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Abstract:  The main goal of this paper is to develop a fault tolerant control system that incorporates both 
reliability and dynamic performance of the system for control reconfiguration. Once a fault has been 
detected and isolated, the reconfiguration strategy proposed in this paper tries to find possible structures 
of the faulty system that preserve pre-specified performance, calculate the system reliability, compute 
new controller gains and finally search the optimal structure that has the “best” control performance with 
the highest reliability. The proposed approach is illustrated through a simulation example. Copyright © 
2006 IFAC.  
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1. INTRODUCTION 

In most conventional control systems, controllers are designed for fault-free systems without taking into account the 
possibility of fault occurrence. In order to overcome these limitations, modern complex systems use sophisticated 
controllers which are developed with fault accommodation and tolerance capabilities, in order to meet reliability and 
performance requirements. The Fault Tolerant Control (FTC) system is a control system that can maintain system 
performance closely to the desirable one and preserves stability conditions, not only when the system is in fault-free 
case but also in the presence of faulty component, or at least ensures degraded performances which can be accepted as a 
trade-off. FTC has been motivated by different goals for different applications; it could improve reliability and safety in 
industrial processes and safety-critical applications such as flight control and nuclear power plant operation (Zhang and 
Jiang, 2003). 

Fault tolerant control systems are needed in order to preserve the ability of the system to achieve the objectives that has 
been assigned when faults or failures occurred. (Staroswiecki and Gehin, 2001) proposes a terminology on fault tolerant 
control problems. The main goal of FTC is to increase system’s reliability. Some publications have introduced 
reliability analysis for fault tolerant control systems. In, (Wu, 2001a), (Wu, 2001b), (Wu and Patton, 2003) Markov 
models are used to dictate the system reliability where it’s supposed that the sub-systems take two states intact 
(available) or failed (unavailable). Also (Staroswiecki et al., 2004) have proposed a sensor reconfiguration based on 
physical redundancy where the reliability analysis provided some information in order to select the optimal redundant 
sensors. More recently, (Guenab et al., 2005) have proposed a FTC system for complex system composed with various 
sub-systems. The FTC method provides an optimal structure in order to achieve desired objectives with highest 
reliability under a cost constraint or with lowest cost to achieve reliability goal, or at least degraded objectives. It can be 
noticed that the criterion used for determining the optimal structure in (Guenab et al., 2005) is only limited to static 
consideration. In this paper, the dynamic behavior of the faulty and reconfigured closed-loop system is taking into 
account. In this context, complex system is considered as a set of interconnected sub-systems, each sub-system is 
assigned some local objectives with respect to quality production, reliability and also dynamic performance. Each sub-
system may take several states, and specific controllers’ gains. In fault-free case, the structure of a system defines the 
set of the used sub-systems and information about their states and how they are connected. Once fault is occurred, the 
faulty sub-systems are considered able to achieve new local objectives at different degraded states. New structures of 
the system can be determined; each possible structure of the system corresponds to reliability and global performance 
computed from its sub-system properties. Concerning the redesign of controller for each sub-system after fault 
occurrence, the revisited Pseudo-Inverse Method (PIM) developed by (Staroswiecki, 2005) is considered here in order 
to illustrate the concept of the method. Moreover, the revisited PIM seems to be less conservative than the original one 
(Gao and Antsaklis, 1991) by redesigning the controller gain through a bounded dynamic behavior assignable by the 
reconfigured closed-loop system. The optimal structure corresponds to the structure that achieves the required global 
objectives (static and dynamic) with highest reliability. Once the optimal solution is fixed, a new structure and new 
control law could be exploited in order to reach the global objectives closed as possible as nominal ones. 

The paper is organized as follows. Section 2 is dedicated to define the set of complex systems which is considered in 
this study and the associated standard problem of FTC. Section 3 is devoted to the design of the FTC system under 
hierarchical structure. After some definitions are introduced, a solution is developed under a general formulation. A 



simulation example is considered in Section 4 to illustrate the performance and effectiveness of the method. Finally, 
concluding remarks are given in the last section. 
 

