

(c' -c)?;:: 0, V(v , µ ,  c)EK, ( 19) 
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where Kand Fare defined as follows. K is the set of fields (v, µ, c) satisfying: 

e V is differentiable in QI and 02, Satisfies boundary Conditions On 0Qu and the first
Hadamard's relation on C 

Og 
l[v]lr = oG 

cl[Vu · v]lr;

e µ is admissible, i.e. µ � 0 in Q,p and µ = 0 in Q,/ { Q Ip U Q2p} ; 
• c is admissible with generalized Griffith's criterion, i.e. c � 0 on rrupt and c = 0 on 

r,;r rupt· 
• The function Fis given in the 20 case by :

F(v,µ,c)) = .t t,�[e,µ :�Jw;'[e,µ :�J dw-L1/ · Td· v da

-L :�c {l[T·cr]lr·(Vv1 "T)- 1[ Aµ :�JIJda

r ('2 og { 
+ Jr 

2 
oG 

l[cr:(Ve · v)-(v · cr) · (VVu·v) · v)-A(Vo:·v)]lr

( ocr,) ol[Vu · v]lr} og 
+ T" 

Os- l[Vu · v]lr-(T · cr2) · Os oG
da.

• In the general 30 case, it takes the form : 

. � r l [· cf;] "[' of,] 
F(v, µ, c, ).) = 

1
�1 Jn , "2 e, µ oA w, e, µ oA 

dw

-f �T" · v da- r :�c {l[T·cr]lr"(Vv1 °T)
<'Or Jr 

} og 
+ l[cr: (Ve· v)-(v· er) "(VVu · v) · v)Jlr-l[A(Va · v)Jlr oG

da.

(20) 

(21) 

The proof in the plane case is given in Appendix B. It is worth noticing that, by 
using the global formulation, we get an additional inequality on the interface r,. It 
shows that propagation of the interface and evolution of the internal variable in any 
area in the neighborhood of the interface cannot occur simultaneously. 

When material 2 is totally damaged (w2 = 0), the previous analysis was given in 
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Bui and Ehrlacher (1980). The global formulation of the rate boundary value problem 
[equation (19)] when the damage is complete leads to the following quadratic func­
tional, similar to the result given in Bui et al. (1981) and Stolz (1983). 

3.5.3 Dual formulation. In what follows. a dual formulation is given for the general 
case. The plane strain case can easily be deduced from the discussion that follows. 

Given the equilibrium state in terms of stress tensor (J, internal variable a and 
position of the interface r,, the complementary potential energy is called 11·,*and we 
have the following relations : 

cw* ?w* f. = � and - A = � . 
(l(J ('(/, 

The rate boundary value problem to be considered is the determination of (<T, µ, c) in 
the set of admissible fields L, defined by :

• <Tis such that div <T = 0 in n1 u n2• It is admissible with boundary conditions on
?!17. : <T. n = ATd and it satisfies the second Hadamard's relation on r,: 
l[<T. v]lr + divr, l[(J (og/cG )c]lr = 0;

• c and µ are admissible with the normality laws previously introduced, i.e.: c � 0
on rrupt; c = 0 on r,;rrupt; fl� 0 in nip u n2p; fl= 0 in n,;{n1p u n2p]. 

Let H denote the following quadratic function of elements of L. 

H((J, µ, c),) = -1t1 L �[a.µ:� A Jw�"[(J.µ ;�J dw

-f Au"·(&·n)da 
,1n/.I 

-(t · (J2) · Vl[Vu · v]lr · t-('1 · (J1) • Vl[Vu · v]lr ·'I 

cg 
+ l[(J ·(Ve· v)-(v · (J) • (VVu · v) · v]lr-l[AVa · v]lr} (lG d

a. (22)
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Then the variational inequality becomes: find (a,µ, c) EL such that 

an an an 
M (ct' -a)+ aµ

(µ' -µ)+&(c' -c) � 0, V (a',µ', c')eL, (23) 

which is equivalent to 

+ t {l[v]lr-</>l[v· Vu] Ir}· (o-;-0-2) · v) da- f/ l[A :� (µ'-µ)] I
r 
da

+ t:� (c' -c)Dq,(G) da.

