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CENTRAL VALUES AND VALUES AT THE EDGE OF

THE CRITICAL STRIP OF SYMMETRIC POWER

L-FUNCTIONS AND HECKE EIGENVALUES

EMMANUEL ROYER AND JIE WU

Abstract. We compute the moments of L-functions of symmetric pow-
ers of modular forms at the edge of the critical strip, twisted by the
central value of the L-functions of modular forms. We show that, in the
case of even powers, it is equivalent to twist by the value at the edge
of the critical strip of the symmetric square L-functions. We deduce
information on the size of symmetric power L-functions at the edge of
the critical strip under conditions. In a second part, we study the dis-
tribution of small and large Hecke eigenvalues. We deduce information
on the simultaneous extremality conditions on the values of L-functions
of symmetric powers of modular forms at the edge of the critical strip.
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1. Introduction

The values of L-functions at the edge of the critical strip have been exten-
sively studied. The work on their distributions originates with Littlewood
[Lit28]. In the case of Dirichlet L-functions, its work has been extended
by Elliot [Ell73] and more recently by Montgomery & Vaughan [MV99]
and Granville & Soundararajan [GS03]. In the case of symmetric square
L-functions of modular forms, the first results are due to Luo [Luo99],
[Luo01]. They have been developed by the first author [Roy01] and the
authors [RW05] in the analytic aspect and by the first author [Roy03] and
Habsieger & the first author [HR04] in the combinatorial aspect. These de-
velopments have been recently widely extended by Cogdell & Michel [CM04]
who studied the distribution for all the symmetric power L-functions.

The values of L-functions of modular forms at the center of the critical
strip are much more difficult to catch. The difficulty of the computation of
their moments increases dramatically with the order of the moments (see,
e.g., [KMV00]) and these moments are subject to important conjectures
[CFK+03], [CFK+05]. Good bounds for the size of these values have im-
portant consequences. A beautiful one is the following, due to Iwaniec &
Sarnak [IS00]. Denote by H∗

2(N) the set of primitive forms of weight 2 over
Γ0(N) and let εf (N) be the sign of the functional equation satisfied by the
L-function, L(s, f), of f ∈ H∗

2(N). Our L-functions are normalized so that
0 ≤ ℜe s ≤ 1 is the critical strip. Then it is shown that

lim inf
N→∞

#
{
f ∈ H∗

2(N) : εf (N) = 1, L
(

1
2 , f
)
≥ (logN)−2

}

#{f ∈ H∗
2(N) : εf (N) = 1} ≥ c =

1

2
.

If we could replace c = 1/2 by c > 1/2, then there would exist no Landau-
Siegel zero for Dirichlet L-functions. It is expected that one may even take
c = 1. The meaning of this expectation is that, if L(1/2, f) 6= 0 (which is
not the case when εf (N) 6= 1), then L(1/2, f) is not too small.

In this paper, we compute (see theorem A and proposition B) the moments
of symmetric power L-functions at 1 twisted by the value at 1/2 of modular
forms L-functions, that is

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z (z ∈ C) (1)

where ω∗ is the usual harmonic weight (see (12)). Comparing (see theorem C
and proposition D) with the moments of symmetric power L-functions at 1
twisted by the value of the symmetric square L-function at 1, that is

∑

f∈H∗
2(N)

ω∗(f)L(1,Sym2 f)L(1,Symm f)z (z ∈ C), (2)
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we show in corollary E that (1) and (2) have asymptotically (up to a mul-
tiplicative factor 1/ζ(2)) the same value when the power m is even. This
equality is astonishing since half of the values L(1/2, f) are expected to
be 0 whereas L(1,Sym2 f) is always positive. Since it is even expected that
L(1,Sym2 f) ≫ [log log(3N)]−1, it could suggest that L(1/2, f) is large when
not vanishing.

Our computations also yield results on the size of L(1,Symm f) when
subject to condition on the nonvanishing of L(1/2, f) (see corollary G) or to
extremality conditions for another symmetric power L-function (see propo-
sitions J and K).

Before giving precisely the results, we introduce a few basic facts needed
for the exposition. More details shall be given in section 2. Let f be an
element of the set H∗

2(N) of primitive forms of weight 2 and squarefree level
N (i.e., over Γ0(N) and without nebentypus). It admits a Fourier expansion

f(z) =:

+∞∑

n=1

λf (n)
√
ne2πinz (3)

in the upper half-plane H. Denote by St the standard representation of
SU(2),

St : SU(2) → GL(C2)

M 7→ C2 → C2

x 7→ Mx

(for the basics on representations, see, e.g., [Vil68]). If ρ is a representation
of SU(2) and I is the identity matrix, define, for each g ∈ SU(2)

D(X, ρ, g) := det[I −Xρ(g)]−1. (4)

Denote by χρ the character of ρ. By Eichler [Eic54] and Igusa [Igu59], we
know that for every prime number p not dividing the level, |λf (p)| ≤ 2 so
that there exists θf,p ∈ [0, π] such that

λf (p) = χSt[g(θf,p)]

where

g(θ) :=

(
eiθ 0
0 e−iθ

)
(5)

(in other words, λf (p) = 2 cos θf,p: this is the special case for weight 2 forms
of the Ramanujan conjecture proved by Deligne for every weights). Denote
by P the set of prime numbers. Consider the symmetric power L-functions
of f defined for every integer m ≥ 0 by

L(s,Symm f) :=
∏

p∈P
Lp(s,Symm f) (6)

where

Lp(s,Symm f) := D[p−s,Symm, g(θf,p)]

if p is coprime to the level N and

Lp(s,Symm f) := [1 − λf (pm)p−s]−1
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otherwise. Here Symm denotes the composition of the mth symmetric power
representation of GL(2) and the standard representation of SU(2). In par-
ticular Sym0(g) = 1 for all g ∈ GL(2) so that Sym0 is the trivial irreducible
representation and L(s,Sym0 f) is the Riemann ζ function.