2. PROBLEM STATEMENT 

A large class of systems can be described by hierarchical structures, also called as systems with multiple levels, and 
there are good reasons for organizing the control of the systems in this way, for example reduction in complexity of 
communication and computation. Our interest is for hierarchy with two levels: global and local, as shown in the 
following structure mS : 

 
 

Figure 1. General scheme of hierarchical structure 
The considered system is composed of n  sub-systems is , ni ,,1K= , described by the following classical linear state 

representation: 

)()()( tuBtxAtx iiiii +=&  (1) 

Each sub-system is  has its own associated controller that implements the following control law: 

)()()( trGtxKtu iiiii +−=  (2) 

where iK  and iG  are synthesized in order that the closed-loop system follows its reference model described as follows:  

)()()( trNtxMtx iiiii +=&  (3) 

The highest level, called coordinator, is designed as an optimal feedback controller. It defines local references ir  and 

computes the global objective gγ  from local outputs iy  of each sub-system is .  

In this paper, we assume that sub-systems are dynamically independent, which means that matrix A  is block diagonal. 
Moreover, we suppose that sub-system is  has impact on sub-system 1+is  or inversely: matrix A  is supposed to be 

triangular. Based on a nominal hierarchical structure of the system, the paper aims at to propose an answer to a question: 
how is it possible to maintain the global objective gγ  when fault occur? Before going to envision a solution let us 

define the control problem by the triplet >< UCg ,,γ , in the spirit of (Staroswiecki and Gehin, 2001), where: 

 
• gγ  Global objectives 

• C    A set of constraints given by the structure S  of 
system and parameters θ  of closed-loop system 

• U  A set of control laws 

 

In fault-free case, this problem could be solved by defining a control law Uu∈ , such that the controlled system 
achieves the global objectives gγ  under constraints whose structure S  and parameters θ  are  equivalent to design 

controllers of all sub-systems used by the structure and to define their references to achieve gγ . It is assumed that 

nominal global objectives nom
gγ  are achieved under the nominal control law nomu  and the nominal structure nomS  

which uses some sub-systems. The fault occurrence is supposed to modify the structure nomS  for which the objectives 

can be or can not be achieved under a new structure.  

The fault tolerant control problem is then defined by >< UCg ,,γ , which has a solution that could achieve nom
gγ  by 

changing the structure, parameters and/or control law of the post-fault system (which results in the disconnection or 
replacement of faulty sub-systems). In some cases, no solution may exist, and then global objectives must be redefined 

to the degraded ones, denoted as d
gγ .  



Under assumptions that there exist several structures mS  ),,1( Mm K= , the problem statement is formulated by the 

following question: how to choose the optimal structure in the sense that for a given criterion J  the chosen structure 

can maintain the objectives nom
gγ  (or degraded ones dgγ )? An answer will be provided in the following section where 

impact of references on the reliability and its computation, controllers design in fault-free and faulty cases, performance 
evaluation criteria will be presented in the hierarchical structure framework. 

3. FTC SYSTEM DESIGN 
 
3.1 Reliability Computation 
Reliability is the ability that units, components, equipment, products, and systems will perform their required functions 
for a specified period of time without failure under stated conditions and specified environments (Gertsbakh, 2000). The 
reliability analysis of components consists of analyzing times to failure from data obtained under normal operating 
conditions (Cox, 1972). In many situations and especially in the considered study, failure rate have to be obtained from 
components under different levels of loads: the operating conditions of components change from one structure to 
another. Several mathematical models have been developed to define failure level in order to estimate the failure rate λ  
(Martorell et al., 1999) (Finkelstein, 1999). Proportional hazards model introduced by (Cox, 1972) is used in this paper. 
The failure rate is modelled as follows: 

),()(),( βλλ xgtxt ii =  (4) 

where )(tiλ  represents the baseline failure rate (nominal failure rate) function of time only for the i th sub-system or 

component and ),( βxg  is a function (independent of time) taking into account the effects of applied loads with x  
defining an image of the load and β  defining some parameters of the sub-system or component.  