In the derivation of the above relations, the properties of a, c and µ have been used. 
Finally, the solution of (23) gives the local boundary conditions, and the evolution 
relations on C in the plastic domain n,r The additional relation on C which deals 
with the possibility of simultaneous propagation and evolution of the internal variable 
is also obtained. 

3.5.4 Remarks. It is noted that the values of F and n for the solutions to the rate 
boundary value problem are opposite, because if (v, µ, c) and (a,µ, c) are the solutions 
of ( 19) and (23), respectively, then a and e are related by the constitutive laws. So, it
follows that: 

F(v,µ,c).)+n(a,µ,c)) =.ti t, rt : e(v) dw 

+I �ud·rt·nda-I ATd·vda Jan. J anr 
-t </>{l[v·Vu]lr·(d"2·v)+l[t"a]lr·(Vv1 "t")
+l[11·a]lr·(Vv1 ·11)}da 

= 0. 

This property leads to a mixed formulation via the potential I: 

l(v,a,µ,c,A) = F(v,µ,c))+n(a,µ,c,A). 

The solution of the rate boundary value problem is a stationary point of I. 

4. CHARACTERIZATION OF THE ACTUAL STATE

As it was underlined before, at any given loading rate, any propagation normal 
velocity and any rate of internal variables (here defined by�. c and µ), there exists a 
displacement velocity, denoted by v(c, µ, �), which is the solution to an elasticity 
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problem with given initial stresses. Thus, denoting the value of F when v = v(c, µ, �) 
by W(c,µ),), the above inequality can be written in the following form. 

Find (µ, c) in K such that

aw , aw , , , aµ (µ - µ)+Tc (c -c)-;::O,V (µ,c )EK. (24) 

K represents the set of admissible fields (µ, c) which allow an evolution of the internal 
variable and a propagation of the interface when the associated criterion is satisfied. 
Thus these fields are such that 

c = 0 on r,/rrupt· 
The existence and the uniqueness of the solution of the rate boundary value problem 
are dependent on the existence and the uniqueness of the solution of this latter 
inequality. 

4.1 Criterion of existence-stability of the actual state 

As in Nguyen and Stolz (1986), there exists a solution to the rate boundary value 
problem from the actual equilibrium state, whatever may be the increasing of the 
loading parameter, which means that the actual equilibrium state is stable if 

a1w a2w 
bc-0 c5c+c5µ-0 c5µ > 0 ,  V(Jµ, bc)E V*, 

ac aw 

where V* is the previous set K without the trivial element defined by c and µ equal to 
0 on rl and nl respectively.

4.2 Uniqueness and non-bifurcation criterion 

The solution to the rate problem is unique, i.e. the actual equilibrium state is not a 
bifurcation point if 

a2w a2w _ 
c5c --o c5c+c5µ--o c5µ > 0, V(c5µ, c5c)E V0*, 

ac ()µ-

where V0* is the vector space generated by K without the trivial element defined
above. 

5. APPLICATIONS

In order to predict the existence and the uniqueness of a solution to the rate 
boundary value problem from the actual known equilibrium state, some simple 
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•• 
Fig. 3. Damaged composite sphere. 

structures are now analyzed. Composite spheres are studied. They are constituted by 
a core with the damaged material (material 2) and a shell with the sound material 
(material 1 ). The loading is given through a prescribed displacement on the external 
surface, or a prescribed force. Both materials are assumed to be isotropic and linearly 
elastic. Their elastic characteristics are denoted by (£,, v,) with i E {1, 2}. Material l 
transforms irreversibly into material 2 along r,, with the generalized Griffith's criterion 
(see Section 3.3): 

• if G (s) < Ge then there is no propagation of r, at the point s; </J(s) = 0;
• if G (s) = Ge then the propagation may occur at the point s and </J(s) � 0.

5.1. Elastic composite spheres under radial extension 

The system is made of a sphere whose external radius is denoted by R. The core is 
constituted by material 2, and the shell between the interface and the external volume 
is made of the sound material. The interface radius is denoted by a and the volume 
concentration of the damaged material is c = (a3 / R3). Let cm,1 represent the initial 
volume concentration of material 2. The loading applied on the external surface is a 
displacement along the radial vector (see Fig. 3). Only spherical propagations are 
considered here. 