We shall give all our results in a restrictive range for m. If we assume two
standard hypothesis – see section 2.1 – the restriction is no longer necessary,
i.e., all results are valid for every integer m ≥ 1.

1.1. Twisted moments. For each squarefree positive integer N , each pos-
itive integer m and each complex number z, define

Ξz
m(N) :=

+∞∑

n=1

τz(n)

nm/2+1

+∞∑

q=1

�N (nmq)

q
(7)

where τz and �N are defined by

+∞∑

n=1

τz(n)

ns
:= ζ(s)z, (8)

+∞∑

n=1

�N (n)

ns
:= ζN (2s) :=

ζ(2s)

ζ(N)(2s)
:=
∏

p∈P
p|N

(
1 − 1

p2s

)−1

, (9)

and

L1,z

(
1

2
, 1; St,Symm;N

)

:= Ξz
m(N)

∏

p∈P
(p,N)=1

∫

SU(2)
D(p−1/2,St, g)D(p−1,Symm, g)z dg (10)

where dg stands for the Haar measure on SU(2). In the special case N = 1
write

L1,z

(
1

2
, 1; St,Symm

)
:=
∏

p∈P

∫

SU(2)
D(p−1/2,St, g)D(p−1,Symm, g)z dg.

(11)
We also use the usual harmonic weight on the space of cuspidal forms

ω∗(f) :=
1

4π(f, f)
· N

ϕ(N)
(12)

where (f, f) is the Petersson norm of f . We sligthly changed the usual
definition to obtain

lim
N→+∞

∑

f∈H∗
2(N)

ω∗(f) = 1

as N runs over squarefree integers (see lemma 10 with m = n = 1) in order
to obtain an asymptotic average operator. We note logn for the logarithm
iterated n times: log1 := log and logn+1 := log ◦ logn. Our first result
expresses the twisted moments as in (1).
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Theorem A. Let m ∈ {1, 2, 4}. There exist two real numbers c > 0 and

δ > 0 such that, for any squarefree integer N ≥ 1, for any complex number

z verifying

|z| ≤ c
log(2N)

log2(3N) log3(20N)
the following estimate holds:

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z

= L1,z

(
1

2
, 1; St,Symm;N

)
+O

(
exp

[
−δ log(2N)

log2(3N)

])

with an implicit constant depending only on m.

Moreover, we obtain an asymptotic expression as N tends to infinity in
the next proposition. Define, for each function g : Z>0 → R+, the set

N (g) := {N ∈ Z>0 : µ(N)2 = 1, P−(N) ≥ g(N)} (13)

where P−(N) is the smallest prime divisor ofN with the convention P−(1) :=
+∞, ω(N) is the number of distinct prime divisors of N and µ is the Möbius
function.

Proposition B. Let ξ be a function such that ξ(N) → +∞ as N → +∞.

Then

L1,z

(
1

2
, 1; St,Symm;N

)
= L1,z

(
1

2
, 1; St,Symm

)
[1 + om(1)]

uniformly for
{
N ∈ N

(
ξ(·)max

{
ω(·), [(|z| + 1)ω(·)]2/3, (|z| + 1)ω(·)1/2

})
,

|z| ≤ c log(2N)/[log2(3N) log3(20N)].
(14)

Remark. Condition (14) is certainly satisfied for

N ∈ N
(
log3/2

)
and |z| ≤ c log(2N)/[log2(3N) log3(20N)].

For a comparison of the behavior of L(1/2, f) and L(1,Sym2 f) we next
compute the moments of L(1,Symm f) twisted by L(1,Sym2 f). Define

Ξ1,z
2,m(N) := ζN (2)

+∞∑

n=1

τz(n)�N (nm)

nm/2+1
(15)

and

L1,z
(
1, 1; Sym2,Symm;N

)

:= Ξ1,z
2,m(N)

∏

p∈P
(p,N)=1

∫

SU(2)
D(p−1,Sym2, g)D(p−1,Symm, g)z dg. (16)

For the special case N = 1 we get

L1,z
(
1, 1; Sym2,Symm

)
:=
∏

p∈P

∫

SU(2)
D(p−1,Sym2, g)D(p−1,Symm, g)z dg.

(17)
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Theorem C. Let m ∈ {1, 2, 4}. There exist two real numbers c > 0 and

δ > 0 such that, for any squarefree integer N ≥ 1, for any complex number

z verifying

|z| ≤ c
log(2N)

log2(3N) log3(20N)

the following estimate holds:

∑

f∈H∗
2(N)

ω∗(f)L
(
1,Sym2 f

)
L(1,Symm f)z

= L1,z
(
1, 1; Sym2,Symm;N

)
+O

(
exp

[
−δ log(2N)

log2(3N)

])

with an implicit constant depending only on m.

Again, we obtain an asymptotic expansion in the following proposition.

Proposition D. Let ξ be a function such that ξ(N) → +∞ as N → +∞.

Then

L1,z
(
1, 1; Sym2,Symm;N

)
= L1,z

(
1, 1; Sym2,Symm

)
[1 + om(1)]

uniformly for
{
N ∈ N

(
ξ(·)max

{
ω(·)1/2, [(|z| + 1)ω(·)]2/(m+2)

})
,

|z| ≤ c log(2N)/[log2(3N) log3(20N)].
(18)

Remark. Condition (18) is certainly satisfied for

N ∈ N
(
log4/3

)
and |z| ≤ c log(2N)/[log2(3N) log3(20N)].