Various definitions of ),( βxg  exist in the literature. However, the exponential form is commonly used. Also, the failure 
rate function for the exponential distribution is constant during the useful life (Cox, 1962), but it changes from one 
operating mode (depending on the structurenomS ) to another according to a load level. Under this assumption, the 

failure rate (4) is rewritten as: 

mx
i

m
i etxt βλλ )(),( =  (5) 

It can be noticed that various load levels (or mean load levels) mx  are considered as constants for the i th sub-system or 

component, but it changes from one hierarchical structure to another. Once the new failure rate is calculated, the 
reliability for a period of time dT  (desired life time) is given by: 

( ) dd
m
i TxT

d
m
i eTR ,)( λ−=  (6) 

where ( )d
m
i TR  represents the thi  sub-system reliability used by the structure mS  for specified time dT . It should be 

remarked that dT  represents the period of time between the fault occurrence and the reparation of faulty component 

which caused the structure modification or the end of the system’s mission. 

The reliability of a complex system is computed from its components or sub-systems reliabilities and that usually 
depends on the way that the sub-systems are connected (serial, parallel…). 

The reliability of a complex system with n  series sub-systems is given by:  

( ) ( )d
m
i

n

i
d

m
g TRTR ∏=

=1
 (7) 

and with n  parallel sub-systems is given by: 

( ) ( ))1(1
1

d
m
i

n

i
d

m
g TRTR −∏−=

=
 (8) 

In general case, the system reliability is computed from a combination of the elementary functions (7) and (8).  
3.2 Nominal Controller Design 
In fault-free case, let us assume that ( )ii BA ,  with ni ,,1K=  is controllable according to the state-space representation 

defined in equation (1). Classically, the design of the control law (2) is established such that closed-loop of the system 
(1) is equivalent to a specified reference model defined in (3). The solution ( )ii GK ,  is obtained by solving the 

equations: 

iii

iiii

NGB

MKBA

=
=−  (9) 

A unique solution is defined as follows  

( )
iii

iiii

NBG

MABK
+

+

=
−=  (10) 



where +
iB is the left pseudo-inverse of iB . 

If (10) can not be fulfilled, as presented by (Huang and Strangel, 1990), approximate solutions are computed through 
the optimization of the following criteria: 

2
1 Fiiiii MKBAJ −−=  (11) 

and 

2
2 Fiiii NGBJ −=  (12) 

where 
F

. is the Frobenius norm. 

Unfortunately, the solution of this standard method has several drawbacks. Extensions of the Pseudo-Inverse Method 
(PIM) have been proposed to overcome those drawbacks. Using constrained optimization (Gao and Antsaklis, 1991) 

and (Staroswiecki, 2005) synthesized a suitable ( )** , ii GK  which guarantees the stability with successful results in faulty 

cases, when the i th faulty sub-system is described by the fault corrupted state space representation as: 

)()()( tuBtxAtx i
f

ii
f

ii +=&  (13) 

where f stands for fault condition.  
 
In this paper, in order to redesign the controller dedicated to each i th faulty sub-system, the recent revisited PIM 
(Staroswiecki, 2005) has been considered rather than classical PIM. 
 
Under the assumptions that FDD scheme provides suitable information, the revisited PIM can provide an appropriate 

( )** , ii GK  with a degree of freedom in order to solve (9) concerning the dynamic behavior of the faulty closed loop sub-

system.  
 
As presented previously, the control problem is defined by >< UC,,γ , in faulty-case and for each sub-system, the 

triplet is equivalent to: 
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where ),( ii NM  are in the sets of admissible reference models ii NM × . In faulty case, iM  is defined by: 

{ }00 21i >≤= )(M and)(M M iiiii φφM  (15) 

where functions i1φ  and  i2φ  describe any matrix iM  which has suitable dynamic behaviors, i.e. stability and 

appropriate time response. The functions 0)(2 >ii Mφ  can be rewritten as 0)(2 <− ii Mφ  and (15) is equivalent to a 

unique function 0<)(M iiφ : 

{ }0≤= )(M     M iii φiM  (16) 

