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SPECIAL VALUES OF SYMMETRIC POWER L-FUNCTIONS

AND HECKE EIGENVALUES

EMMANUEL ROYER AND JIE WU

Abstract. We compute the moments of L-functions of symmetric powers of
modular forms at the edge of the critical strip, twisted by the central value of
the L-functions of modular forms. We show that, in the case of even powers,
it is equivalent to twist by the value at the edge of the critical strip of the
symmetric square L-functions. We deduce information on the size of symmetric
power L-functions at the edge of the critical strip in subfamilies. In a second
part, we study the distribution of small and large Hecke eigenvalues. We
deduce information on the simultaneous extremality conditions on the values
of L-functions of symmetric powers of modular forms at the edge of the critical
strip.
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1. Introduction

The values of L-functions at the edge of the critical strip have been extensively
studied. The work on their distributions originates with Littlewood [Lit28]. In the
case of Dirichlet L-functions, his work has been extended by Elliott [Ell73] and
more recently by Montgomery & Vaughan [MV99] and Granville & Soundararajan
[GS03]. In the case of symmetric square L-functions of modular forms, the first
results are due to Luo [Luo99], [Luo01]. They have been developed by the first
author [Roy01] and the authors [RW05] in the analytic aspect and by the first author
[Roy03] and Habsieger & the first author [HR04] in the combinatorial aspect. These
developments have been recently widely extended by Cogdell & Michel [CM04] who
studied the distribution for all the symmetric power L-functions.

The values of L-functions of modular forms at the centre of the critical strip are
much more difficult to catch. The difficulty of the computation of their moments
increases dramatically with the order of the moments (see, e.g., [KMV00]) and
these moments are subject to important conjectures [CFKRS03], [CFKRS05]. Good
bounds for the size of these values have important consequences. A beautiful one
is the following, due to Iwaniec & Sarnak [IS00]. Denote by H∗

2(N) the set of
primitive forms of weight 2 over Γ0(N) (this is the Hecke eigenbasis of the space
of parabolic newforms of weight 2 over Γ0(N), normalised so that the first Fourier
coefficient is one) and let εf(N) be the sign of the functional equation satisfied
by the L-function, L(s, f), of f ∈ H∗

2(N). Our L-functions are normalised so that
0 ≤ ℜe s ≤ 1 is the critical strip. Then it is shown that

lim inf
N→∞

#
{
f ∈ H∗

2(N) : εf (N) = 1, L
(

1
2 , f
)
≥ (logN)−2

}

#{f ∈ H∗
2(N) : εf (N) = 1} ≥ c =

1

2
.

If we could replace c = 1/2 by c > 1/2, then there would exist no Landau-Siegel
zero for Dirichlet L-functions. It is expected that one may even take c = 1. The
meaning of this expectation is that, if L(1/2, f) 6= 0 (which is not the case when
εf(N) 6= 1), then L(1/2, f) is not too small.

In this paper, we compute (see Theorem A and Proposition B) the moments of
symmetric power L-functions at 1 twisted by the value at 1/2 of modular forms
L-functions, that is

(1)
∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z (z ∈ C)

where ω∗ is the usual harmonic weight (see (12)). Comparing (see Theorem C and
Proposition D) with the moments of symmetric power L-functions at 1 twisted by
the value of the symmetric square L-function at 1, that is

(2)
∑

f∈H∗
2(N)

ω∗(f)L(1, Sym2 f)L(1, Symm f)z (z ∈ C),
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we show in Corollary E that (1) and (2) have asymptotically (up to a multiplicative
factor 1/ζ(2)) the same value when the powerm is even. This equality is astonishing
since half of the values L(1/2, f) are expected to be 0 whereas L(1, Sym2 f) is always
positive. Since it is even expected that L(1, Sym2 f) ≫ [log log(3N)]−1, it could
suggest that L(1/2, f) is large when not vanishing.

Our computations also yield results on the size of L(1, Symm f) when subject
to condition on the nonvanishing of L(1/2, f) (see Corollary G) or to extremality
conditions for another symmetric power L-function (see Propositions J and K).

Before giving precisely the results, we introduce a few basic facts needed for the
exposition. More details shall be given in Section 2. Let f be an element of the set
H∗

2(N) of primitive forms of weight 2 and squarefree level N (i.e., over Γ0(N) and
without nebentypus). It admits a Fourier expansion

(3) f(z) =:

+∞∑

n=1

λf (n)
√
ne2πinz

in the upper half-plane H. Denote by St the standard representation of SU(2),

St : SU(2) → GL(C2)

M 7→ C2 → C2

x 7→ Mx

(for the basics on representations, see, e.g., [Vil68]). If ρ is a representation of
SU(2) and I is the identity matrix, define, for each g ∈ SU(2)

(4) D(X, ρ, g) := det[I −Xρ(g)]−1.

Denote by χρ the character of ρ. By Eichler [Eic54] and Igusa [Igu59], we know
that for every prime number p not dividing the level, |λf (p)| ≤ 2 so that there
exists θf,p ∈ [0, π] such that

λf (p) = χSt[g(θf,p)]

where

(5) g(θ) :=

(
eiθ 0
0 e−iθ

)

(in other words, λf (p) = 2 cos θf,p: this is the special case for weight 2 forms of
the Ramanujan conjecture proved by Deligne for every weights). Denote by P the
set of prime numbers. Consider the symmetric power L-functions of f defined for
every integer m ≥ 0 by

(6) L(s, Symm f) :=
∏

p∈P
Lp(s, Symm f)

where

Lp(s, Symm f) := D[p−s, Symm, g(θf,p)]

if p is coprime to the level N and

Lp(s, Symm f) := [1 − λf (pm)p−s]−1

otherwise. Here Symm denotes the composition of the mth symmetric power rep-
resentation of GL(2) and the standard representation of SU(2). In particular
Sym0(g) = 1 for all g ∈ GL(2) so that Sym0 is the trivial irreducible represen-
tation and L(s, Sym0 f) is the Riemann ζ function.
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We shall give all our results in a restrictive range for m. If we assume two
standard hypothesis – see Section 2.1 – the restriction is no longer necessary, i.e.,
all results are valid for every integer m ≥ 1.

1.1. Twisted moments. For each squarefree positive integer N , each positive
integer m and each complex number z, define

(7) Xz
m(N) :=

+∞∑

n=1

τz(n)

nm/2+1

+∞∑

q=1

�N(nmq)

q

where τz and �N are defined by

+∞∑

n=1

τz(n)

ns
:= ζ(s)z ,(8)

+∞∑

n=1

�N (n)

ns
:= ζN (2s) :=

ζ(2s)

ζ(N)(2s)
:=
∏

p∈P
p|N

(
1 − 1

p2s

)−1

,(9)

and

(10) L1,z

(
1

2
, 1; St, Symm;N

)

:= Xz
m(N)

∏

p∈P
(p,N)=1

∫

SU(2)

D(p−1/2, St, g)D(p−1, Symm, g)z dg

where dg stands for the Haar measure on SU(2). In the special case N = 1 write

(11) L1,z

(
1

2
, 1; St, Symm

)

:=
∏

p∈P

∫

SU(2)

D(p−1/2, St, g)D(p−1, Symm, g)z dg.

We also use the usual harmonic weight on the space of cuspidal forms

(12) ω∗(f) :=
1

4π(f, f)
· N

ϕ(N)

where (f, f) is the Petersson norm of f and ϕ is Euler’s totient function. We slightly
change the usual definition to obtain

lim
N→+∞

∑

f∈H∗
2(N)

ω∗(f) = 1

as N runs over squarefree integers (see Lemma 10 with m = n = 1) in order to
obtain an asymptotic average operator. We note logn for the logarithm iterated n
times: log1 := log and logn+1 := log ◦ logn. Our first result computes the twisted
moments as in (1).

Theorem A. Let m ∈ {1, 2, 4}. There exist two real numbers c > 0 and δ > 0
such that, for any squarefree integer N ≥ 1, for any complex number z verifying

|z| ≤ c
log(2N)

log2(3N) log3(20N)
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the following estimate holds:

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

= L1,z

(
1

2
, 1; St, Symm;N

)
+Om

(
exp

[
−δ log(2N)

log2(3N)

])

with an implicit constant depending only on m.

Moreover, we obtain an asymptotic expression as N tends to infinity in the next
proposition. Define, for each function g : Z>0 → R+, the set

(13) N (g) := {N ∈ Z>0 : µ(N)2 = 1, P−(N) ≥ g(N)}
where P−(N) is the smallest prime divisor of N with the convention P−(1) := +∞,
ω(N) is the number of distinct prime divisors of N and µ is the Möbius function.

Proposition B. Let ξ be a function such that ξ(N) → +∞ as N → +∞. Then

L1,z

(
1

2
, 1; St, Symm;N

)
= L1,z

(
1

2
, 1; St, Symm

)
[1 + om(1)]

uniformly for

(14)

{
N ∈ N

(
ξ(·)max

{
ω(·), [(|z| + 1)ω(·)]2/3, (|z| + 1)ω(·)1/2

})
,

|z| ≤ c log(2N)/[log2(3N) log3(20N)].

Remark. Condition (14) is certainly satisfied for

N ∈ N
(
log3/2

)
and |z| ≤ c log(2N)/[log2(3N) log3(20N)].

For a comparison of the behaviour of L(1/2, f) and L(1, Sym2 f) we next com-
pute the moments of L(1, Symm f) twisted by L(1, Sym2 f). Define

(15) X1,z
2,m(N) := ζN (2)

+∞∑

n=1

τz(n)�N (nm)

nm/2+1

and

(16) L1,z
(
1, 1; Sym2, Symm;N

)

:= X1,z
2,m(N)

∏

p∈P
(p,N)=1

∫

SU(2)

D(p−1, Sym2, g)D(p−1, Symm, g)z dg.

For the special case N = 1 we get

(17) L1,z
(
1, 1; Sym2, Symm

)

:=
∏

p∈P

∫

SU(2)

D(p−1, Sym2, g)D(p−1, Symm, g)z dg.