From theorems A and C and

∏

p∈P

∫

SU(2)
D(p−1,Sym2m, g)zD(p−1/2,St, g) dg

=
1

ζ(2)

∏

p∈P

∫

SU(2)
D(p−1,Sym2m, g)zD(p−1,Sym2, g) dg

(see lemma 3), we deduce the following astonishing result.

Corollary E. Let m ∈ {1, 2}. For any N ∈ N (log) and f ∈ H∗
2(N), for

any z ∈ C, the following estimate holds:

lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Sym2m f)z

= lim
N→∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1,Sym2 f)L(1,Sym2m f)z.

This identity is not valid when replacing Sym2m by an odd symmetric
power of f . For example,

lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1, f) =

∏

p∈P

(
1 +

1

p3/2
+O

(
1

p2

))
(19)
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and

lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L
(
1,Sym2 f

)
L(1, f) =

∏

p∈P

(
1 +O

(
1

p2

))
(20)

so that the quotient of (19) by (20) is

∏

p∈P

(
1 +

1

p3/2
+O

(
1

p2

))

whereas

lim
N→∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Sym3 f) =

∏

p∈P

(
1 +O

(
1

p2

))
(21)

and

lim
N→∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1,Sym2 f)L(1,Sym3 f) =
∏

p∈P

(
1 +O

(
1

p2

))

(22)
so that the quotient of (21) by (22) is

∏

p∈P

(
1 +O

(
1

p2

))
.

The key point of corollary E is the fact that the coefficients appearing in the
serie expansion of D(X,Sym2m, g) have only even harmonics – see equations
(47) and (48). See remark 4 for further details.

1.2. Extremal values. We study the asymptotic behavior, as the order z
tends to ±∞ in R, of the values L1,z

(
1
2 , 1; St,Symm

)
and L1,z

(
1, 1; Sym2,Symm

)

in the following proposition. Denote by γ∗ the constant determined by

∑

p≤x

1

p
= log2 x+ γ∗ +O

(
1

log x

)
(x ≥ 2).

If γ is the Euler constant, we have

γ∗ = γ +
∑

p∈P

[
log

(
1 − 1

p

)
+

1

p

]
. (23)

Proposition F. Let m ∈ {1, 2, 4}. As r → +∞ in R, the following esti-

mates hold:

logL1,±r

(
1

2
, 1; St,Symm

)
= Symm

± r log2 r + Symm,1
± r +Om

(
r

log r

)

and

logL1,±r
(
1, 1; Sym2,Symm

)
= Symm

± r log2 r + Symm,1
± r +Om

(
r

log r

)

where

Symm
± := max

g∈SU(2)
±χSymm(g) (24)
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and

Symm,1
± := γ∗ Symm

± +

∑

p∈P

{
± log

(
± max

g∈SU(2)
±D(p−1,Symm, g)

)
− Symm

±
p

}
. (25)

Remark. Cogdell & Michel [CM04, Theorem 1.12] found the same asymp-
totic behavior for the non twisted moments. The following values may be
easily computed.

m 2 4 even odd
Symm

+ 3 5 m+ 1 m+ 1
Symm

− 1 5/4 m+ 1

Symm,1
+ 3γ 5γ (m+ 1)γ (m+ 1)γ

Symm,1
− γ − 2 log ζ(2) (m+ 1)[γ − log ζ(2)]

The reason why Symm
− is easy computed in the case m odd but not in the

case m even is that the minimum of the Chebyshev polynomial (see (35)) of
second kind is well known when m is odd (due to symmetry reasons) and

not when m is even. For Symm,1
− , see also the remark 1.

Since L(1/2, f) ≥ 0, we may deduce extremal values of L(1,Symm f) with
the extra condition of nonvanishing of L(1/2, f).

Corollary G. Let m ∈ {1, 2, 4} and N ∈ N
(
log3/2

)
. Then there exists

fm ∈ H∗
2(N) and gm ∈ H∗

2(N) satisfying

L(1,Symm fm) ≥ η+(m) [log2(3N)]Symm
+ and L

(
1

2
, fm

)
> 0,

L(1,Symm gm) ≤ η−(m) [log2(3N)]− Symm
− and L

(
1

2
, gm

)
> 0,

where η±(m) = [1 + om(1)] exp(Symm,1
± ).

Remark. The hypothesis N ∈ N
(
log3/2

)
is certainly crucial since we can

prove the following result. Fix m ∈ {1, 2, 4}. Denote, for all ω ∈ Z>0, by Nω

the product of the first ω primes. Assume Grand Riemman hypothesis for
the symmetric mth power L-functions of primitive forms. Then, there exist
Am > 0 and Bm > 0 such that, for all ω ∈ Z>0 and f ∈ ⋃ω∈Z>0

H∗
2(Nω) we

have

Am ≤ L(1,Symm f) ≤ Bm.

1.3. Hecke eigenvalues. Let N ∈ N
(
log3/2

)
. For C > 0, denote by

H∗+
2 (N ;C,Symm)

the set of primitive forms f ∈ H∗
2(N) such that

L(1,Symm f) ≥ C [log2(3N)]Symm
+ . (26)

For C > 0 small enough, such a set is not empty (by an easy adaptation
of [CM04, Corollary 1.13]) and by the method developed in [RW05] its size
is large (although not a postive proportion of #H∗

2(N)). In the next two
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propositions, we study the extreme values of the Hecke eigenvalues at powers
of primes. To allow comparisons, we recall the following estimate:

∑

p≤[log(2N)]ε

1

p
= log3(20N)

{
1 +Oε

(
1

log3(20N)

)}
.