In this paper, for simplicity reason but without loss of generality, we assume that for each sub-system the set iM  is 

defined such that any matrix in iM  has eigenvalues lie within a suitable percentage of eigenvalues in the fault-free 

based on the knowledge on the system. 
Similar to iM , iN  is defined as: 

{ }0≤= )(N     N iii ϕiN  (17) 

As suggested by (Staroswiecki, 2005) but handled with the Frobenius norm, we thus propose that the control problem in 

faulty case is equivalent to find ( )** , ii GK  as follows:  
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For illustration, let us consider an elementary reference model )()( tMxtx =&  with 
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and with their eigenvalues being 1*
1 −=τ , 2.1*

2 −=τ  and 4.1*
3 −=τ .  

It can be checked that any matrix belongs to the set  
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has eigenvalues *
11 βττ =  , *

22 βττ =  and *
33 βττ =  with [ ]1.1,9.0=β . Thus, M  defines the set of all reference 

models in which its eigenvalues lie within %10±  of eigenvalues of M . 
 
In order to choose the optimal structure and the optimal controller associated with each sub-system among the 
hierarchical architecture under the reliability constraint, we focus our attention in the next subsection to define pertinent 
performance indicator for both steady-state and dynamic performances. 
 
3.3 Performance Criteria 
The FTC system should reduce or try to limit the difference between the dynamic and steady-state behavior of the 
nominal system and reconfigured system.  
The global objective gγ  is allowed to be determined by some algebraic and differential equations, based on local 

outputs iy  of each sub-system is ,  denoted by f  such that:  

( )ig yf=γ , ni ,,1K=  (19) 

The following normalized indicator is proposed to provide a global steady-state performance evaluation of structure  

mS : 

nom
g

m
g

nom
gm

steadyJ
γ

γγ −
=                                    (20) 

where nom
gγ  represents the global objective of the nominal (fault-free) structure nomS  and m

gγ  denotes the global 

objective of the reconfigured system under structure mS . It can be noticed that the global objective gγ  is computed on-

line based on eq. (19). 
About the dynamic performance evaluation, the main goal is to obtain the eigenvalues of reconfigured system close to 

the nominal ones. Let’s consider the normalized error between nominal and reconfigured thi  sub-system in term of 

eigenvalues, then the maximal error of thi  sub-system can be formulated as: 

nom
j

m
j

nom
jm

i τ
ττ

ε
−

= max ,  ikj ,,1K=  (21) 

where each thi  sub-system has ik  eigenvalues jτ , ikj ,,1K=  for nominal structure and mjτ  for the reconfigured 

structure mS  which are computed online based on synthesized controller gains using (18). 

 
Based on equation (21), the dynamic performance associated to the reconfigured structure mS  (composed of mn  sub-

systems) is quantified by the largest normalized error and then is evaluated as follows:  

)max( m
i

m
dynJ ε= ,  mni ,,1K=  (22) 

 
3.4 FTC System Design 
Consider a nominal system composed of n  sub-systems: is  with ni ,,1L= . Each sub-system has following properties: 

set of local objectives ( )il sγ  (outputs), set of eigenvalues iτ  and failure rate ( )il sλ . 

Without faults, a nominal structure is designed which uses all n  sub-systems and its nominal global objectives nom
gγ  

reached under the local objectives ( )il sγ  of each sub-system. 

In faulty cases, M  structures mS , Mm ,,1L=  are assumed to be suitable where each structure mS  contains mn  sub-

systems:{ }m
n

mm
m

sss L21 . The main goal of the method is to select a structure among M  structures which ensure 



global objectives m
gγ  close to nominal case nom

gγ , also without neglected dynamic properties (in term of reference 

model, in particular eigenvalues) and for safety reason under some reliability constraints. An optimal structure among 
the hierarchical architecture will be determined such that it has minimum performance criterion (24) under reliability 
constraints. For a desired time period dT , the constraint is defined as the reliability larger than a limited value, 

i.e. ( ) *
gd

m
g RTR ≥ . 