Theorem C. Let m ∈ {1, 2, 4}. There exist two real numbers c > 0 and δ > 0
such that, for any squarefree integer N ≥ 1, for any complex number z verifying

|z| ≤ c
log(2N)

log2(3N) log3(20N)
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the following estimate holds:

∑

f∈H∗
2(N)

ω∗(f)L
(
1, Sym2 f

)
L(1, Symm f)z

= L1,z
(
1, 1; Sym2, Symm;N

)
+ O

(
exp

[
−δ log(2N)

log2(3N)

])

with an implicit constant depending only on m.

Again, we obtain an asymptotic expansion in the following proposition.

Proposition D. Let ξ be a function such that ξ(N) → +∞ as N → +∞. Then

L1,z
(
1, 1; Sym2, Symm;N

)
= L1,z

(
1, 1; Sym2, Symm

)
[1 + om(1)]

uniformly for

(18)

{
N ∈ N

(
ξ(·)max

{
ω(·)1/2, [(|z| + 1)ω(·)]2/(m+2)

})
,

|z| ≤ c log(2N)/[log2(3N) log3(20N)].

Remark. Condition (18) is certainly satisfied for

N ∈ N
(
log4/3

)
and |z| ≤ c log(2N)/[log2(3N) log3(20N)].

From Theorems A and C and

∏

p∈P

∫

SU(2)

D(p−1, Sym2m, g)zD(p−1/2, St, g) dg

=
1

ζ(2)

∏

p∈P

∫

SU(2)

D(p−1, Sym2m, g)zD(p−1, Sym2, g) dg

(see Lemma 3), we deduce the following astonishing result.

Corollary E. Let m ∈ {2, 4}. For any N ∈ N (log) and f ∈ H∗
2(N), for any

z ∈ C, the following estimate holds:

lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

= lim
N→∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1, Sym2 f)L(1, Symm f)z.

This identity is not valid when considering an odd symmetric power of f . For
example,

(19) lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, f)

=
∏

p∈P

(
1 +

1

p3/2
+O

(
1

p2

))

and

(20) lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L
(
1, Sym2 f

)
L(1, f) =

∏

p∈P

(
1 +O

(
1

p2

))
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so that the quotient of (19) by (20) is

∏

p∈P

(
1 +

1

p3/2
+O

(
1

p2

))

whereas

(21) lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Sym3 f) =

∏

p∈P

(
1 +O

(
1

p2

))

and

(22) lim
N→∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1, Sym2 f)L(1, Sym3 f)

=
∏

p∈P

(
1 +O

(
1

p2

))

so that the quotient of (21) by (22) is

∏

p∈P

(
1 +O

(
1

p2

))
.

The key point of Corollary E is the fact that the coefficients appearing in the series
expansion of D(X, Sym2m, g) have only even harmonics – see equations (48) and
(49). See Remark 4 for further details.

1.2. Extremal values. The size of the values L(1, Symm f) in the family H∗
2(N)

is now well studied after works of Goldfeld, Hoffstein & Lieman [GHL94], Royer
& Wu [RW05], Cogdell & Michel [CM04] and Lau & Wu [LW07] (among others).
The aim of Proposition F and Corollary G is to study the extremal values in some
smaller family. More precisely, we study the extremal values in families determined
by the nonvanishing of L

(
1
2 , f
)

and show that the extremal values are the same
than in the full family.

We begin in studying the asymptotic behaviour, as the order z tends to ±∞ in
R, of the values

L1,z

(
1

2
, 1; St, Symm

)
and L1,z

(
1, 1; Sym2, Symm

)

in the following proposition. Denote by γ∗ the constant determined by

∑

p≤x

1

p
= log2 x+ γ∗ +O

(
1

log x

)
(x ≥ 2).

If γ is the Euler constant, we have

(23) γ∗ = γ +
∑

p∈P

[
log

(
1 − 1

p

)
+

1

p

]
.

Proposition F. Let m ∈ {1, 2, 4}. As r → +∞ in R, the following estimates hold:

logL1,±r

(
1

2
, 1; St, Symm

)
= Symm

± r log2 r + Symm,1
± r +Om

(
r

log r

)



8 EMMANUEL ROYER AND JIE WU

and

logL1,±r
(
1, 1; Sym2, Symm

)
= Symm

± r log2 r + Symm,1
± r +Om

(
r

log r

)

where

(24) Symm
± := max

g∈SU(2)
±χSymm(g)

and

(25) Symm,1
± := γ∗ Symm

± +

∑

p∈P

{
± log

(
± max

g∈SU(2)
±D(p−1, Symm, g)

)
− Symm

±
p

}
.

Remark. Some values of Symm
± and Symm,1

± may be easily computed (see table 1.2).
The reason why Symm

− is easy computed in the case m odd but not in the case m

m 2 4 even odd
Symm

+ 3 5 m+ 1 m+ 1
Symm

− 1 5/4 m+ 1

Symm,1
+ 3γ 5γ (m+ 1)γ (m+ 1)γ

Symm,1
− γ − 2 log ζ(2) (m+ 1)[γ − log ζ(2)]

Table 1. Some values of Symm
± and Symm,1

±

even is that the minimum of the Chebyshev polynomial (see (36)) of second kind
is well known when m is odd (due to symmetry reasons) and not when m is even.

For Symm,1
− , see also Remark 1. Cogdell & Michel [CM04, Theorem 1.12] found the

same asymptotic behaviour for the non twisted moments.

Since L(1/2, f) ≥ 0, we may deduce extremal values of L(1, Symm f) with the
extra condition of nonvanishing of L(1/2, f).

Corollary G. Let m ∈ {1, 2, 4} and N ∈ N
(
log3/2

)
. Then there exists fm ∈

H∗
2(N) and gm ∈ H∗

2(N) satisfying

L(1, Symm fm) ≥ η+(m) [log2(3N)]Symm
+ and L

(
1

2
, fm

)
> 0,

L(1, Symm gm) ≤ η−(m) [log2(3N)]− Symm
− and L

(
1

2
, gm

)
> 0,

where η±(m) = [1 + om(1)] exp(Symm,1
± ).

Remark. The hypothesis N ∈ N
(
log3/2

)
is certainly crucial since we can prove

the following result. Fix m ∈ {1, 2, 4}. Denote, for all ω ∈ Z>0, by Nω the product
of the first ω primes. Assume Grand Riemman hypothesis for the mth symmetric
power L-functions of primitive forms. Then, there exist Am > 0 and Bm > 0 such
that, for all ω ∈ Z>0 and f ∈ ⋃ω∈Z>0

H∗
2(Nω) we have

Am ≤ L(1, Symm f) ≤ Bm.



VALUES OF SYMMETRIC POWER L-FUNCTIONS AND HECKE EIGENVALUES 9

1.3. Hecke eigenvalues. The Sato-Tate conjecture predicts that the sequence of
the Hecke eigenvalues at prime numbers of a fixed primitive form is equidistributed
for the Sato-Tate measure on [−2, 2]. More precisely, for all [a, b] ⊂ [−2, 2], it is
expected that

(26) lim
x→+∞

# {p ∈ P : p ≤ x and λf (p) ∈ [a, b]}
#{p ∈ P : p ≤ x} = FST(b) − FST(a)

with

FST(u) :=
1

π

∫ u

−2

√
1 − t2

4
dt.

Note that in (26), the primitive form f is fixed and hence, the parameter x can
not depend on the level of f . The Sato-Tate conjecture (26) is sometimes termed
horizontal Sato-Tate equidistribution conjecture in opposition to the vertical Sato-
Tate equidistribution Theorem (due to Sarnak [Sar87], see also [Ser97]) in which
the equidistribution is proved for a fixed prime number p. For all [a, b] ⊂ [−2, 2], it
is proved that

lim
N→+∞

{f ∈ H∗
2(N) : λf (p) ∈ [a, b]}

#H∗
2(N)

= FST(b) − FST(a).

In vertical and horizontal distributions, there should be less Hecke eigenvalues in an
interval near 2 than in an interval of equal length around 0. In Propositions H and I,
we show that, for many primitive forms, the first few (in term of the level) Hecke
eigenvalues concentrate near (again in term of the level) 2. To allow comparisons,
we recall the following estimate:

∑

p≤[log(2N)]ε

1

p
= log3(20N)

{
1 +Oε

(
1

log3(20N)

)}
.

Let N ∈ N
(
log3/2

)
. For C > 0, denote by

H∗+
2 (N ;C, Symm)

the set of primitive forms f ∈ H∗
2(N) such that

(27) L(1, Symm f) ≥ C [log2(3N)]
Symm

+ .

For C > 0 small enough, such a set is not empty (by an easy adaptation of [CM04,
Corollary 1.13]) and by the method developed in [RW05] its size is large (although
not a positive proportion of #H∗

2(N)).

Proposition H. Let m ∈ {1, 2, 4} and N an integer of N
(
log3/2

)
. For all ε > 0

and ξ(N) → ∞ (N → ∞) with ξ(N) ≤ log3(20N), for all f ∈ H∗+
2 (N ;C, Symm)

such that Grand Riemann Hypothesis is true for L(s, Symm f), the following esti-

mate holds:
∑

p≤[log(2N)]ε

λf (pm)≥Symm
+ −ξ(N)/ log3(20N)

1

p
= log3(20N)

{
1 +Oε,m

(
1

ξ(N)

)}
.

Our methods allow to study the small values of the Hecke eigenvalues. Denote
by H∗−

2 (N ;C, Symm) the set of primitive forms f ∈ H∗
2(N) such that

L(1, Symm f) ≤ C [log2(3N)]
− Symm

− .
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Proposition I. Let N ∈ N
(
log3/2

)
. For all ε > 0 and ξ(N) → ∞ (N → ∞)

with ξ(N) ≤ log3(20N), for all f ∈ H∗−
2 (N ;C, Sym2) such that Grand Riemann

Hypothesis is true for L(s, Sym2 f), the following estimate holds:

∑

p≤[log(2N)]ε

λf (p)≤[ξ(N)/ log3(20N)]1/2

1

p
= log3(20N)

{
1 +Oε

(
1

ξ(N)

)}
.

Remark. (1) Propositions H and I are also true with the extra condition L(1/2, f) >
0.

(2) The study of extremal values of symmetric power L-functions at 1 and
Hecke eigenvalues in the weight aspect has been done in [LW06] by Lau &
the second author.