Proposition H. Let m ∈ {1, 2, 4} and N an integer of N
(
log3/2

)
. For

all ε > 0 and ξ(N) → ∞ (N → ∞) with ξ(N) ≤ log3(20N), for all

f ∈ H∗+
2 (N ;C,Symm) such that Grand Riemann Hypothesis is true for

L(s,Symm f), the following estimate holds:

∑

p≤[log(2N)]ε

λfm (pm)≥Symm
+ −ξ(N)/ log3(20N)

1

p
= log3(20N)

{
1 +Oε,m

(
1

ξ(N)

)}
.

Taking m = 1 implies that the first terms of the sequence {λf (p)}p∈P
concentrates near their extremal value 2. The Sato-Tate conjecture implies
that this sequence is equidistributed for the Sato-Tate measure on [−2, 2].
A consequence is that, for all [a, b] ⊂ [−2, 2], we have

lim
x→+∞

1

#{p ∈ P : p ≤ x}# {p ≤ x : λf (p) ∈ [a, b]} = F (b) − F (a)

with

F (t) := t

√
1 − t2

4
+ arcsin

t

2
.

Our methods allow to study the small values of the Hecke eigenvalues.
Denote by H∗−

2 (N ;C,Symm) the set of primitive forms f ∈ H∗
2(N) such

that
L(1,Symm f) ≤ C [log2(3N)]− Symm

− .

Proposition I. Let N ∈ N
(
log3/2

)
. For all ε > 0 and ξ(N) → ∞ (N →

∞) with ξ(N) ≤ log3(20N), for all f ∈ H∗−
2 (N ;C,Sym2) such that Grand

Riemann Hypothesis is true for L(s,Sym2 f), the following estimate holds:

∑

p≤[log(2N)]ε

λf (p)≤[ξ(N)/ log3(20N)]1/2

1

p
= log3(20N)

{
1 +Oε

(
1

ξ(N)

)}
.

Remark. (1) Propositions H and I are also tru with the extra condition
L(1/2, f) > 0.

(2) The study of extremal values of symmetric power L-functions at 1
and Hecke eigenvalues in the weight aspect has been done in [LW06]
by Lau & the second author.

1.4. Simultaneous extremal values. Recall that assuming Grand Rie-
mann Hypothesis formth symmetric power L-functions, there existsDm,D

′
m >

0 such that for all f ∈ H∗
2(N), we have

Dm[log2(3N)]− Symm
− ≤ L(1,Symm f) ≤ D′

m[log2(3N)]Symm
+

(see [CM04, (1.45)]). As a corollary of the study of extremal values, we
prove that L(1,Sym2 f) and L(1,Sym4 f) can not be minimal together but
are maximal together.
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Proposition J. Assume Grand Riemann Hypothesis for symmetric square

and symmetric fourth power L-functions. Let C > 0.

(1) There exists no N ∈ N (log) for which there exists f ∈ H∗
2(N) satis-

fying simultaneously

L(1,Sym2 f) ≤ C [log2(3N)]− Sym2
−

and

L(1,Sym4 f) ≤ C [log2(3N)]− Sym4
− .

(2) Let N ∈ N (log). If f ∈ H∗
2(N) satisfies

L(1,Sym2 f) ≥ C [log2(3N)]Sym2
+

then

L(1,Sym4 f) ≥ C [log2(3N)]Sym4
+ .

Proposition K. Let m ≥ 1. Assume Grand Riemann Hypothesis for sym-

metric square and mth symmetric power L-functions. Let C,D > 0. There

exists no N ∈ N (log) for which there exists f ∈ H∗
2(N) satisfying simulta-

neously

L(1,Symm f) ≥ C [log2(3N)]Symm
+

and

L(1,Sym2 f) ≤ D [log2(3N)]− Sym2
− .

1.5. A combinatorial interpretation of the twisted moments. The
negative moments of L(1,Sym2 f) twisted by L(1/2, f) have a combinatorial
interpretation which leads to corollary E. Interpretations of the same flavour
have been given in [Roy03] and [HR04]. An interpretation of the traces of
Hecke operators, implying the same objects, is also to be found in [FOP04].
We shall denote the vectors with boldface letters: α = (α1, · · · , αn). Define
tr α =

∑n
i=1 αi and |α| =

∏n
i=1 αi. Let µ be the Moebius function. Suppose

n ∈ N and define

En(b) :=

{
d ∈ Zn−1

≥0 : di |
(

b1 · · · bi
d1 · · · di−1

, bi+1

)2

, ∀i ∈ [1, n − 1]

}
,

w−n(r) =
∑

a,b,c∈Zn
≥0

|ab2
c
3|=r

[
n∏

i=1

µ(aibici)µ(bi)

]
∑

d∈En(ab)

|d|
|ab|

and

W−n :=
∏

p∈P

+∞∑

ν=0

w−n(pν)

pν
.

Using the short expansions of L(1,Sym2 f) (see (71)) and L(1/2, f) (see
(70)) with Iwaniec, Luo & Sarnak trace formula (see lemma 10) we obtain

lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Sym2 f)−n = ζ(2)−nW−n.

The method developed in [Roy03, §2.1] leads to the following lemma.
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Lemma L. Let n ≥ 0 and k ∈ [0, n] be integers. Define

Rk(p) :=





p if k = 0 ;

1 if k = 1 ;∑

δ∈{−1,0,1}k−1

δ1+···+δi≤max(0,δi)

ptr δ if k ≥ 2.