The materials in the composite sphere are assumed to be isotropic and linearly 
elastic. Their mechanical properties are the shear moduli, denoted by µ1 and µ2, and 
the bulk moduli, denoted by k1 and k2, where k1 is assumed to be greater than k2• 

The displacement vectors at the equilibrium state are given by Appendix C. The 
energy release rate is uniform on the interface r, and is given by: 

As the loading increases, three stages can be observed. 

• First, when the loading is smaller than the critical value ue(cmi1), i.e .
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the threshold is not reached and the interface can not propagate. The external behavior 
is given by: 

3uk1(3k2+4µi)-4µ,(k1 -k2)Cmit u 
P = a,,(r = R) = R 3k2+4µ1 +3c\m,(k1 -k2) 

= 3k1111'R.

• When the loading reaches the critical value uc(cmll) , the energy release rate reaches
the threshold value Ge. The interface can propagate under the condition that the
criterion remains verified. So, it gives us the link between the velocity of the
interface a and the loading rate zi. The quadratic function that enables us to
characterize the evolution of the structure is given by:

I _ " _ 18rra211\;�(k1 -k2)
:zaW,,0a =

RD ' 
x [36(k1 -k2)µ1(3k2 +4µi)(l -c)+ 54k2(k1 -k2)(3k1 +4pi)c 

+6k2(3k1+4p1)D+72p1(k1 -k2)(3k2 +4p, )(2+c)] 

� 0, Va an admissible velocity of the interface.

Consequently, the actual state of equilibrium is stable. This interface propagates until 
the whole sphere transforms into material 2. During this evolution, 

When the interface reaches the external surface, the corresponding loading is 

• When the loading increases from uFm.il to infimty, the structure has the behavior
of a sphere of material 2;

The global behavior of the composite sphere is illustrated in Fig. 4. 

5.2. Composite sphere with two e/astoplastic phases 

The two materials are now assumed to be isotropic and elastoplastic. Initially, there 
is no plastic strain in the structure. Their elastic mechanical characteristics are the 
shear moduli, denoted by p, and p2, and the bulk moduli, denoted by k1 and k2; k, is
assumed to be greater than k2• The loading applied on the external surface is a
displacement along the radial vector (see Fig. 3). Only spherical propagations are 
considered here. 
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Fig. 4. Global behavior under spheric loading of an elastic composite sphere. 

The state variables are the displacements u, the plastic strain tensor BP and the
hardening variables a. Their volume density of free energy is written as: 

W = Wei(B-Bp)+tCa:a.

This kind of model includes kinematic hardening. The thermodynamic forces associ­
ated with the state variables are described as follows : 

• the stress tensor a with the strain tensor, a= (8we1/8B) = ktr(B)ld+
2µ(B - tr(B)ld)-2µBp, 

• -a with the plastic strain tensor,
• a tensor denoted by X with the hardening variables.

Here Id denotes the identity tensor. The criterion is given by a convex function : 

f(a) = la,,-<Jee-X,,+Xeel -<Jy � 0. 

The constitutive equations imply the following relations: 

tP = 0, iff < 0 or (f = 0 andj < 0),

f,P = 2� (0-,,-d"eo){e,®e,-teo ® ea-te<P ® e<P}, iff = 0 andj = 0,

where (e" e0, e<P) is the spherical orthonormal right-handed basis.
At the equilibrium without plastic zone, the displacement vectors are given in the 
previous section. The energy release rate is uniform on the interface r, and is given 
by: 

First, when the loading is smaller than the critical value uc(cm11), defined above, we 
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obtain an elastic response. Because the stress in the core has a uniform pressure, no 
plastic zone develops in material 2. However, it may exist in material I ,  and then the 
plastic zone becomes a shell around the core. The external radius of the plastic zone 
is denoted by rp. The behavior of the structure and the evolution of the internal state 
are characterized by four stages. 