1.4. Simultaneous extremal values. Recall that assuming Grand Riemann Hy-
pothesis formth symmetric power L-functions, there exists two constantsDm, D

′
m >

0 such that for all f ∈ H∗
2(N), we have

Dm[log2(3N)]− Symm
− ≤ L(1, Symm f) ≤ D′

m[log2(3N)]Symm
+

(see [CM04, (1.45)]). We established in Section 1.3 a link between the extremal
values of L(1, Symm f) and the extremal values of λf (pm). If we want to study the
simultaneous extremality of the sequence

L(1, Sym2 f), . . . , L(1, Sym2ℓ f)

(as f varies), we can study the simultaneous extremality of the sequence

λf (p2), . . . , λf (p2ℓ).

This is equivalent to the simultaneous extremality of the sequence of Chebyshev
polynomials

X2, . . . , X2ℓ

(defined in (36)). But those polynomials are not minimal together. An easy resaon
is the Clebsh-Gordan relation

X2
ℓ =

ℓ∑

j=0

X2j

(see (65)): the minimal value of the right-hand side would be negative if the Cheby-
shev polynomials were all minimal together. Hence, we concentrate on L(1, Sym2 f)
and L(1, Sym4 f) and prove that L(1, Sym2 f) and L(1, Sym4 f) can not be minimal
together but are maximal together.

Proposition J. Assume Grand Riemann Hypothesis for symmetric square and

fourth symmetric power L-functions. Let C > 0.

(1) There exists no N ∈ N (log) for which there exists f ∈ H∗
2(N) satisfying

simultaneously

L(1, Sym2 f) ≤ C [log2(3N)]
− Sym2

−

and

L(1, Sym4 f) ≤ C [log2(3N)]
− Sym4

− .
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(2) Let N ∈ N (log). If f ∈ H∗
2(N) satisfies

L(1, Sym2 f) ≥ C [log2(3N)]Sym2
+

then

L(1, Sym4 f) ≥ C [log2(3N)]
Sym4

+ .

Proposition K. Let m ≥ 1. Assume Grand Riemann Hypothesis for symmetric

square and mth symmetric power L-functions. Let C,D > 0. There exists no

N ∈ N (log) for which there exists f ∈ H∗
2(N) satisfying simultaneously

L(1, Symm f) ≥ C [log2(3N)]
Symm

+

and

L(1, Sym2 f) ≤ D [log2(3N)]− Sym2
− .

1.5. A combinatorial interpretation of the twisted moments. The negative
moments of L(1, Sym2 f) twisted by L(1/2, f) have a combinatorial interpretation
which leads to Corollary E. Interpretations of the same flavour have been given in
[Roy03] and [HR04]. An interpretation of the traces of Hecke operators, implying
the same objects, is also to be found in [FOP04]. We shall denote the vectors with
boldface letters: α = (α1, · · · , αn). Define tr α =

∑n
i=1 αi and |α| =

∏n
i=1 αi. Let

µ be the Moebius function. Suppose n ∈ N and define

En(b) :=

{
d ∈ Zn−1

≥0 : di |
(

b1 · · · bi
d1 · · · di−1

, bi+1

)2

, ∀i ∈ [1, n− 1]

}
,

w−n(r) =
∑

a,b,c∈Zn
≥0

|ab2
c
3|=r

[
n∏

i=1

µ(aibici)µ(bi)

]
∑

d∈En(ab)

|d|
|ab|

and

W−n :=
∏

p∈P

+∞∑

ν=0

w−n(pν)

pν
.

Using the short expansions of L(1, Sym2 f) (see (73)) and L(1/2, f) (see (72)) with
Iwaniec, Luo & Sarnak trace formula (see Lemma 10) we obtain

lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Sym2 f)−n = ζ(2)−nW−n.

The method developed in [Roy03, §2.1] leads to the following lemma.

Lemma L. Let n ≥ 0 and k ∈ [0, n] be integers. Define

Rk(p) :=






p if k = 0 ;

1 if k = 1 ;∑

δ∈{−1,0,1}k−1

δ1+···+δi≤max(0,δi)

ptr δ if k ≥ 2.

Then,

W−n =
1

ζ(3)n

∏

p∈P

1

p

n∑

k=0

(−1)k

(
n

k

)
Rk(p)

(
p

p2 + p+ 1

)k

.



12 EMMANUEL ROYER AND JIE WU

Assume k ≥ 1. Writing

Rk(p) =:

1∑

q=−(k−1)

ξk,qp
q,

the integer ξk,q is the number of paths in Z2 which

• rely (0, 0) to (k − 1, q)
• with steps (1,−1), (1, 0) or (1, 1)
• never going above the abscissas axis
• except eventually with a step (1, 1) that is immediately followed by a step

(1,−1) if it is not the last one.

In other words, we count partial Riordan paths (see figure 1).

(0, 0) (k − 1, 0)

(k − 1, q)

Figure 1. A partial Riordan path

For q = 0, we obtain a Riordan path. Riordan paths have been studied in [Roy03,
§1.2] where the number of Riordan paths from (0, 0) to (k, 0) was denoted by Rk+2

(this number is called the k + 2th Riordan number). We then have

ξk,0 = Rk+1.

This remains true for k = 0 since R1 = 0. The Riordan paths rely to our problem
since the first author proved in [Roy03, Proposition 11] that

(28) lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L(1, Sym2 f)−n =
1

ζ(3)n

∏

p∈P
ℓn

(
p

p2 + p+ 1

)

where

ℓn(x) :=
n∑

k=0

(−1)k

(
n

k

)
Rkx

k

=
4

π

∫ π/2

0

[
1 + x(1 − 4 sin2 θ)

]n
cos2 θ dθ.
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Using the recursive relation

Rk(p) =

(
p+ 1 +

1

p

)
Rk−1(p) − p(p+ 1)Rk−1

which expresses that a path to (k − 1, q) has is last step coming from one of the
three points (k − 2, q + 1), (k − 2, q), (k − 2, q − 1) (see figure 2) we get

(29)

n+1∑

k=0

(−1)k

(
n+ 1

k

)
Rk(p)

(
p

p2 + p+ 1

)k

=
p2(p+ 1)

p2 + p+ 1
ℓn

(
p

p2 + p+ 1

)
.

(0, 0) (k − 1, 0)

(k − 1, q)

(k − 2, q + 1)

(k − 2, q)

(k − 2, q − 1)

Figure 2. Relation between ξk,q, ξk−1,q−1, ξk−1,q and ξk−1,q+1

Reintroducing (29) in Lemma L and comparing with (28) gives

lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Sym2 f)−n =

lim
N→+∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1, Sym2 f)−n+1.

1.6. A few notation. In this text we shall use the following notation not yet
introduced. We give at the end of the text (see Section 8) an index of notation. If a
and b are two complex numbers, then δ(a, b) = 1 if a = b and δ(a, b) = 0 otherwise.
If n is an integer, define �(n) = 1 if n is a square and �(n) = 0 otherwise. Remark
that � is not the function �1 (since �1(n) = δ(n, 1)). If p is a prime number, vp(n)
is the p-valuation of n. Moreover, if N is another integer, then we decompose n as
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n = nNn
(N) with p | nN ⇒ p | N and (n(N), N) = 1. The functions 1N and 1(N)

are defined by

(30) 1N (n) :=

{
1 if the prime divisors of n divide N

0 otherwise

and

(31) 1(N)(n) :=

{
1 if (n,N) = 1

0 otherwise.

The letters s and ρ are devoted to complex numbers and we set ℜe s = σ and
ℜe ρ = r.

2. Modular tools

In this section, we establish some results needed for the forthcoming proofs of
our results.

2.1. Two standard hypothesis. We introduce two standard hypothesis that shall
allow us to prove our results for each symmetric power L–function. If f ∈ H∗

2(N),
we have defined L(s, Symm f) in (6) as being an Euler product of degree m + 1.
These representations allow to express the multiplicativity relation of n 7→ λf (n):
this function is multiplicative and, if p ∤ N and ν ≥ 0, we have

(32) λf (pν) = χSymν [g(θf,p)].

Recall also that n 7→ λf (n) is strongly multiplicative on integers having their prime
factors in the support of N and that if n | N , then

(33) |λf (n)| =
1√
n
.

The first hypothesis on the automorphy of L(s, Symm f) for all f ∈ H∗
2(N) is

denoted by Symm(N). It is has been proved in the cases m ∈ {1, 2, 3, 4} (see
[GJ78], [KS02b], [KS02a] and [Kim03]). The second hypothesis is concerned with
the eventual Landau-Siegel zero of the mth symmetric power L-functions, it is
denoted by LSZm(N) and has been proved for m ∈ {1, 2, 4} (see [HL94], [GHL94],
[HR95] and [RW03]).

Fix m ≥ 1 and N a squarefree positive integer.

Hypothesis Symm(N). For every f ∈ H∗
2(N), there exists an automorphic cuspi-

dal selfdual representation of GLm+1(AQ) whose local L factors agree with the ones

of the function L(s, Symm f). Define

L∞(s, Symm f) :=




π−s/2Γ
(s

2

)
2u

u∏

j=1

(2π)−s−jΓ (s+ j) if m = 2u with u even

π−(s+1)/2Γ

(
s+ 1

2

)
2u

u∏

j=1

(2π)−s−jΓ (s+ j) if m = 2u with u odd

2u+1
u∏

j=0

(2π)−s−j−1/2Γ

(
s+ j +

1

2

)
if m = 2u+ 1.
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Then there exists ε(Symm f) ∈ {−1, 1} such that

Nms/2L∞(s, Symm f)L(s, Symm f) =

ε(Symm f)Nm(1−s)/2L∞(1 − s, Symm f)L(1 − s, Symm f).

We refer to [CM04] for a discussion on the analytic implications of this conjecture.
The second hypothesis we use is the non existence of Landau-Siegel zero. Let N
squarefree such that hypothesis Symm(N) holds.

Hypothesis LSZm(N). There exists a constant Am > 0 depending only on m
such that for every f ∈ H∗

2(N), L(s, Symm f) has no zero on the real interval

[1 −Am/ log(2N), 1].

2.2. Dirichlet coefficients of the symmetric power L-functions. In this sec-
tion, we study the Dirichlet coefficients of L(s, Symm f)z. We derive our study from
the one of Cogdell & Michel but try to be more explicit in our specific case. We
begin with the polynomial D introduced in (4). Since Symm is selfdual, we have,
D(X, Symm, g) ∈ R[X ] and for x ∈ [0, 1[,

(34) (1 + x)−m−1 ≤ D(x, Symm, g) ≤ (1 − x)−m−1 .