Then,

W−n =
1

ζ(3)n

∏

p∈P

1

p

n∑

k=0

(−1)k
(
n

k

)
Rk(p)

(
p

p2 + p+ 1

)k

.

Assume k ≥ 1. Writing

Rk(p) =:
1∑

q=−(k−1)

ξk,qp
q,

the integer ξk,q is the number of paths in Z2 which

• rely (0, 0) to (k − 1, q)
• with steps (1,−1), (1, 0) or (1, 1)
• never going above the abscissas axis
• except eventually with a step (1, 1) that is immediatly followed by a

step (1,−1) if it is not the last one.

In other words, we count partial Riordan paths (see figure 1).

(0, 0) (k − 1, 0)

(k − 1, q)

Figure 1. A partial Riordan path

For q = 0, we obtain a Riordan path. Riordan paths have been studied
in [Roy03, §1.2] where the number of Riordan paths from (0, 0) to (k, 0) was
denoted by Rk+2 (this number is called the k + 2th Riordan number). We
then have

ξk,0 = Rk+1.
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This remains true for k = 0 since R1 = 0. The Riordan paths rely to our
problem since the first author proved in [Roy03, Proposition 11] that

lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L(1,Sym2 f)−n =
1

ζ(3)n

∏

p∈P
ℓn

(
p

p2 + p+ 1

)
(27)

where

ℓn(x) :=

n∑

k=0

(−1)k
(
n

k

)
Rkx

k

=
4

π

∫ π/2

0

[
1 + x(1 − 4 sin2 θ)

]n
cos2 θ dθ.

Using the recursive relation

Rk(p) =

(
p+ 1 +

1

p

)
Rk−1(p) − p(p+ 1)Rk−1

which expresses that a path to (k− 1, q) has is last step coming from one of
the three points (k − 2, q + 1), (k − 2, q), (k − 2, q − 1) (see figure 2) we get

n+1∑

k=0

(−1)k
(
n+ 1

k

)
Rk(p)

(
p

p2 + p+ 1

)k

=
p2(p+ 1)

p2 + p+ 1
ℓn

(
p

p2 + p+ 1

)
.

(28)

(0, 0) (k − 1, 0)

(k − 1, q)

(k − 2, q + 1)

(k − 2, q)

(k − 2, q − 1)

Figure 2. Relation between ξk,q, ξk−1,q−1, ξk−1,q and ξk−1,q+1
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Reintroducing (28) in lemma L and comparing with (27) gives

lim
N→+∞

N∈N (log)

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Sym2)−n =

lim
N→+∞

N∈N (log)

1

ζ(2)

∑

f∈H∗
2(N)

ω∗(f)L(1,Sym2 f)−n+1.

1.6. A few notations. In this text we shall use the following notations not
yet introduced. We give at the end of the text (see section 8) an index of
notations. If a and b are two complex numbers, then δ(a, b) = 1 if a = b
and δ(a, b) = 0 otherwise. If n is an integer, define �(n) = 1 if n is a
square and �(n) = 0 otherwhise. Remark that � is not the function �1

(since �1(n) = δ(n, 1)). If p is a prime number, vp(n) is the p-valuation of

n. Moreover, if N is another integer, then we decompose n as n = nNn
(N)

with p | nN ⇒ p | N and (n(N), N) = 1. The functions 1N and 1(N) are
defined by 1N (n) :=

{
1 if the prime divisors of n divide N

0 otherwise
(29)

and 1(N)(n) :=

{
1 if (n,N) = 1

0 otherwise.
(30)

The letters s and ρ are devoted to complex numbers and we set ℜe s = σ
and ℜe ρ = r.

2. Modular tools

In this section, we establish some results needed for the forthcoming proofs
of our results.

2.1. Two standard hypothesis. We introduce two standard hypothesis
that shall allow us to prove our results for each symmetric power L–function.
If f ∈ H∗

2(N), we have defined L(s,Symm f) in (6) as being an Euler product
of degree m+ 1. These representations allow to express the multiplicativity
relation of n 7→ λf (n): this function is multiplicative and, if p ∤ N and ν ≥ 0,
we have

λf (pν) = χSymν [g(θf,p)]. (31)

Recall also that n 7→ λf (n) is strongly multiplicative on integers having their
prime factors in the support of N and that if n | N , then

|λf (n)| =
1√
n
. (32)

The first hypothesis on the automorphy of L(s,Symm f) for all f ∈ H∗
2(N)

is denoted by Symm(N). It is has been proved in the cases m ∈ {1, 2, 3, 4}
(see [GJ78], [KS02b], [KS02a] and [Kim03]). The second hypothesis is con-
cerned with the eventual Landau-Siegel zero of the mth symmetric power
L-functions, it is denoted by LSZm(N) and has been proved form ∈ {1, 2, 4}
(see [HL94], [GHL94], [HR95] and [RW03]).

Fix m ≥ 1 and N a squarefree positive integer.
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Hypothesis Symm(N). For every f ∈ H∗
2(N), there exists an automorphic

cuspidal selfdual representation of GLm+1(AQ) whose local L factors agree

with the ones of the function L(s,Symm f). Define

L∞(s,Symm f) :=




π−s/2Γ
(s

2

)
2u

u∏

j=1

(2π)−s−jΓ (s+ j) if m = 2u with u even

π−(s+1)/2Γ

(
s+ 1

2

)
2u

u∏

j=1

(2π)−s−jΓ (s+ j) if m = 2u with u odd

2u+1
u∏

j=0

(2π)−s−j−1/2Γ

(
s+ j +

1

2

)
if m = 2u+ 1.