(I) At the beginning, the threshold value of both the damage and plasticity criterion 
are not reached. Thus there is no plastic zone and the interface does not move 
when u < uc(cm1t) and u < up(cm,t) where

cry[3k2 +4µ, +3c(k, -k2)] 
Up(c) = R 

18µ,(k, -k2) 
· 

The global behavior is obtained by cr,,(r = R) = 3kw,t(u/ R). 
(2) As the loading increases, two situations may appear: 

• If uc(cm") < Up( cm") then uc(c) < up(c), whatever the value of c. So, there is never
a plastic zone in material I. The evolution of the structure is analyzed as in the
previous section when both materials are elastic.

• If uc(cm") ;:::: up( cm"), then, when the loading reaches up(c,nit) a plastic zone appears.
The structure is then composed by three different regions: the first is made of
material 2, the second of material I in its plastic domain, and the third of material
I without any plastic deformation. The displacements in each zone are given in
Appendix C. The global behavior is such that

-= -- ln-+l + +--. 
ll 2µ,cry { Cp } cry(3k,+4µ,)F2Cp CTil'p 
R F, c 18µ,F,(k, -k2) c 6µ, 

The energy release rate on the interface between materials 2 and I is: 

cr�{3k1 +4µi) a�{3k, +4µ1)
2
F2c� 

G(c,cp)= 
2 

+ , , . 
F1 72µJ(k1 -k2) F1c 

Because of the relation between u and rp, a critical value of the displacement, denoted 
by Ile (c), may be extracted such that G (c, cp) =Ge when u = llc(c). While uE [up( cm"), 
llc (cm1t)], the plastic zone size in material I increases but the damage interface does 
not propagate. 

(3) When the loading increases, there are two possibilities: 

• If the plastic radius reaches the external surface (rp = R), before the damage
criterion is reached, then the structure is divided into two regions, one made of
material 2, the other of material I with plastic strain. The displacement and stress
fields are given in Appendix C, and the energy release rate is written :

In this case, there is propagation of the interface only if 
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• If the damage criterion is reached before the whole elastic area of material
transforms into the plastic zone, then during the propagation of the interface,

a fp u <Iyfpr�
a rp R = 2µ1R 3'

ii 
a,,(r = R )  = -4µ1 R' 

and the global behavior of the structure is given by 

In previous relations, uPCtrnt is the critical value of the loading when the damage 
criterion is reached in the presence of plastic area. When rp = R , then the results of 
the previous case may be used. 

(4) Finally, the damaged area reaches the external surface and the plastic zone 
completely disappears in the structure. The global behavior of the composite 
sphere is now that of material 2. 

The evolution is summarized in Figs 5, 6 and 7. 

5.3. Composite spheres assemblage 

In this section, the composite spheres assemblage of Hashin (1983) is analyzed. The 
system is composed of the compact assemblage of spheres whose external radius is 
variable in order to fill the whole domain as shown in Fig. 8. The microscopic structure 
is constituted by small composite spheres with a core of material 2 and a shell of 
material 1 ; both materials are linearly elastic and homogeneous.

As in the general case, material 2 transforms into material 1; the transformation is 
irreversible and the generalized Griffith's criterion based on the energy release rate of 
the transformation is used. The volume concentration of material 2 is denoted by c. 
Applying the same method as that of Bretheau et al. (1992) and Herve and Zaoui 
(1992), the assemblage is considered as well-disordered. Using the particular ''three 
phase model" introduced by Christensen and Lo (1979) the homogeneous equivalent 
medium denoted by material 0 has an unknown behavior (see Fig. 9). In phase i. the 
local characteristics are the bulk modulus and the shear modulus denoted respectively 
by 
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Fig. 10. v1 = 0.2 and v, = 0.3. 

k = E, E, 

' 3(1-2v,)
and µ, = 2(1 + v,) ' 

where E, is the Young modulus and v, is the Poisson ratio. 
In what follows, k, is assumed to be greater than k2• 

5.3.1. Macroscopic behavior under isotropic extension with one family of composite 
spheres. There exists only one family of composite spheres in the structure; that means
that the ratio a/ R is given and equals Jc. Using analytical results obtained in Bretheau
et al. (1992) and Christensen and Lo (1979), one gets the effective bulk modulus of 
the material 0, denoted by k0: 

ko = k, +c 
1+

3(k2-k1)(1-c) · 
(4µ,+3ki) 

On the interface, the energy release rate is 

G = 86(4µ, +3k,)(4µ, +3k2)(k, -k2) 
2[4µ, +3k2+3c (k1 -k2W . 