Remark 1. Note that the upper bound is optimal since the equation

Symm g = I

admits always I as a solution whereas the lower bound is optimal only for odd m
since Symm g = −I has a solution only for odd m.

Evaluating (34) at g = g(π), we find

min
g∈SU(2)

D
(
X, Sym2m+1, g

)
= (1 +X)−2m−2.

Next,

D
[
X, Sym2m, g

( π

2m

)]

= (1 −X)−1
m∏

j=1

(
1 −Xe2j πi

2m

)−1 (
1 −Xe−2j πi

2m

)−1

= (1 +X)−1(1 −X2m)−1

so that

min
g∈SU(2)

D
(
X, Sym2m, g

)
≤ (1 +X)−1(1 −X2m)−1.

For every g ∈ SU(2), define λz,ν
Symm(g) by the expansion

(35) D(X, Symm, g)z =:

+∞∑

ν=0

λz,ν
Symm(g)Xν .

The function g 7→ λz,ν
Symm(g) is central so that it may be expressed as a linear com-

bination of the characters of irreducible representations of SU(2). These characters
are defined on the conjugacy classes of SU(2) by

(36) χSymm [g(θ)] = tr Symm[g(θ)] =
sin[(m+ 1)θ]

sin θ
= Xm(2 cos θ)
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where Xm is the mth Chebyshev polynomial of second kind on [−2, 2]. We then
have

(37) λz,ν
Symm(g) =

∑

m′≥0

µz,ν

Symm,Symm′χSymm′ (g)

with

µz,ν

Symm,Symm′ =

∫

SU(2)

λz,ν
Symm(g)χSymm′ (g) dg(38)

=
2

π

∫ π

0

λz,ν
Symm [g(θ)] sin[(m′ + 1)θ] sin θ dθ.(39)

We call µz,ν

Symm,Symm′ the harmonic of λz,ν
Symm of order m′. In particular,

(40) µz,0

Symm,Symm′ = δ(m′, 0)

and, since λz,1
Symm(g) = zχSymm(g), we have

(41) µz,1

Symm,Symm′ = zδ(m,m′).

From the expansion

(42) (1 − x)−z =

+∞∑

ν=0

(
z + ν − 1

ν

)
xν

we deduce

D[x, Symm, g(θ)]z =

+∞∑

ν=0






∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
 eiℓ(m,ν)θ





xν

with

(43) ℓ(m,ν) := mν − 2

m∑

k=1

kνk+1

and gets

(44) λz,ν
Symm [g(θ)] =

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)

 eiℓ(m,ν)θ.

This function is entire in z, then assuming that z in real, using that the left hand
side is real in that case, taking the real part in the right hand side and using analytic
continuation we have for all z complex

(45) λz,ν
Symm [g(θ)] =

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
 cos [ℓ(m,ν)θ] .
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It follows that (39) may be rewritten as

µz,ν

Symm,Symm′ =
2

π

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)



×
∫ π

0

cos [ℓ(m,ν)θ] sin[(m′ + 1)θ] sin θ dθ

that is

(46) µz,ν

Symm,Symm′ =
1

2

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)

∆(m,m′,ν)

with

(47) ∆(m,m′,ν) =






2 if ℓ(m,ν) = 0 and m′ = 0

1 if ℓ(m,ν) ±m′ = 0 and m′ 6= 0

−1 if ℓ(m,ν) ±m′ = ∓2

0 otherwise.

In particular, µz,ν

Symm,Symm′ = 0 if m′ > mν thus

(48) λz,ν
Symm(g) =

mν∑

m′=0

µz,ν

Symm,Symm′χSymm′ (g).

Equation (47) also immediately gives

(49) µz,ν

Sym2m,Sym2m′+1 = 0

and

µz,ν

Sym2m+1,Symm′ = 0 if m′ and ν have different parity

for all m and m′.
For m = 1, we have

(50) D[X, St, g(θ)] =
1

1 − 2 cos(θ)X +X2
=

+∞∑

ν=0

Xν(2 cos θ)Xν

hence λ1,ν
St (g) = χSymν (g) for all g ∈ SU(2). It follows that

(51) µ1,ν

St,Symν′ = δ(ν, ν′).

Now, equation (45) implies

|λz,ν
Symm [g(θ)]| ≤

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(|z|+ νj+1 − 1

νj+1

)
 = λ

|z|,ν
Symm [g(0)]

and
+∞∑

ν=0

λ
|z|,ν
Symm [g(0)]Xν = det[I −X Symm (g(0))]−|z| = (1 −X)−(m+1)|z|
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so that

(52) |λz,ν
Symm [g(θ)]| ≤

(
(m+ 1)|z| + ν − 1

ν

)
.

From (47), remarking that the first case is incompatible with the second and third
ones, that the two cases in the second case are incompatible and that the two cases
of the third case are incompatible, we deduce that

mν∑

m′=0

|∆(m,m′,ν)| ≤ 2

and (46) gives

(53)

mν∑

m′=0

|µz,ν

Symm,Symm′ | ≤
(

(m+ 1)|z|+ ν − 1

ν

)
.

This is a slight amelioration of Proposition 2.1 of [CM04] in the case of SU(2). It
immediately gives

(54) |µz,ν

Symm,Symm′ | ≤
(

(m+ 1)|z| + ν − 1

ν

)
.

To conclude this study, define the multiplicative function n 7→ λz
Symm f (n) by the

expansion

(55) L(s, Symm f)z =:

+∞∑

n=1

λz
Symm f (n)n−s.

For easy reference, we collect the results of the previous lines in the

Proposition 2. Let N be a squarefree integer, f ∈ H∗
2(N) ; let ν ≥ 0 and m > 0

be integers and z be a complex number. Then

λz
Symm f (pν) =





τz(p
ν)λf (pmν) if p | N

mν∑

m′=0

µz,ν

Symm,Symm′λf (pm′

) if p ∤ N .

Moreover,

|λz
Symm f (pν)| ≤ τ(m+1)|z|(p

ν)

µ1,ν

St,Symν′ = δ(ν, ν′)

µz,0

Symm,Symm′ = δ(m′, 0)

µz,1

Symm,Symm′ = zδ(m,m′)

µz,ν

Sym2m,Sym2m′+1 = 0

µz,ν

Sym2m+1,Symm′ = 0if m′ and ν have different parity,

and
mν∑

m′=0

|µz,ν

Symm,Symm′ | ≤
(

(m+ 1)|z|+ ν − 1

ν

)
.
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Proof. We just need to prove the first equation. Assume that p | N , then
∞∑

ν=0

λz
Symm f (pν)p−νs = [1 − λf (pν)p−s]−z

and the result follows from (42) since n 7→ λf (n) is strongly multiplicative on
integers having their prime factors in the support of N . In the case where p ∤ N ,
we have ∞∑

ν=0

λz
Symm f (pν)p−νs = D[p−s, Symm, g(θf,p)]

−z

so that the results are consequences of

λz
Symm f (pν) = λz,ν

Symm [g(θf,p)]

and especially of (48) and (32). �

We shall need the Dirichlet series

(56) W z,ρ
m,N (s) =

+∞∑

n=1

̟z,ρ
m,N (n)

ns

where ̟z,ρ
m,N is the multiplicative function defined by

(57) ̟z,ρ
m,N (pν) =






0 if p | N
mν∑

m′=0

µz,ν

Symm,Symm′

pρm′ otherwise

for all prime number p and ν ≥ 1. Similarly, define a multiplicative function w̃z,ρ
m,N

by

(58) w̃z,ρ
m,N (pν) =






0 if p | N
mν∑

m′=0

|µz,ν

Symm,Symm′ |
pρm′ otherwise.

Using equations (41) and (54), we have

(59)

+∞∑

ν=0

|w̃z,ρ
m,N (pν)|
pσν

≤

(
1 − 1

pσ

)−(m+1)|z|
− (m+ 1)|z|

pσ
+

(m+ 1)|z|
pσ+r

(
1 − 1

pσ

)−(m+1)|z|−1

so that the series converges for ℜe s > 1/2 and ℜe s+ ℜe ρ > 1. We actually have
an integral representation.

Lemma 3. Let s and ρ in C such that ℜe s > 1/2 and ℜe s+ ℜe ρ > 1. Let N be

squarefree, then

W z,ρ
m,N (s) =

∏

p∤N

∫

SU(2)

D(p−s, Symm, g)zD(p−ρ, St, g) dg.

Moreover,

W z,ρ
2m,N (s) =

1

ζ(N)(4ρ)

∏

p∤N

∫

SU(2)

D(p−s, Sym2m, g)zD(p−2ρ, Sym2, g) dg.
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Remark 4. The key point of Corollary E is the fact that the coefficients appearing
in the series expansion of D(X, Sym2m, g) have only even harmonics – see equations
(48) and (49). This allows to get the second equation in Lemma 3. It does not
seem to have an equivalent for D(X, Sym2m+1, g). Actually, we have

W z,ρ
2m+1,N (s) =

∏

p∤N

∫

SU(2)

[1 − p−4ρ + p−ρ(1 − p−2ρ)χSt(g)]×

D(p−s, Sym2m+1, g)zD(p−2ρ, Sym2, g) dg

and the extra term p−ρ(1− p−2ρ)χSt(g) is the origin of the fail in obtaining Corol-
lary E for odd powers.

Before proving Lemma 3, we prove the following one

Lemma 5. Let g ∈ SU(2), ℓ ≥ 2 an integer and |X | < 1. Then

+∞∑

k=0

χSymk(g)Xk = D(X, St, g)

and
+∞∑

k=0

χSymkℓ(g)Xk = [1 + χSymℓ−2(g)X ]D(X, St, gℓ).

In addition,
+∞∑

k=0

χSym2k(g)Xk = (1 −X2)D(X, Sym2, g).

Proof. Let g ∈ SU(2). Denote by eiθ and e−iθ its eigenvalues. The first point is
equation (50). If ℓ ≥ 2, with ξ = exp(2πi/ℓ), λ = eiθ and x = 2 cos θ we have

+∞∑

ν=0

Xℓν(x)tℓν =
1

ℓ

ℓ−1∑

j=0

1

(1 − λξjt)(1 − λξjt)
.