Then there exists ε(Symm f) ∈ {−1, 1} such that

Nms/2L∞(s,Symm f)L(s,Symm f) =

ε(Symm f)Nm(1−s)/2L∞(1 − s,Symm f)L(1 − s,Symm f).

We refer to [CM04] for a discussion on the analytic implications of this
conjecture. The second hypothesis we use is the non existence of Landau-
Siegel zero. Let N squarefree such that hypothesis Symm(N) holds.

Hypothesis LSZm(N). There exists a constant Am > 0 depending only

on m such that for every f ∈ H∗
2(N), L(s,Symm f) has no zero on the real

interval [1 −Am/ log(2N), 1].

2.2. Dirichlet coefficients of the symmetric power L-functions. In
this section, we study the Dirichlet coefficients of L(s,Symm f)z. We derive
our study from the one of Cogdell & Michel but try to be more explicit in
our specific case. We begin with the polynomial D introduced in (4). Since
Symm is selfdual, we have, D(X,Symm, g) ∈ R[X] and for x ∈ [0, 1[,

(1 + x)−m−1 ≤ D(x,Symm, g) ≤ (1 − x)−m−1 . (33)

Remark 1. Note that the upper bound is optimal since the equation Symm g =
I admits always I as a solution whereas the lower bound is optimal only for
odd m since Symm g = −I has a solution only for odd m.

Evaluating (33) at g = g(π), we find

min
g∈SU(2)

D
(
X,Sym2m+1, g

)
= (1 +X)−2m−2.

Next,

D
[
X,Sym2m, g

( π

2m

)]

= (1 −X)−1
m∏

j=1

(
1 −Xe2j πi

2m

)−1 (
1 −Xe−2j πi

2m

)−1

= (1 +X)−1(1 −X2m)−1

so that
min

g∈SU(2)
D
(
X,Sym2m, g

)
≤ (1 +X)−1(1 −X2m)−1.
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For every g ∈ SU(2), define λz,ν
Symm(g) by the expansion

D(X,Symm, g)z =:

+∞∑

ν=0

λz,ν
Symm(g)Xν . (34)

The function g 7→ λz,ν
Symm(g) is central so that it may be expressed as a linear

combination of the characters of irreducible representations of SU(2). These
characters are defined on the conjugacy classes of SU(2) by

χSymm [g(θ)] = tr Symm[g(θ)] =
sin[(m+ 1)θ]

sin θ
= Xm(2 cos θ) (35)

where Xm is the mth Chebyshev polynomial of second kind on [−2, 2]. We
then have

λz,ν
Symm(g) =

∑

m′≥0

µz,ν

Symm,Symm′χSymm′ (g) (36)

with

µz,ν

Symm,Symm′ =

∫

SU(2)
λz,ν

Symm(g)χ
Symm′ (g) dg (37)

=
2

π

∫ π

0
λz,ν

Symm [g(θ)] sin[(m′ + 1)θ] sin θ dθ. (38)

We call µz,ν

Symm,Symm′ the harmonic of λz,ν
Symm of order m′. In particular,

µz,0

Symm,Symm′ = δ(m′, 0) (39)

and, since λz,1
Symm(g) = zχSymm(g), we have

µz,1

Symm,Symm′ = zδ(m,m′). (40)

From the expansion

(1 − x)−z =

+∞∑

ν=0

(
z + ν − 1

ν

)
xν (41)

we deduce

D[x,Symm, g(θ)]z =

+∞∑

ν=0





∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
 eiℓ(m,ν)θ




xν

with

ℓ(m,ν) := mν − 2
m∑

k=1

kνk+1 (42)

and gets

λz,ν
Symm [g(θ)] =

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
 eiℓ(m,ν)θ. (43)



16 EMMANUEL ROYER AND JIE WU

This function is entire in z, then assuming that z in real, using that the left
hand side is real in that case, taking the real part in the right hand side and
using analytic continuation we have for all z complex

λz,ν
Symm [g(θ)] =

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
 cos [ℓ(m,ν)θ] . (44)

It follows that (38) may be rewritten as

µz,ν

Symm,Symm′ =
2

π

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)


×
∫ π

0
cos [ℓ(m,ν)θ] sin[(m′ + 1)θ] sin θ dθ

that is

µz,ν

Symm,Symm′ =
1

2

∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(
z + νj+1 − 1

νj+1

)
∆(m,m′,ν) (45)

with

∆(m,m′,ν) =





2 if ℓ(m,ν) = 0 and m′ = 0

1 if ℓ(m,ν) ±m′ = 0 and m′ 6= 0

−1 if ℓ(m,ν) ±m′ = ∓2

0 otherwise.

(46)

In particular, µz,ν

Symm,Symm′ = 0 if m′ > mν thus

λz,ν
Symm(g) =

mν∑

m′=0

µz,ν

Symm,Symm′χSymm′ (g). (47)

Equation (46) also immediately gives

µz,ν

Sym2m,Sym2m′+1
= 0 (48)

and

µz,ν

Sym2m+1,Symm′ = 0 if m′ and ν have different parity

for all m and m′.
For m = 1, we have

D[X,St, g(θ)] =
1

1 − 2 cos(θ)X +X2
=

+∞∑

ν=0

Xν(2 cos θ)Xν (49)

hence λ1,ν
St (g) = χSymν (g) for all g ∈ SU(2). It follows that

µ1,ν

St,Symν′
= δ(ν, ν ′). (50)
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Now, equation (44) implies

∣∣∣λz,ν
Symm [g(θ)]