Under the assumption that FDD scheme will provide necessary information in terms of detection, isolation and fault 
magnitude estimation, for each available reconfigured structure mS , following procedure needs to be carried out:  

1. At local level: 

- for all combined sub-systems’ references, to each sub-system m
is  new failure rate ( )m

i
m
i sλ   is computed from its 

baseline failure rate according on the new applied loads which depends to various local references and a set of local 

objectives (outputs) ( )m
i

m
l sγ  are calculated taking into account the fault’s magnitude.  

- new controllers based on the synthesized gains ( )** , ii GK  (18) are designed and miε  (21) are evaluated. 

- For a given time period dT , the corresponding reliability ( )d
m
i TR  of each sub-system is computed using eq. (6). 

 
2. At global level: 

- each structure mS  involves a new set of global objectives (outputs) m
gγ  as presented in (19). 

- the reliability ( )d
m
g TR  of system for all structures is computed using (7) and (8). 

- for each reconfigured structure, from (20) a minimum performance of static index m optsteadyJ ,  is evaluated using  

( )
( )m

steady
RTR

m
optsteady JJ

gg
m
g

*
min,

≥
=  (23) 

  and dynamic index m
dynJ  is computed using (22). 

 
3. To determine the optimal solution, the objective of FTC system is to find the structure that has a reliability 

( ) *
gd

m
g RTR ≥  and with minimum performance of index J . 

The criterion J  is evaluated using equations (22) and (23) as follows: 

( ) m
dyn

m
optsteady JJ αα −+= 1,J  (24) 

where α  is weighting constant which determines the relative weight placed on the steady-state and dynamic 
performance. 

 
Thus the optimal reconfigured structure for a complex system defined as a hierarchical architecture is obtained as 
follows: 

( ) ( )JSopt
m *

minarg
gg

m
g RTRm ≥

=  (25) 

Once the optimal solution is selected, a new structure opt
mS  and new control law could be exploited in order to satisfy 

both the local objectives and the corresponding global objectives. 

 

4. SIMULATION EXAMPLE 
 
4.1 System Description 

Let us consider a LTI system given by: 
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The system is physically decomposed into 3 sub-systems as illustrated in the following figure: 

 
Figure 2. Block diagram decomposition 

The global objective is defined by )()()( 31 tytytg +=γ . 

The functional decomposition (in reliability sense) corresponds to: 

 
Figure. 3. Functional decomposition 

In the nominal case, the reliability of the entire system is equivalent to ( )( ))()(1)(11)( 321 d
n

d
n

d
n

d
n
g TRTRTRTR −−−= . 

 
4.2 A Set of Reconfigured Structures 
Three reconfigured structures are supposed to be involved in the fault tolerant control system design for this simulation 
example. In the first one, only sub-system 1 is used; sub-systems 2 and 3 are switched-off. The global objective depends 
only on the first local objective 1yg =γ . In the second structure, only sub-systems 2 and 3 are used and the global 

objective depends only on the local objective of sub-system 3 i.e. 3yg =γ . In the third structure, all sub-systems are 

used with the following available local objectives (in our case local references): 

max,111 yy ref σ=  with 











= 1,

max,1

min,1
1 y

y
σ  (27) 

max,323 yy ref σ=  with 











= 1,

max,3

min,3
2 y

y
σ  (28) 

The global objective, reliability and performance criterion J  of the system for all permitted combination of ( )31, yy  are 

computed on line. 

4.3 Results and Comments  
To illustrate the method, three cases are simulated:  
1) the nominal (fault-free ) case; 
2) the system with loss of control effectiveness of %10  at st f 500=  in input 2u  without control reconfiguration; 

3) the reconfigured system after a fault of loss of control effectiveness of %10  in input 2u  is considered at st f 500= . 

a) Nominal (fault free) case 
Assume that global objective is 12=nom

gγ  and for illustration purpose local objectives ( )31, yy  take several values ( )7,5  

and ( )4,8  as presented in Figure 4. The controller gains are [ ]136.9112.5648.61 −−=K , [ ]933.01 =G , and 

[ ]8908.126408.29458.147213.79097.42 −−−−=K  [ ]3767.02 −=G  in order to reach the following eigenvalues 

( )11999.14.1 −−−  for the sub-system 1 and ( )9998.05021.19937.15077.29966.2 −−−−−  for the sub-systems 2 and 3. The 

validation of the controllers in the hierarchical architecture is shown in Figure 4. According to the coordinator level, the 
reference outputs (1y  and 3y ) at the local level are step changes of their corresponding operating values. The 



corresponding control inputs (1u and 2u ) for step changes in the reference inputs are also presented. The dynamic 

responses demonstrate that the various controllers are synthesized correctly in order to reach the nominal global 
objective of 12=nom

gγ . 