On the other hand,

ℓ−1∑

j=0

1

1 − λξjt
=

ℓ−1∑

j=0

+∞∑

n=0

λnξjntn =
ℓ

1 − λℓtℓ

so that

+∞∑

ν=0

Xℓν(x)tν =

1 +
λℓ−1 − λ

ℓ−1

λ− λ
t

1 −
(
λℓ + λ

ℓ
)
t+ t2

.

Since

λℓ−1 − λ
ℓ−1

λ− λ
= Xℓ−2(x)

we obtain the announced result. In the case ℓ = 2, it leads to

+∞∑

k=0

χSym2k(g)tk =
1 + t

(1 − λ2t)(1 − λ
2
t)

= (1 − t2)D(t, Sym2, g).

�
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Proof of Lemma 3. It follows from

mν∑

m′=0

µz,ν

Symm,Symm′

pρm′ =
+∞∑

m′=0

µz,ν

Symm,Symm′

pρm′

and the expression (38) that

W z,ρ
m,N (s) =

∏

p∤N

∫

SU(2)

+∞∑

ν=0

λz,ν
Symm(g)

pνs

+∞∑

m′=0

χSymm′ (g)

pm′ρ
dg.

The first result is then a consequence of Lemma 5. Next, we deduce from (49) that

W z,ρ
2m,N (s) =

∏

p∤N

+∞∑

ν=0

1

pνs

+∞∑

m′=0

µz,ν

Sym2m,Sym2m′

p2ρm′

and the second result is again a consequence of Lemma 5. �

We also prove the

Lemma 6. Let m ≥ 1. There exists c > 0 such that, for all N squarefree, z ∈ C,

σ ∈ ]1/2, 1] and r ∈ [1/2, 1] we have

∑

n≥1

w̃z,ρ
m,N (n)

ns
≤ exp

[
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

)]

where

(60) zm := (m+ 1)min{n ∈ Z≥0 : n ≥ |z|}.
Proof. Equation (59) gives

∏

pσ≤zm+3

∑

ν≥0

1

pνσ

∑

0≤ν′≤mν

|µz,ν

Symm,Symν′ |
prν′ ≤

∏

pσ≤zm+3

(
1 − 1

pσ

)−zm−1(
1 +

zm

pσ+1/2

)
.

Using
∑

p≤y

1

pσ
≤ log2 y +

y1−σ − 1

(1 − σ) log y

valid uniformely for 1/2 ≤ σ ≤ 1 and y ≥ e2 (see [TW03, Lemme 3.2]) we obtain

∏

pσ≤zm+3

+∞∑

ν=0

w̃z,r
m,N (pν)

pνσ
≤

exp

[
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

)]
.

For pσ > zm + 3, again by (59), we have

∑

ν≥0

1

pνσ

∑

0≤ν′≤mν

|µz,ν

Symm,Symν′ |
prν′ ≤ 1 +

c(zm + 3)2

p2σ
+
c(zm + 3)

pσ+1/2
,
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so that

∏

pσ>zm+3

+∞∑

ν=0

w̃z,r
m,N (pν)

pνσ
≤ ec(zm+3)1/σ/ log(zm+3)

≤ exp

[
c(zm + 3)

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

]
.

�

For the primes dividing the level, we have the

Lemma 7. Let ℓ,m ≥ 1. For σ ∈ ]1/2, 1] and r ∈ [1/2, 1] we have

∏

p|N

∫

SU(2)

D(p−s, Symm, g)zD(p−ρ, Symℓ, g) dg = 1 +Om,ℓ(Err)

with

Err :=
ω(N)

P−(N)2r
+

|z|ω(N)

P−(N)r+σ
+

|z|2ω(N)

P−(N)2σ

uniformely for
{
N ∈ N

(
max

{
ω(·)1/(2r), [|z|ω(·)]1/(r+σ), [|z|2ω(·)]1/(2σ)

})
,

z ∈ C.

Proof. Write

Ψz
m,ℓ(p) :=

∫

SU(2)

D(p−s, Symm, g)zD(p−ρ, Symℓ, g) dg.

Using (37) and the orthogonality of characters, we have

Ψz
m,ℓ(p) =

+∞∑

ν1=0

+∞∑

ν2=0

p−ν1s−ν2ρ

min(mν1,ℓν2)∑

ν=0

µz,ν1

Symm,Symνµ
1,ν2

Symℓ,Symν .

Proposition 2 gives

|Ψz
m,ℓ(p) − 1| ≤

+∞∑

ν2=2

(
ν2 + ℓ

ν2

)
1

prν2
+

|z|
pσ

+∞∑

ν2=1

(
ν2 + ℓ

ν2

)
1

prν2

+

+∞∑

ν1=2

(
(m+ 1)|z| + ν1 − 1

ν1

)
1

pσν1

+∞∑

ν2=0

(
ν2 + ℓ

ν2

)
1

prν2

≪m,ℓ
1

p2r
+

|z|
pr+σ

+
|z|2
p2σ

which leads to the result. �

Using (51) we similarly can prove the

Lemma 8. Let m ≥ 1 and z ∈ C, then
∫

SU(2)

D(p−1, Symm, g)zD(p−1/2, St, g) dg = 1 +Om

( |z|
p1+m/2

)

for p ≥ (m+ 1)|z| + 3.
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2.3. Dirichlet coefficients of a product of L-functions. The aim of this section
is to study the Dirichlet coefficients of the product

L(s, Sym2 f)L(s, Symm f)z.

Define λ1,z,ν
Sym2,Symm(g) for every g ∈ SU(2) by the expansion

(61) D(x, Sym2, g)D(x, Symm, g)z =:

+∞∑

ν=0

λ1,z,ν
Sym2,Symm(g)xν .

We have

(62) λ1,z,ν
Sym2,Symm(g) =

∑

(ν1,ν2)∈Z2
≥0

ν1+ν2=ν

λ1,ν1

Sym2(g)λ
z,ν2

Symm(g)

from that we deduce, using (52), that

|λ1,z,ν
Sym2,Symm(g)| ≤

(
(m+ 1)|z| + 2 + ν

ν

)
.

Since λ1,z,ν
Sym2,Symm is central, there exists (µ1,z,ν

Sym2,Symm,Symm′ )m′∈Z≥0
such that, for

all g ∈ SU(2) we have

(63) λ1,z,ν
Sym2,Symm(g) =

+∞∑

m′=0

µ1,z,ν

Sym2,Symm,Symm′χSymm′ (g)

where

µ1,z,ν

Sym2,Symm,Symm′ =

∫

SU(2)

λ1,z,ν
Sym2,Symm(g)χSymm′ (g) dg

=
2

π

∫ π

0

λ1,z,ν
Sym2,Symm(g) sin[(m′ + 1)θ] sin θ dθ.(64)

The Clebsh-Gordan relation [Vil68, §III.8] is

(65) χ
Symm′

1
χ

Symm′
2

=

min(m′
1,m′

2)∑

r=0

χ
Symm′

1+m′
2−2r .

In addition with (62) and (48), this relation leads to

(66) µ1,z,ν

Sym2,Symm,Symm′

=
∑

(ν1,ν2)∈Z2
≥0

ν1+ν2=ν

2ν1∑

m′
1=0

mν2∑

m′
2=0

|m′
2−m′

1|≤m′≤m′
1+m′

2

m′
1+m′

2≡m′ (mod 2)

µ1,ν1

Sym2,Symm′
1
µz,ν2

Symm,Symm′
2
.

It follows immediately from (66) that

µ1,z,ν

Sym2,Symm,Symm′ = 0 if m′ > max(2,m)ν.

Using also (40), we obtain

µ1,z,0

Sym2,Symm,Symm′ = δ(m′, 0)

and (41) gives

µ1,z,1

Sym2,Symm,Symm′ = zδ(m′,m) + δ(m′, 2).
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Finally, equation(66) and (49) give

µ1,z,ν

Sym2,Sym2m,Sym2m′+1 = 0.

By equations (62) and (44) we get

λ1,z,ν
Sym2,Symm [g(θ)] =

∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

∑

(ν′,ν′′)∈Z3
≥0×Zm+1

≥0

tr ν
′=ν′

tr ν
′′=ν′′




m∏

j=0

(
z + ν′′j+1 − 1

ν′′j+1

)
 cos[ℓ(2,m; ν′,ν′′)θ]

with

(67) ℓ(2,m; ν′,ν′′) = 2ν′ +mν′′ − 2

2∑

k=1

kν′k+1 − 2

m∑

k=1

kν′′k+1.

We deduce then from (64) that

µ1,z,ν

Sym2,Symm,Symm′ =

1

2

∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

∑

(ν′,ν′′)∈Z3
≥0×Zm+1

≥0

tr ν
′=ν′

tr ν
′′=ν′′




m∏

j=0

(
z + ν′′j+1 − 1

ν′′j+1

)

∆(2,m,m′; ν′,ν′′)

with

(68) ∆(2,m,m′; ν′,ν′′)

:=
4

π

∫ π

0

cos[ℓ(2,m; ν′,ν′′)θ] sin[(m′ + 1)θ] sin θ dθ.

From
max(2,m)ν∑

m′=0

|∆(2,m,m′; ν′,ν′′)| ≤ 2

we then have

max(2,m)ν∑

m′=0

|µ1,z,1

Sym2,Symm,Symm′ |

≤
∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

(
2 + ν′

ν′

)(
(m+ 1)|z| + ν′′ − 1

ν′′

)

≤
(

(m+ 1)|z|+ 2 + ν′′

ν′′

)
.

To conclude this study, define the multiplicative function

n 7→ λ1,z
Sym2 f,Symm f

(n)

by the expansion

(69) L(s, Sym2 f)L(s, Symm f)z =:

+∞∑

n=1

λ1,z
Sym2 f,Symm f

(n)n−s.
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The preceding results imply the

Proposition 9. Let N be a squarefree integer, f ∈ H∗
2(N) ; let ν ≥ 0 and m > 0

be integers and z be a complex number. Then

λ1,z
Sym2 f,Symm f

(pν) =






ν∑

ν′=0

τz(p
ν′

)λf (pmν′

)pν′−ν if p | N

max(2,m)ν∑

m′=0

µ1,z,ν

Sym2,Symm,Symm′λf (pm′

) if p ∤ N .