∣∣∣ ≤
∑

ν∈Zm+1
≥0

tr ν=ν




m∏

j=0

(|z| + νj+1 − 1

νj+1

)
 = λ

|z|,ν
Symm [g(0)]

and

+∞∑

ν=0

λ
|z|,ν
Symm [g(0)]Xν = det[I −X Symm (g(0))]−|z| = (1 −X)−(m+1)|z|

so that ∣∣∣λz,ν
Symm [g(θ)]

∣∣∣ ≤
(

(m+ 1)|z| + ν − 1

ν

)
. (51)

From (46), remarking that the first case is uncompatible with the second
and third ones, that the two cases in the second case are uncompatible and
that the two cases of the third case are uncompatible, we deduce that

mν∑

m′=0

|∆(m,m′,ν)| ≤ 2

and (45) gives

mν∑

m′=0

∣∣∣µz,ν

Symm,Symm′

∣∣∣ ≤
(

(m+ 1)|z| + ν − 1

ν

)
. (52)

This is a slight amelioration of proposition 2.1 of [CM04] in the case of
SU(2). It immediatly gives

∣∣∣µz,ν

Symm,Symm′

∣∣∣ ≤
(

(m+ 1)|z| + ν − 1

ν

)
. (53)

To conclude this study, define the multiplicative function n 7→ λz
Symm f (n)

by the expansion

L(s,Symm f)z =:

+∞∑

n=1

λz
Symm f (n)n−s. (54)

For easy reference, we collect the results of the previous lines in the

Proposition 2. Let N be a squarefree integer, f ∈ H∗
2(N) ; let ν ≥ 0 and

m > 0 be integers and z be a complex number. Then

λz
Symm f (pν) =





τz(p
ν)λf (pmν) if p | N

mν∑

m′=0

µz,ν

Symm,Symm′λf (pm′
) if p ∤ N .

Moreover, ∣∣λz
Symm f (pν)

∣∣ ≤ τ(m+1)|z|(p
ν)
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µ1,ν

St,Symν′
= δ(ν, ν ′)

µz,0

Symm,Symm′ = δ(m′, 0)

µz,1

Symm,Symm′ = zδ(m,m′)

µz,ν

Sym2m,Sym2m′+1
= 0

µz,ν

Sym2m+1,Symm′ = 0 if m′ and ν have different parity,

and
mν∑

m′=0

∣∣∣µz,ν

Symm,Symm′

∣∣∣ ≤
(

(m+ 1)|z| + ν − 1

ν

)
.

Proof. We just need to prove the first equation. Assume that p | N , then

∞∑

ν=0

λz
Symm f (pν)p−νs = [1 − λf (pν)p−s]−z

and the result follows from (41) since n 7→ λf (n) is strongly multiplicative
on integers having their prime factors in the support of N . In the case where
p ∤ N , we have

∞∑

ν=0

λz
Symm f (pν)p−νs = D[p−s,Symm, g(θf,p)]

−z

so that the results are consequences of

λz
Symm f (pν) = λz,ν

Symm [g(θf,p)]

and especially of (47) and (31). �

We shall need the Dirichlet series

W z,ρ
m,N (s) =

+∞∑

n=1

̟z,ρ
m,N (n)

ns
(55)

where ̟z,ρ
m,N is the multiplicative function defined by

̟z,ρ
m,N (pν) =





0 if p | N
mν∑

m′=0

µz,ν

Symm,Symm′

pρm′ otherwise
(56)

for all prime number p and ν ≥ 1. Similary, define a multiplicative function
w̃z,ρ

m,N by

w̃z,ρ
m,N (pν) =





0 if p | N
mν∑

m′=0

|µz,ν

Symm,Symm′ |
pρm′ otherwise.

(57)
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Using equations (40) and (53), we have

+∞∑

ν=0

|w̃z,ρ
m,N (pν)|
pσν

≤

(
1 − 1

pσ

)−(m+1)|z|
− (m+ 1)|z|

pσ
+

(m+ 1)|z|
pσ+r

(
1 − 1

pσ

)−(m+1)|z|−1

(58)

so that the serie converges for ℜe s > 1/2 and ℜe s+ ℜe ρ > 1. We actually
have an integral representation.

Lemma 3. Let s and ρ in C such that ℜe s > 1/2 and ℜe s+ℜe ρ > 1. Let

N be squarefree, then

W z,ρ
m,N (s) =

∏

p∤N

∫

SU(2)
D(p−s,Symm, g)zD(p−ρ,St, g) dg.

Moreover,

W z,ρ
2m,N (s) =

1

ζ(N)(4ρ)

∏

p∤N

∫

SU(2)
D(p−s,Sym2m, g)zD(p−2ρ,Sym2, g) dg.

Remark 4. The key point of corollary E is the fact that the coefficients ap-
pearing in the serie expansion of D(X,Sym2m, g) have only even harmonics
– see equations (47) and (48). This allows to get the second equation in
lemma 3. It does not seem to have an equivalent for D(X,Sym2m+1, g).
Actually, we have

W z,ρ
2m+1,N (s) =

∏

p∤N

∫

SU(2)
[1 − p−4ρ + p−ρ(1 − p−2ρ)χSt(g)]×

D(p−s,Sym2m+1, g)zD(p−2ρ,Sym2, g) dg

and the extra term p−ρ(1− p−2ρ)χSt(g) is the origin of the fail in obtaining
corollary E for odd powers.

Before proving lemma 3, we prove the following one

Lemma 5. Let g ∈ SU(2), ℓ ≥ 2 an integer and |X| < 1. Then

+∞∑

k=0

χSymk(g)Xk = D(X,St, g)

and
+∞∑

k=0

χSymkℓ(g)Xk = [1 + χSymℓ−2(g)X]D(X,St, gℓ).