 
Figure 4. Dynamic evolution of input and output variables in nominal case. 

 
b) Faulty cases without reconfiguration 
A faulty case without reconfiguration is simulated for a fault with %10  loss of control input 2u  which occurs at 

st f 500= . Based on the same controllers as nominal case, the local objective 3y  cannot be achieved for both dynamic 

and steady-state performances. This leads to that the global objective cannot be achieved as shown in Figure 5. The 
eigenvalues of the faulty sub-systems are (-2.9297, -2.5941, 1.8373i-1.7835+ , 1.8373i-1.7835−   and -0.2391), at steady-
state, there is difference between output (solid line) and the reference (broken line). 

 
Figure 5. Dynamic evolution of inputs and outputs variables in faulty case without FTC.  

c) Faulty case with reconfiguration  

The same fault is considered as previously. For a desired reliability 55.0* =R  and a desired life time of sTd 10000= , 

under assumption that the fault is detected, isolated and the fault magnitude is estimated. In our simulation example, 
there exists a unique value of reliability and criterion J  for reconfigured structure n°1 or n°2, defined in §4.2. On the 
other hand, for the structure n°3, the reliability and the static criterion (20) are evaluated as shown in Figures 6 and 7 
using all permitted combination of ( )refref yy 31 ,  given in (27) and (28). 

 
Figure 6. Reliability for structure n°3  



 

Figure 7. Steady-state criterion 3
steady

J  for structure n°3 

According to (24), 3
optJ  is equal to 0.0202 and reliability ( ) 64.03 =dg TR  for references 101 =refy , 23 =refy  (as shown in 

Figures 6 and 7).  

The controller gains are designed using (18) and dynamic index is computed using (21) and (22) for all structures.  

Table 1 shows the values of reliability and performance criterion J  of all structures. Based on (25), the optimal 
structure is chosen to be equivalent to the structure n°3. 

Table 1 Reliabilities and criterions 
 

Structure n°1 Structure n°2 Structure n°3 
( )dg TR1  1J  ( )dg TR2  2J  ( )dg TR3  3

optJ  

0.24 0.1035 0.08 0.0852 0.64 0.0202 
 
Thus, after fault occurrence, the nominal system is switched to the new structure, as shown in figure 8 and the 

references are 101 =refy , 23 =refy  and the outputs are 101 =y , 23 =y  and 123 =gγ . The FTC system preserves the 

dynamic and steady-state performance of the system in the presence of fault. It can be noted that the controller gains are 
[ ]4153.187725.33512.210305.110138.72 −−−−=K [ ]3767.02 −=G , [ ]136.9112.5648.61 −−=K  and [ ]9330G1 .= . 

Those new controllers ensure new eigenvalues ( )0025.14899.10135.24935.20006.3 −−−−−  and ( )11999.14.1 −−−   

which are close to the nominal ones.  

 
Figure 8. Dynamic evolution of inputs and outputs variables in the faulty case with FTC. 

 
5. CONCLUSIONS 

This paper has presented a fault tolerant control system design strategy which can incorporate reliability analysis and 
performance evaluation into the reconfigurable control structure selection based on hierarchical architecture of complex 
systems. Once a fault occurred and the global objectives of system can not be achieved using the current structure, the 
proposed FTC strategy will switch to another structure. The selected structure will guarantee an optimal steady-state 
and dynamic performance of the reconfigured system according to the “highest” reliability in order to ensure the 
dependability of the system and the human safety. The application of this method to a simulation example gives 
encouraging results. 
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