Moreover,

|λ1,z
Sym2 f,Symm f

(pν)| ≤ τ(m+1)|z|+3(p
ν)

µ1,z,0

Sym2,Symm,Symm′ = δ(m′, 0)

µ1,z,1

Sym2,Symm,Symm′ = zδ(m′,m) + δ(m′, 2)

µ1,z,ν

Sym2,Sym2m,Sym2m′+1 = 0,

and
max(2,m)ν∑

m′=0

|µ1,z,ν

Sym2,Symm,Symm′ | ≤
(

(m+ 1)|z| + 2 + ν

ν

)
.

2.4. Trace formulas. In this section, we establish a few mean value results for
Dirichlet coefficients of the different L–functions we shall encounter.

Let f ∈ H∗
2(N). Denote by εf (N) := ε(Sym1 f) the sign of the functional

equation satisfied by L(s, f). We have

(70) εf (N) = −µ(N)
√
Nλf (N) ∈ {−1, 1}.

The following trace formula is due to Iwaniec, Luo & Sarnak [ILS00, Corollary
2.10].

Lemma 10. Let N ≥ 1 be a squarefree integer and m ≥ 1, n ≥ 1 two integers

satisfying (m,N) = 1 and (n,N2) | N . Then
∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n) = δ(m,n) +O(Err)

with

Err :=
τ(N)2 log2(3N)

N

(mn)1/4 τ3[(m,n)]√
(n,N)

log(2mnN).

We shall need a slightly different version of this trace formula (we actually only
remove the condition (n,N) = 1 from [ILS00, Proposition 2.9]).

Lemma 11. Let N ≥ 1 be a squarefree integer and m ≥ 1, n ≥ 1 two integers

satisfying (m,N) = 1 and (n,N2) | N . Then
∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λf (m)λf (n) = δ(m,n) +O(Err)
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with

Err :=
δ(n,mN)√

N

+
τ(N)2 log2(3N)

N3/4

(mn)1/4

√
(n,N)

log(2mnN)

[
τ3 [(m,n)]

N1/4
+
τ [(m,n)]√

(n,N)

]
.

Proof. By Lemma 10, it suffices to prove that

∑

f∈H∗
2(N)

ω∗(f)εf (N)λf (m)λf (n) ≪

δ(n,mN)√
N

+
τ(N)2 log2(3N)

N3/4

(mn)1/4

(n,N)
τ [(m,n)] log(2mnN).

Since εf (N) = −µ(N)
√
Nλf (N), we shall estimate

R :=
√
N

∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n)λf (N).

The multiplicativity relation (32) and equation (33) give

R =
√
N

∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n(N))λf (nN )2 λf

(
N

nN

)

=

√
N

nN

∑

d|(m,n(N))

∑

f∈H∗
2(N)

ω∗(f)λf

(
mn(N)

d2

)
λf

(
N

nN

)
.

Then, Lemma 10 leads to the result since MN (N)/d2 = N/nN implies N = nN ,
m = n(N) and d = m. �

We also prove a trace formula implying the Dirichlet coefficients of the symmetric
power L-functions.

Lemma 12. Let N be a squarefree integer, (m,n, q) be nonnegative integers and z
be a complex number. Then

∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λz
Symm f (n)λf (q) = wz

m(n, q) +O(Err)

with

(71) wz
m(n, q) := τz(nN )

�(nm
NqN )√
nm

NqN

∏

1≤j≤r

∑

0≤ν′
j≤mνj

p
ν′
1

1 ···pν′
r

r =q(N)

µ
z,νj

Symm,Sym
ν′

j

where

n(N) =

r∏

j=1

p
νj

j , (p1 < · · · < pj)

and

Err :=
τ(N)2 log2(3N)

N3/4
nm/4τ(m+1)|z|(n)τ(q)q1/4 log(2Nnq).

The implicit constant is absolute.
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Proof. Let

S :=
∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λz
Symm f (n)λf (q).

Writing nQ
NMN = g2h with h squarefree, equation (33) and Proposition 2 give

S =
τz(nN )

g

∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]




r∏

j=1

µ
z,νj

Symm,Sym
ν′

j




×
∑

d|
(

q(N),
∏

r
j=1 p

ν′
j

j

)

∑

f∈H∗
2(N)

ω∗(f)[1 + εf (N)]λf (h)λf



q
(N)

d2

r∏

j=1

p
ν′

j

j



 .

Then, since h | N , Lemma 11 gives S = P + E with

P =
τz(nN )

g

r∏

j=1

mνj∑

ν′
j=0

µ
z,νj

Symm,Sym
ν′

j

∑

d|
(

q(N),
∏r

j=1 p
ν′

j
j

)

q(N)p
ν′
1

1 ···pν′
r

r /d2=h

1

and

E ≪
τ(N)2 log2(3N)

N3/4

nm/4τ|z|(nN )

n
m/2
N

q1/4τ(q)

q
1/2
N

log(2Nnq)

g1/2

r∏

j=1

mνj∑

ν′
j=0

|µz,νj

Symm,Sym
ν′

j
|.

Using (53), we obtain

E ≪ τ(N)2 log2(3N)

N3/4
nm/4q1/4τ(q) log(2Nnq)τ(m+1)|z|(n).

We transform P as the announced principal term since q(N)p
ν′
1

1 · · · pν′
r

r /d2 = h im-

plies p
ν′
1

1 · · · pν′
r

r = q(N) = d and h = 1. �

Similarly to Lemma 12, we prove the

Lemma 13. Let k, N , m, n be positive integers, k even, N squarefree. Let z ∈ C.

Then ∑

f∈H∗
2(N)

ω∗(f)λ1,z
Sym2 f,Symm f

(n) = w1,z
2,m(n) +Ok,m(Err)

with

Err :=
τ(N)2 log2(3N)

N
nmax(2,m)ν/4r1,z

2,m(n) log(2nN)

where w1,z
2,m and r1,z

2,m are the multiplicative functions defined by

w1,z
2,m(pν) :=





ν∑

ν′=0

τz(p
ν′

)�(pmν′

)

pν−ν′+mν′/2
if p | N

µ1,z,ν
Sym2,Symm,Sym0 if p ∤ N
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and

r1,z
2,m(pν) :=





ν∑

ν′=0

τ|z|(pν′

)

pν−ν′+mν′/2
if p | N

(
(m+1)|z|+ν+2

ν

)
if p ∤ N .

2.5. Mean value formula for the central value of L(s, f). Using the functional
equation of L(s, f) (see hypothesis Sym1(N), which is proved in this case) and
contour integrations (see [IK04, Theorem 5.3] for a beautiful explanation) we write

(72) L

(
1

2
, f

)
= [1 + εf(N)]

+∞∑

q=1

λf (q)√
q

exp

(
− 2πq√

N

)
.

From (72) and Lemma 11 we classically deduce the

Lemma 14. Let N be a squarefree integer, then

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
= ζN (2) +O

(
τ(N)2 log(2N) log2(3N)

N3/8

)
.

Remark 15. For N squarefree, we have

ζN (2) = 1 +O

(
τ(N)

P−(N)2

)
.

Note that the “big O” term may be not small: for all ω ≥ 1, let Nω be the
product of the ω first prime numbers, then Mertens Theorem implies that

ζNω(2) ∼ ζ(2)

as ω tends to infinity.

Proof of Lemma 14. Equation (72) leads to

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
=

+∞∑

q=1

1√
q

exp

(
− 2πq√

N

) ∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λf (q).

Writing q = mℓ2n with (m,N) = 1, ℓ2n having same prime factors as N and n
squarefree, we deduce from the multiplicativity of n 7→ λf (n), its strong multiplica-
tivity of numbers with support included in that of N and (33) that

λf (q) =
1

ℓ
λf (m)λf (n).

Then Lemma 11 gives

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
= P (N) +O

(
E1 + τ(N)2 log2(3N)(E2 + E3)

)
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where

P (N) =

+∞∑

ℓ=1

1N (ℓ)

ℓ2
exp

(
−2πℓ2√

N

)

and

E1 =
1

N

+∞∑

ℓ=1

1

ℓ2
exp(−2πℓ2

√
N) ≪ 1

N
,

E2 =
1

N

+∞∑

q=1
q=mℓ2n

1N (ℓn)1(N)(m)µ(n)2 log(2mnN)

m1/4ℓ2n3/4
exp

(
−2πmℓ2n√

N

)

≪ 1

N

+∞∑

q=1

log(2qN)

q1/4
exp

(
− 2πq√

N

)

≪ log(2N)

N5/8

and

E3 =
1

N3/4

+∞∑

q=1
q=mℓ2n

1N (ℓn)1(N)(m)µ(n)2 log(2mnN)

m1/4ℓ2n5/4
exp

(
−2πmℓ2n√

N

)

≪ log(2N)

N3/8
.

We conclude by expressing P (N) via the inverse Mellin transform of exp and doing
a contour integration obtaining

P (N) = ζN (2) +Oε(N
−1/2+ε)

for all ε > 0. �

3. Twisting by L(1/2, f)

The goal of this section is the proof of Theorem A and Proposition B.

3.1. Proof of Theorem A. Let z ∈ C and x ≥ 1, define

(73) ωz
Symm f (x) :=

+∞∑

n=1

λz
Symm(n)

n
e−n/x

for all f ∈ H∗
2(N) and proves the

Lemma 16. Let N be a squarefree integer, m ∈ Z>0, x ≥ 1 and z ∈ C. Then

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x)

=

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x +O(Err)

where

Err := N−3/8[log(2N)]2 log2(3N)xm/4[log(3x)]zm+1(zm +m+ 1)!.

The implicit constant is absolute.
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Proof. Using (72) and Lemma 12, we get

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x)

=

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x +O

(
τ(N)2 log2(3N)

N3/4
R

)

with

R :=

+∞∑

q=1

τ(q) log(2Nq)

q1/4
e−2πq/

√
N

+∞∑

n=1

nm/4−1 log(2n)τ(m+1)|z|(n)e−n/x.