(25) 

(26) 

where 80 represents the uniform strain given at infinity. When a generalized Griffith's
criterion is taken into account for the damage transformation, as G reaches the critical
threshold G0 the ratio a/R will increase such that G remains equal to Ge. That is why
the macroscopic behavior is given by Figs 10 and 11. 
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Fig. 1 1  v1 = v2 = 0.3. Macroscopic behavior of composite spheres assemblage: mfiuence of (Ei/£2). 

5.3.2. Macroscopic behavior under isotropic extension with two families of composite 
spheres. In what follows, the macroscopic evolution of a composite spheres assemblage 
is analyzed when two different families coexist in the structure. They are supposed to 
be perfectly disordered. c1 (respectively, c2) denotes the volume fraction of material 2 
in the first family (respectively, in the second). Thus, c = fc1 + ( l  -f)c2. 

The macroscopic bulk modulus is 

ko = ki _ (4µ1 +3k1)(k1 -k2){fc1D1 +(l-f) c2D2} 
(4µ1 + 3k2){fD2 +(l -f)D1} + 3(k1 -k2){fc1D2 +(l  -f) c2Di}' 

(27) 

where D, = 2[4µ1 + 3k2+3c,(k1 -k2)]2. If G, denotes the energy release rate in the family
i, 

(G1 -G2)(c1 -c2)(µ1-µ2) > 0. (28) 

So, the global behavior of the system will be as follows: 

• At the beginning, the macroscopic behavior is elastic, with k0 calculated with the
initial concentrations Cimit and C2m1t·

• At higher loading parameter ()0, the energy criterion may be reached.
-If µ1 > µ2, the difference between the two concentrations will increase until

the larger reaches the value 1. 
-If µ1 < µ2 , the difference between the two concentrations will decrease until

they are identical, i.e. the two different families become one. 
-If µ1 = µ2, both concentrations could increase.
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Fig. 12. Composite cylinder. 

• When the whole volume is changed into material 2, the macroscopic behavior
corresponds to the mechanical behavior of material 2. 

5.3.3. Conclusions. Even if at time t the system is composed of only one family, the 
local response to the loading increment could be non-unique. In fact, there may exist 
many kinds of bifurcations. One part of the structure may be damaged (damage 
localization-no more disorder in the domain). Very well-ordered configurations may 
appear and specific space distributions of the constituent phases are obtained. One 
gets order among disorder. If µ1 > µ:. then a new, perfectly disordered, family may
appear among the first family. In that case. there is more and more disorder in the 
structure. 

Here. 1t is to be noted that the total dissipation is D = G< (dc/df). So the macroscopic
behavior is dissipative while the components are elastic. The transformation between 
1 and 2 corresponds to a volume damage in some sense (Lemaitre and Chaboche. 
1985). 

5.4. Torsion of' an elastic composite cylinder 

In this section, the system is an infinite axisymmetric cylinder. The external radius 
is Rand the radius of the core is a. Materials 1 and 2 occupy, respectively. the shell 
and the core. They are both linearly elastic. Two classic constants are useful in what 
follows: 

E, E,
K = and µ - ---

, 2(1+v,){1 -2!!,) , -2(\+1',)'

where K1 is assumed to be greater than K:-
At the beginning. the structure is axisymmetric, and the loading is axisymmetric 

and independent of the axial coordinate. Figures 12 and 13 summarize all the data. 
As in Be rest ( 1989) and F edelich and Be rest ( 1988 ). the loading is as follows : 

• On lateral surfaces (r = R) there is no loading ,ff" = 0. 
• The displacement field in a plane (r, 8) is such that: 11, = 0, u0 = ).r:::. et uc = iY/(r).

The actual equilibrium state is defined by the displacement field in the structure and 
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Fig. 13. Torsion of a composite cylinder. 

the position of the interface C given by a. The volume concentration of material 2 is
denoted by c = (a2/R2). The displacement fields are given in Appendix D. Cor­
respondingly, the energy release rate on the interface is given by 

Before the energy release rate equals G0 no propagation may occur anywhere on 
the interface. When the Griffith's threshold is reached, then propagation is allowed 
on the whole interface. So, in order to study a case of general propagation, consider 
the velocity </J = -a(ll) such that 

x 
a = ixo + I [ix" cos ne +/Jn sin neJ. 

n=l 

For the purpose of characterizing the actual state from the point of view of stability 
and bifurcation, it is necessary to get the displacement velocity at given velocity of 
the loading and given normal velocity of the interface. Then, according to the general 
demonstration, conclusions may be determined from the expression of the function 
W(u,a). 

Using the velocity obtained in Appendix D, the characterization of the quasi-static 
evolution of the composite cylinder is given via the quadratic function: 

aW�ati= -)hr:la2(µ1-µ2{ix�

+ 00 [ex�+/]�] {µ1[(1 +n)R2"+(1-n)a2 "]+µ2(R2"-a2 ")(1 -n)}Jn�l 2 [µ1(R2 "+a2")+µ2(R2"-a2")] • 

Whatever the propagation may be, because the quadratic functional Wis non-positive, 
the evolution is unstable as soon as the Griffith's threshold is reached. 
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6. CONCLUSIONS

The modelling of partial damage is presented in this paper in order to characterize 
various structures in which surfaces of discontinuities propagate. Using the classic 
framework of standard materials, it appears necessary to consider the positions of 
the surfaces of discontinuity as internal variables whose evolution is governed by 
criteria and evolution laws similar to those used in fracture mechanics. Thus, in our 
analysis the surface can propagate when the stored free energy reaches a threshold 
value. 

In order to characterize the evolution of the structure, the rate boundary value 
problem needs to be solved. One has to emphasize that the solution of this problem 
is analogous to that of the equilibrium problem : the surface of discontinuity is 
assumed to be known, but the normal velocity is unknown. Numerically, this assump­
tion enables us to find the right velocity of the interface between the sound and 
damaged materials with one mesh. 

Thanks to the global formulation, the solution of the rate boundary value problem 
is associated with a minimization or a maximization of a quadratic function, depend­
ing on the choice of the unknown fields. It is emphasized that this global formulation 
is helpful in characterizing the evolution of the structure in terms of existence and 
uniqueness of the solution to the rate boundary value problem, using more general 
results (Nguyen, 1984). 

Links between the macroscopic model studied here and microscopic continuous 
damage (Pradeilles and Stolz, 1992) should be found via the relations between different 
behavior at various scales. For instance, the assemblage of Hashin composite spheres 
can create a macroscopic behavior with continuous mechanical characteristics in the 
sense of Kachanov, while at a microscopic scale the evolution is more dramatic as 
surfaces of discontinuities move in the structure. 

This latter assemblage underlines the importance of the relations between micro­
scopic behavior and macroscopic mechanical characteristics. In addition, this example 
focuses on the necessity of studying of the uniqueness of the response at microscopic 
scale, in order to describe what is a macroscopic behavior. 
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APPENDIX A :  DERIVATIONS ON A MOVING INTERFACE 

A point M of the moving r, has coordinates x which are defined by the equation of r, :S (x, t) = 0. Then, the propagation of the surface is related to the velocity V of the point M by

cS · V+ i!S = O where V = dx = -¢v and v 1j,�Sl1l = as . (ix ct dt <·X I CX 
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Thus, 

ZiS = - V · v 1 1as11 = ¢ ll (ISll = ¢ (IS · v.Ot CX (ix l1X 

Let us consider now a geometrical or mechanical quantity f defined along r,. Then its rate 
is defined by : . f(x - ¢ dtv, t + dt) -{(x, t) 

D,, (f ) = hm 
d 

. 1 - 0  t 

Explicit formulations are obtained m the following cases : 