By using
∑

n≤t

τr(n)

n
≤ [log(3t)]r (t ≥ 1, r ≥ 1, integers),

we have
∑

n≤x

log(2n)

n1−m/4
τ(m+1)|z|(n)e−n/x ≤ xm/4[log(3x)]zm+1

and an integration by parts leads to

∑

n≥x

log(2n)

n1−m/4
τ(m+1)|z|(n)e−n/x ≪m K

where

K =

∫ +∞

x

[log(3t)]zm+1

t1−m/4
e−t/x

(
1 +

t

x

)
dt

≤ xm/4

∫ +∞

1

[log(3ux)]zm+1um/4e−u(1 + 1/u) du

≪m xm/4[log(3x)]zm+1

∫ ∞

1

um/4+zm+1e−u(1 + 1/u) du

≪m xm/4[log(3x)]zm(zm +m+ 1)!.

We conclude with

+∞∑

q=1

τ(q) log(2Nq)

q1/4
e−2πq/

√
N ≪ N3/8[log(2N)]2.

�

The main term appearing in Lemma 16 is studied in the next lemma.

Lemma 17. Let m ≥ 1 an integer. There exists c such that, for all N squarefree,

1 ≤ xm ≤ N1/3, z ∈ C, and σ ∈ [0, 1/3] we have

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x = L1,z

(
1

2
, 1; St, Symm;N

)
+Om(R),
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where

R := N−1/12ec(|z|+1) log2(|z|+3)

+ x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

The implicit constant depends only on m.

Proof. Let

S :=
+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x.

By the definition of S, we have S = S> + S≤ with

S> :=
∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

qN |N∞

�(nm
NqN )

qN

∑

n(N)>x/nN

(n(N),N)=1

e−nN n(N)/x

n(N)

×
∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]

{


r∏

j=1

µ
z,νj

Symm,Sym
ν′

j

p
ν′

j/2

j



 exp



−
2πqN

∏r
j=1 p

ν′
j

j√
N




}

and

S≤ :=
∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

n(N)≤x/nN

(n(N),N)=1

e−nN n(N)/x

n(N)

×
∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]




r∏

j=1

µ
z,νj

Symm,Sym
ν′

j

p
ν′

j/2

j





×
∑

qN |N∞

�(nm
NqN )

qN
exp


−

2πqN
∏r

j=1 p
ν′

j

j√
N




where n(N) :=
∏r

j=1 p
νj

j . We have

(74) S> ≪ R2 :=
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ>x/n

w̃
z,1/2
m,N (ℓ)

ℓ
.

Moreover, if n(N) ≤ x/nN then
r∏

j=1

p
ν′

j

j ≤ xm ≤ N1/3

and

(75)
∑

qN |N∞

�(nm
NqN )

qN
exp



−
2πqN

∏r
j=1 p

ν′
j

j√
N



 =

∑

qN |N∞

�(nm
NqN )

qN
+O

(
τ(nm

N )

N1/12

)
.
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Equations (74) and (75) give S = P +O(N−1/12R1 +R2) with

P :=
∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

qN |N∞

�(nm
NqN )

qN

∑

n(N)≤x/nN

(n(N),N)=1

̟
z,1/2
m,N (n(N))

n(N)
e−n(N)/(x/nN)

and

R1 :=
∑

n|N∞

τ|z|(n)τ(nm)

nm/2+1

∑

ℓ≤x/n

w̃
z,1/2
m,N (ℓ)

ℓ
.

Writing

∑

n(N)≤x/nN

(n(N),N)=1

̟
z,1/2
m,N (n(N))

n(N)
e−n(N)/(x/nN ) = W

z,1/2
m,N (1)

−
∑

ℓ>x/nN

(ℓ,N)=1

̟
z,1/2
m,N (ℓ)

ℓ
+

∑

ℓ≤x/nN

(ℓ,N)=1

̟
z,1/2
m,N (ℓ)

ℓ

[
e−ℓ/(x/nN) − 1

]

we get, by Lemma 3,

P = L1,z

(
1

2
, 1; St, Symm;N

)
+O(R2 +R3)

with

R3 :=
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ≤x/n
(ℓ,N)=1

w̃
z,1/2
m,N (ℓ)

ℓ

[
1 − e−ℓ/(x/n)

]
.

Lemma 6 gives
R1 ≪ exp [c(zm + 3) log2(zm + 3)] .

We have

R3 ≪
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ≤x/n

w̃
z,1/2
m,N (ℓ)

ℓ
· ℓn
x

≪ x−σ
∑

n|N∞

τ|z|(n)

nm/2+1−σ

∑

q|N∞

�(nmq)

q

+∞∑

ℓ=1

w̃
z,1/2
m,N (ℓ)

ℓ1−σ

for all σ ∈ [0, 1/2[ and Lemma 6 gives

R3 ≪

x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

Next, for all σ ∈ [0, 1/2[ , Rankin’s method and Lemma 6 give

R2 ≪

x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

�
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Next, given η ∈]0, 1/100[, denote by H+
m(N ; η) the subset of H∗

2(N) consisting of
forms f such that L(s, Symm f) has no zeros in the half strip

ℜe s ≥ 1 − 4η |ℑm s| ≤ 2[log(2N)]3

and H−
m(N ; η) the complementary subset. By [CM04, Proposition 5.3], for all m ≥

1, there exists ξ > 0 and A > 0 (both depending onm) such that for all η ∈]0, 1/100[
and squarefree N we have

#H−
m(N ; η) ≤ ξNAη[log(2N)]ξ.

By [CM04, Lemmas 4.1 and 4.2] there exists, for allm ≥ 1, a constant B (depending
on m) such that, for all z ∈ C and f ∈ H−

m(N ; η), we have

(76) L(1, Symm f)z ≪m [log(2N)]B|ℜe z|

Using the convexity bound (see [Mic02, Lecture 4] for better bounds that we do
not need here)

L

(
1

2
, f

)
≪ N1/4

and

ω∗(f) =
π2

ϕ(N)L(1, Sym2 f)
≪ log(2N) log2(3N)

N

and by (76) we get

∑

f∈H−
m(N ;η)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z ≪m NAη−3/4[log(2N)]B|ℜe z|+C ,

A, B and C being constants depending only on m so that

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

=
∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

+Om

(
NAη−3/4[log(2N)]B|ℜe z|+C

)
.

Next, there exists a constant D > 0, depending only on m, such that

L(1, Symm f)z = ωz
Symm f (x) +O(R1),

with

R1 := x−1/ log2(3N)eD|z| log3(20N)[log(2N)]3 + eD|z| log2(3N)−[log(2N)]2

(see [CM04, Proposition 5.6]) and, since by positivity (see [Guo96] and [FH95]) and
Lemma 14 we have

∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
≪ 1,
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we obtain

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

=
∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x) +Om(R2)

with

R2 := R1 +NAη−3/4[log(2N)]B|ℜe z|+C .

Now, since |ωz
Symm f (x)| ≤ ι(ε)|ℜe z|xε, where ι(ε) > 1 depends on ε and m, we

reintroduce the forms of H−
m(N ; η) obtaining

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, Symm f)z

=
∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x) +Om(R3)

with

R3 := x−1/ log2(3N)eD|z| log3(20N)[log(2N)]3

+ xεNAη−3/4[ι(ε) log(2N)]B|ℜe z|+C + eD|z| log2(3N)−[log(2N)]2 .

Lemmas 16 and 17 with η = ε = 1/(100m), xm = N1/10 and

σ = c′(m)/ log(|z| + 3)

with c′(m) large enough and depending on m leads to Theorem A.

3.2. Proof of Proposition B. For the proof of Proposition B, we write

L1,z

(
1

2
, 1; St, Symm;N

)
= L1,z

(
1

2
, 1; St, Symm

)

×Xz
m(N)

∏

p|N

(∫

SU(2)

D(p−1/2, St, g)D(p−1, Symm, g)z dg

)−1

.

We use

Xz
m(N) = 1 +O

(
(|z| + 1)ω(N)

P−(N)min{m/2+1,2}

)

which is uniform for all z and N such that

(|z| + 1)ω(N) ≤ P−(N)min{m/2+1,2}

and Lemma 7 to get

L1,z

(
1

2
, 1; St, Symm;N

)
= L1,z

(
1

2
, 1; St, Symm

)
[1 +Om(Err)]

where

Err :=
ω(N)

P−(N)
+

(|z| + 1)ω(N)

P−(N)3/2
+

(|z| + 1)2ω(N)

P−(N)2
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uniformely for
{
N ∈ N

(
max

{
ω(·)1/2, [(|z| + 1)ω(·)]2/3, [|z|2ω(·)]1/2

})
,

z ∈ C.

4. Twisting by L(1, Sym2 f)

In this section, we sketch the proofs of Theorem C and Proposition D. The proof
of Theorem C is very similar to the one of Theorem A.

Let z ∈ C and x ≥ 1, define

(77) ω1,z
Sym2 f,Symm f

(x) :=

+∞∑

n=1

λ1,z
Sym2 f,Symm f

(n)

n
e−n/x.

for all f ∈ H∗
2(N) and obtains the

Lemma 18. Let N be a squarefree integer, m ∈ Z>0, x ≥ 1 and z ∈ C. Then

∑

f∈H∗
2(N)

ω∗(f)ω1,z
Sym2 f,Symm f

(x) =
ϕ(N)

N

+∞∑

n=1

w1,z
2,m(n)

n
e−n/x +O(Err)

with

Err :=
τ(N)2 log(2N) log2(3N)

N
xm/4(log 3x)zm+3(zm +m+ 4)!.

The implicit constant is absolute and w1,z
2,m(n) has been defined in Lemma 13.

Next, we have the

Lemma 19. Let m ≥ 1 an integer. There exists c such that, for all N squarefree,

1 ≤ xm ≤ N1/3, z ∈ C, and σ ∈ [0, 1/3m] we have

+∞∑

n=1

w1,z
2,m(n)

n
e−n/x = L1,z

(
1, 1; Sym2, Symm;N

)
+Om(R),

where

R :=
log2(3N)

xσ
exp

{
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

)}
.

The implicit constant depends only on m.

The conclusion of the proof of Theorem C is the same as the one of Theorem A
after having introduced the exceptional set

H−
2,m(N ; η) := H∗

2(N) \
(
H−

2 (N ; η) ∩ H+
m(N ; η)

)
.

The proof of Proposition D follows from Lemma 7 in the same way as Proposition B.

5. Asymptotic of the moments

5.1. Proof of Proposition F. We give the proof for L1,±r
(

1
2 , 1; St, Symm

)
since

the method is similar in the two cases.
Write

ψ±r
m,1(p) :=

∫

SU(2)

D(p−1/2, St, g)D(p−1, Symm, g)±r dg.
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By Lemma 8, we have
∑

p≥(m+1)r+3

logψ±r
m,1(p) ≪m

r

log r
.