• for continuous and differentiable fields quantities :

ll/ dx  (ij 
D.p( f)  = 8f+ VJ · dt = "it- ¢'\/( v,

• for geometrical quantities : in the 2D case, with (v, T) a right-handed basis

d¢ d¢ 
Dq,(v) = -

d 
t" and D.p(t") = --

d 
v ; s s 

in the 3D case, with (v, T, 1/) a right-handed basis,

Dq,(T) = - ('l/¢ · T)v, Dq,(1/) = - ('1/¢ · 1/)v,Dq,(v) = (T · 'V¢)T + (r r 'V¢)'1 

APPENDIX B :  FROM THE GLOBAL FORMULATION TO THE LOCAL 
EQUATIONS 

The following proof is given in the plane case. Obviously, the solution to the set of local 
equations is one to the variational inequality. Denoting the quantities w;' [i:, µ (ilf;/cA )], 
µ(cf,/cA) in Q, and c(og/oG), respectively, by [o-, - AJ, a and ¢, then

��(v' -v)+ ��(c' - c) +  �:(µ' -µ) = ,t, fJo- :  (t' - £) - A(µ':� - a  )}dw

- j ),T" · (v' - v) da J,nr 
-L c �� { l [t" · u]lr · ('V(v; - v , ) · T) + l[11 · u]lr · ('V(v; -v 1 ) · 11) J  da

But, thanks to the properties of the fields (v, c) and (v' ,  c' ), which are elements of K, this
expression now becomes 
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aF aF aF 2 J J . a- <v' - v) +a (c' - c) + a (µ' - µ) = - L {div a · (v' - v)} dw - (A.Td- n · a) · (v' -v) daV c µ ' � 1 n, onT 

+ L { l [a · v]lr+ divr{l[c :�a ]IJ} · (v; - v1 ) da 

-L (c' - c) :�Dq,(G) da.
Thus, all the local equations, ( 1 3), ( 1 6) and ( 1 7), are recovered when the solution (v, c) E K  is

such that 

'"'( , ') aF , aF , aF , v V , C  E K, av (v -v) + ac (c - c) + aµ (µ - µ) ;,,O. 
An addition inequality is obtained from the solution of the variational inequality. It amounts 
to a new condition on the interface. Propagation of the interface can never occur simultaneously 
with evolution of the internal variable on any area of the interface. This condition takes the 
form : 

<Pl[ A(µ' -µ) :�1 ;,, O on r,.

APPENDIX C :  DISPLACEMENT IN THE COMPOSITE ELASTOPLASTIC SPHERE 

When there is no plastic area in the composite sphere, the displacement is : 

ur { R 3  } uru1 = RD(c) 3k2 + 4µ1 + 3 7 (k1 - k2) e, and u2 = RD(c) (3k1 +4µ 1 )e, 
with D(c) = 3k2 +4µ 1  + 3c(k1 -k2). 

In the second step of the evolution of the elastoplastic composite sphere, the displacement 
in the three different areas are as follows : 

( I) The core in material 2 (inside the sphere of radius a) has the same behavior as in elastic 
case : 

a2 = 3k2a2 {e, ® e,+ ee ® eo+ eq, ® eq,}. 
(2) The plastic shell in material 1 is located between a sphere of radius a and a sphere of 

radius rp. In what follows, Cp = (rUR 3). The displacement, the plastic strain tensor and
the stress tensor are given by the following relations : 
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where F, = 9µ1k,+ C(3k, + 4µ1). (3) The external shell is constituted by material 1 ,  with no plastic deformation. It is bounded
by the sphere of radius rp and the external surface of radius R. The displacement and 
the stress tensor are : 

U 1 = (a1 r+��)e,, 

Because of the continuity of the displacement and the stress vector, on the surfaces r = a and r = rp, finally, we get : 

O"y(3k1 + 4µ 1 )  Cp a2 = , 1 8µ 1 (k 1  -k2) c 
2uyµ i Cp O"y(3k1 + 4µ 1 ) F2Cp 2µ1 0"y O"yCp a 1 = -- In -+ + -- +--, 9F1 c 1 8µ 1F1 (k1 - k2) c F1 6µ 1 
uyepR 3  b 1 = � ,
(3k1 + 4µ 1)uyF2k1Cp C t = 6µ 1 F1 (k 1  - k2) c .

When the composite sphere is constituted by a core of material 2 and the shell in material I 
with plastic strain, the displacement and stresses are as follows. 

• Between r = 0 and r = a, the displacement is u2 = a2re,. The stresses are

O",, = 0"99 = O"q,q, = 3k2az.
• between r = a and r = R, the actual state is defined by :

1 8µ 1k 1uy r 2Cuy(3k 1 + 4µ 1 ) R 3 2Cd1 u,, = F In -- 3 + -3- + c1 , 1 a 3F1r 3r 
_ _ 1 8µ1k1uy l  !:._ 9µ1k10"y Cd1 Cuy(3k1 + 4µi) R3 O"oo - O"q,q, - F n + F + c1 - 3 + J ' 1 a 1 3r 3F1 r 

6 = uy(3k 1 + 4µ 1 ) {l - R 3} +�P Fi r3 r3 '
0 1 P = {�+ 6µ 1 0"y In !:._+ (C+ 3µi ) R 3  {O"y(3k 1 +4µ 1 )

R
d1

3}} re,. 3k1 F1 a 6µ 1 r3 F1 
The continuity relations and the boundary conditions on f', give : 

F1 {u µ 10"y a } a2 = a3 R+ 2  3F1 ln R ' F2 + 3(3µ 1 + C) (k 1  -k2) R 3 
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d1 CTy(3k, +4µ,) 

R1 - F1 

APPENDIX D: DISPLACEMENT IN THE COMPOSITE CYLINDER UNDER 
TORSION 

In the elastic composite cylinder under torsion, the displacements are given as follows: 

u = .A.rze0+.A.17(r)e=. 

The equilibrium equations are given on '1· 

ii17 = 0, on rE [O, R], 

µ11]1,, = 0, on r = R, 

![µ17,,Jlr = 0,} 
l[11Jlr = 0, 

on r =a, 

µ2172,, = 0 on 

This has the following solution in each area: 

r = 0. 

u = .A.rze0, 

CT= .A.µ,r(e0®e=+e=®ee). 

When the normal velocity of the interface is such that 
X, 

a C8> = baa+ 2= ba" cos n8, 
n=I 

and the loading increasing is u, the velocity displacement field is the solution of the local 
equations: 

ii�,= 0, m Q,, 

µ,�1,, = 0, on r = R, 

hm,�0�2 = 0, 

on r =a. 

Thanks to Parton and Perline ( 1981 ), the solution is: 
:o ;f_ 

� = 2:: f,.Jr, 8) = 2:: 19,(8). 
A�o A�u 

Finally, one gets the general form of 17, in each domain Q, as 
"/) 

�,(r,8) = A,,0+B,,0lnr+ L [(A, /+B,1-")cosn8+(C,_/'+D,,nr-")sinn8]. 
n=l 

The constants A,_"' B,_n• C, ,n and D,,n are obtained through the boundary conditions and the 
Hadamard's relations on r,. It follows that these are determined by: 

30



for iE [ L 2 ) .

A, 11 = B, _ 0 = 0. 

A, _ , = B, _ , = 0, 

C, _ 1 = D, _ 1 = 0, 

()( 1 = # 1 = 0, 

B2 . ,, = 0, 

D2 . ,, = 0. 

The functional F used in the study of the evolution can be reduced here to : 

F(v, a) .) = ,t, L � ic2µ , [(lj ,_,)2 + (lj;:"Y}dr d8 d: 

- I aic 2a (µ ,  - µ2)� 1 " dO d= - I �a2 ).2(µ 1 - 112)a2 dO d=.J, J, -
So. using the previous results on the velocity displacement solution when a and ,l. are assumed
to be known. one gets : 

W,,oii2 = - ).2rrla2(µ 1 - µ2{ ag

+ � Ia,� + /3�] (µ 1 [0 + n) R 2" + ( 1 - n) a2"] + µ2(R2 "- a2")( 1 -n) ) l
. ,,� 2 2 [µ 1 (R 2" + a2") + µ2(R 2" - a2")] j 
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