By (34) we get
(

1 +
1√
p

)−2

D(p−1, Symm, g) ≤ ψ±r
m,1(p) ≤

(
1 − 1√

p

)−2

D(p−1, Symm, g)

and then

(78)
∑

p≤(m+1)r+3

logψ±r
m,1(p) =

∑

p≤(m+1)r+3

log Υ±r
m,1(p) +Om

(√
r log2(3r)

)

with

Υ±r
m,1(p) :=

∫

SU(2)

D(p−1, Symm, g)±r dg.

The right hand side of (78) has been evaluated in [CM04, §2.2.1] and was founded
to be

Symm
± r log2 r + Symm,1

± r +Om

(
r

log r

)

which ends the proof.

5.2. Proof of Corollary G. Let r ≥ 0. Define

Θ(N) :=
∑

g∈H∗
2(N)

ω(g)L

(
1

2
, g

)
and Ω(f) :=

ω(f)L
(

1
2 , f
)

Θ(N)
.

For N ∈ N
(
log1/2

)
, we have

Θ(N) ∼ 1 (N → +∞)

(see Lemma 14). Since L
(

1
2 , f
)
≥ 0, by Theorem A, and Propositions B and F we

get

∑

f∈H∗
2(N)

L( 1
2 ,f)>0

Ω(f)L(1, Symm f)r =
1

Θ(N)

∑

f∈H∗
2(N)

ω(f)L

(
1

2
, f

)
L(1, Symm f)r

= [1 + o(1)]e
Symm

+ r log

{
[1+o(1)] exp

(
Sym

m,1
+

Symm
+

)
log r

}

uniformly for all r ≤ c logN/ log2(3N) log3(20N). Since
∑

f∈H∗
2(N)

L( 1
2 ,f)>0

Ω(f) =
∑

f∈H∗
2(N)

Ω(f) = 1

we obtain, by positivity,a function f ∈ H∗
2(N) such that

L(1, symmf)r ≥ {1 + o(1)}eSymm
+ r log{[1+o(1)] exp(Symm,1

+ / Symm
+ ) log r}

and L
(

1
2 , f
)
> 0.

We obtain the announced minoration with r = c logN/(log2(3N))2. The majo-
ration is obtained in the same way, taking the negative moments.
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6. Hecke eigenvalues

6.1. Proof of Proposition H. Following step by step the proof given by Granville
& Soundararajan in the case of Dirichlet characters [GS01, Lemma 8.2], we get
under Grand Riemann Hypothesis

logL(1, Symm f) =
∑

2≤n≤log2(2N) log4
2(3N)

ΛSymm f (n)

n logn
+Om (1)

where ΛSymm(n) is the function defined by

−L
′(s, Symm f)

L(s, Symm f)
=:

+∞∑

n=1

ΛSymm(n)

ns
(ℜe s > 1)

that is

ΛSymm(n) =





χSymm [g(θf,p)
ν ] log p if n = pν with p ∤ N

λf (p)mν log p if n = pν with p | N
0 otherwise.

If ν > 1, then

|ΛSymm f (pν)

pν log(pν)
| ≤ m+ 1

pν

hence

logL(1, Symm f) =
∑

p≤log2(2N) log4
2(3N)

ΛSymm f (p)

p log p
+O(1).

From ΛSymm f (p) = λf (pm) log p we deduce

logL(1, Symm f) =
∑

p≤log2(2N) log4
2(3N)

λf (pm)

p
+O(1).

Since

∑

log(2N)≤p≤log2(2N) log4
2(3N)

|λf (pm)|
p

≤ (m+ 1)
∑

log(2N)≤p≤log2(2N) log4
2(3N)

1

p

≪m 1

we get

(79) logL(1, Symm f) =
∑

p≤log(2N)

λf (pm)

p
+Om(1).

Let N ∈ N
(
log3/2

)
and f ∈ H∗+

2 (N ;C, Symm), equation (79) then leads to

∑

p≤log(2N)

λf (pm)

p
≥ Symm

+ log3(20N) +Om(1)

and we deduce
∑

p≤log(2N)

Symm
+ −λf (pm)

p
≪m 1.
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For ξ(N) ≤ log3(20N), we get

∑

p≤log(2N)
λf (pm)≥Symm

+ −ξ(N)/ log3(20N)

1

p
=

∑

p≤log(2N)

1

p

−
∑

p≤log(2N)
λf (pm)<Symm

+ −ξ(N)/ log3(20N)

1

p

= log3(20N)

{
1 +Oε,m

(
1

ξ(N)

)}
.

We conclude by using
∑

logε(3N)<p<log(2N)

1

p
≪ 1.

6.2. Proof of Proposition I. Let N ∈ N
(
log3/2

)
. Taking m = 2 in (79) gives

∑

p≤log(2N)

λf (p2)

p
+O(1) = logL(1, Sym2 f).

Since Sym2
− = 1, if f ∈ H∗−

2 (N ;C, Sym2), we deduce

∑

p≤log(2N)

λf (p2)

p
≤ − log3(20N) +O(1).

If p | N , then λf (p2) = λf (p)2 and

∑

p≤log(2N)
p|N

1

p
= O(1);

if p ∤ N , then λf (p2) = λf (p)2 − 1. We thus have

∑

p≤log(2N)

λf (p)2 − 1

p
≤ − log3(20N) +O(1)

hence

(80)
∑

p≤log(2N)

λf (p)2

p
≪ 1.

For ξ(N) ≤ log3(20N), we deduce

∑

p≤log(2N)

|λf (p)|≥[ξ(N)/ log3(20N)]1/2

λf (p)2

p
≪ log3(20N)

ξ(N)

which leads to the announced result.
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7. Simultaneous extremal values

7.1. Proof of Proposition J. Prove the first point. Let C > 0, N ∈ N (log) and
f ∈ H∗

2(N) such that

L(1, Sym2 f) ≤ C [log2(3N)]
− Sym2

−

and

L(1, Sym4 f) ≤ C [log2(3N)]
− Sym4

− .

Equation (79) with m = 4 gives

∑

p≤log(2N)
p∤N

λf (p4)

p
+O(1) ≤ − Sym4

− log3(20N)

since the contribution of p dividing N is bounded (using (33)). Expanding λf (p4)
thanks to (32) we deduce

∑

p≤log(2N)
p∤N

λf (p)4 − 3λf (p)2 + 1

p
+O(1) ≤ − Sym4

− log3(20N).

Reinserting (80) (again, we remove easily the contribution of p dividing N), we are
led to

∑

p≤log(2N)
p∤N

λf (p)4 + 1

p
≤ − Sym4

− log3(20N) +O(1).

The right hand side tends to −∞ while the left one is positive, so we get a contra-
diction.

Prove next the second point. Assume that

L(1, Sym2 f) ≥ C [log2(3N)]
Sym2

+ .

By Cauchy-Schwarz inequality and (79), we have

(81) (Sym2
+)2[log2(3N) +O(1)] ≤

∑

p≤log(2N)
p∤N

λf (p2)2

p
.

Further, from X4 = X2
2 −X2 − 1, we deduce

∑

p≤log(2N)
p∤N

λf (p4)

p
=

∑

p≤log(2N)
p∤N

λf (p2)2 − λf (p2) − 1

p

and (81) and |λf (p2)| ≤ Sym2
+ imply

∑

p≤log(2N)
p∤N

λf (p4)

p
≥ [(Sym2

+)2 − Sym2
+ −1] log3(20N) +O(1)

which leads to the result by (79) since

(Sym2
+)2 − Sym2

+ −1 = Sym4
+ .
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7.2. Proof of Proposition K. From

X2
m =

m∑

j=2

X2j +X2

we deduce

∑

p≤log(2N)
p∤N

λf (pm)2

p
=

∑

p≤log(2N)
p∤N

m∑

j=2

λf (p2j)

p
+

∑

p≤log(2N)
p∤N

λf (p)2

p

≤ (m+ 3)(m+ 1) log3(20N) +O(1)

by (80) and |λf (p2j)| ≤ 2j + 1. Furthermore

[Symm
+ log3(20N)]2 =




∑

p≤log(2N)
p∤N

λf (pm)

p




2

≤ [log3(20N) +O(1)]
∑

p≤log(2N)
p∤N

λf (pm)2

p

so that

(Symm
+ )2 ≤ (m+ 3)(m− 1)

which contradicts Symm
+ = (m+ 1)2.

8. An index of notation

γ∗ (23) λz,ν
Symm f ( ) (35) χ p. 3

δ( , ) § 1.6 λ1,z
Sym2,Symm( ) (69) ω∗ (12)

∆( , , ) (47) λ1,z,ν
Sym2,Symm( ) (61) ωz

Symm f (x) (73)

∆( , , ; , ) (68) µz,ν

Symm,Symm′ (38) ω1,z
Sym2 f,Symm f

( ) (77)

εf(N) (70) µ1,z,ν

Sym2,Symm,Symm′ (63) ̟z,ρ
m,N( ) (57)

ζ(N) (9) ρ § 1.6 w̃z,ρ
m,N ( ) (58)

λf ( ) (3) σ § 1.6
λz

Symm f ( ) (55) τz( ) (8)

D( , , ) (4) n(N) § 1.6
g( ) (5) N ( ) (13)
H∗

2(N) p. 2 P−( ) p. 5
H+

m(N ; η) p. 33 Symm
± (24)

H−
m(N ; η) p. 33 Symm,1

± (25)
H∗+

2 (N ;C, Symm) (27) wz
m( , ) (71)

ℓ(m,ν) (43) w1,z
2,m( ) Lemme 13

ℓ(2,m; ν,ν′) (67) W z,ρ
m,N ( ) (56)

L1,z
(

1
2 , 1; St, Symm;N

)
(10) Xm (36)

L1,z
(

1
2 , 1; St, Symm

)
(11) Xz

m(N) (7)

L1,z
(
1, 1; Sym2, Symm, N

)
(16) X1,z

2,m(N) (15)

L1,z
(
1, 1; Sym2, Symm

)
(17) zm (60)

nN § 1.6
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� § 1.6
�N( ) (9)1N § 1.61(N) § 1.6
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