In addition,

+∞∑

k=0

χSym2k(g)Xk = (1 −X2)D(X,Sym2, g).



20 EMMANUEL ROYER AND JIE WU

Proof. Let g ∈ SU(2). Denote by eiθ and e−iθ its eigenvalues. The first
point is equation (49). If ℓ ≥ 2, with ξ = exp(2πi/ℓ), λ = eiθ and x = 2cos θ
we have

+∞∑

ν=0

Xℓν(x)t
ℓν =

1

ℓ

ℓ−1∑

j=0

1

(1 − λξjt)(1 − λξjt)
.

On the other hand,

ℓ−1∑

j=0

1

1 − λξjt
=

ℓ−1∑

j=0

+∞∑

n=0

λnξjntn =
ℓ

1 − λℓtℓ

so that

+∞∑

ν=0

Xℓν(x)t
ν =

1 +
λℓ−1 − λ

ℓ−1

λ− λ
t

1 −
(
λℓ + λ

ℓ
)
t+ t2

.

Since
λℓ−1 − λ

ℓ−1

λ− λ
= Xℓ−2(x)

we obtain the announced result. In the case ℓ = 2, it leads to

+∞∑

k=0

χSym2k(g)tk =
1 + t

(1 − λ2t)(1 − λ
2
t)

= (1 − t2)D(t,Sym2, g).

�

Proof of lemma 3. It follows from

mν∑

m′=0

µz,ν

Symm,Symm′

pρm′ =

+∞∑

m′=0

µz,ν

Symm,Symm′

pρm′

and the expression (37) that

W z,ρ
m,N (s) =

∏

p∤N

∫

SU(2)

+∞∑

ν=0

λz,ν
Symm(g)

pνs

+∞∑

m′=0

χ
Symm′ (g)

pm′ρ
dg.

The first result is then a consequence of lemma 5. Next, we deduce from
(48) that

W z,ρ
2m,N (s) =

∏

p∤N

+∞∑

ν=0

1

pνs

+∞∑

m′=0

µz,ν

Sym2m,Sym2m′

p2ρm′

and the second result is again a consequence of lemma 5. �

We also prove the

Lemma 6. Let m ≥ 1. There exists c > 0 such that, for all N squarefree,

z ∈ C, σ ∈ ]1/2, 1] and r ∈ [1/2, 1] we have

∑

n≥1

w̃z,ρ
m,N (n)

ns
≤ exp

[
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

)]

where

zm := (m+ 1)min{n ∈ Z≥0 : n ≥ |z|}. (59)
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Proof. Equation (58) gives

∏

pσ≤zm+3

∑

ν≥0

1

pνσ

∑

0≤ν′≤mν

|µz,ν

Symm,Symν′
|

prν′ ≤

∏

pσ≤zm+3

(
1 − 1

pσ

)−zm−1(
1 +

zm

pσ+1/2

)
.

Using
∑

p≤y

1

pσ
≤ log2 y +

y1−σ − 1

(1 − σ) log y

valid uniformely for 1/2 ≤ σ ≤ 1 and y ≥ e2 (see [TW03, Lemme 3.2]) we
obtain

∏

pσ≤zm+3

+∞∑

ν=0

w̃z,r
m,N (pν)

pνσ
≤

exp

[
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

)]
.

For pσ > zm + 3, again by (58), we have

∑

ν≥0

1

pνσ

∑

0≤ν′≤mν

|µz,ν

Symm,Symν′
|

prν′ ≤ 1 +
c(zm + 3)2

p2σ
+
c(zm + 3)

pσ+1/2
,

so that

∏

pσ>zm+3

+∞∑

ν=0

w̃z,r
m,N (pν)

pνσ
≤ ec(zm+3)1/σ/ log(zm+3)

≤ exp

[
c(zm + 3)

(zm + 3)(1−σ)/σ − 1

(1 − σ) log(zm + 3)

]
.

�

For the primes dividing the level, we have the

Lemma 7. Let ℓ,m ≥ 1. For σ ∈ ]1/2, 1] and r ∈ [1/2, 1] we have

∏

p|N

∫

SU(2)
D(p−s,Symm, g)zD(p−ρ,Symℓ, g) dg = 1 +Om,ℓ(Err)

with

Err :=
ω(N)

P−(N)2r
+

|z|ω(N)

P−(N)r+σ
+

|z|2ω(N)

P−(N)2σ

uniformely for
{
N ∈ N

(
max

{
ω(·)1/(2r), [|z|ω(·)]1/(r+σ), [|z|2ω(·)]1/(2σ)

})
,

z ∈ C.
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Proof. Write

Ψz
m,ℓ(p) :=

∫

SU(2)
D(p−s,Symm, g)zD(p−ρ,Symℓ, g) dg.

Using (36) and the orthogonality of characters, we have

Ψz
m,ℓ(p) =

+∞∑

ν1=0

+∞∑

ν2=0

p−ν1s−ν2ρ

min(mν1,ℓν2)∑

ν=0

µz,ν1

Symm,Symνµ
1,ν2

Symℓ,Symν .

Proposition 2 gives

|Ψz
m,ℓ(p) − 1| ≤

+∞∑

ν2=2

(
ν2 + ℓ

ν2

)
1

prν2
+

|z|
pσ

+∞∑

ν2=1

(
ν2 + ℓ

ν2

)
1

prν2

+

+∞∑

ν1=2

(
(m+ 1)|z| + ν1 − 1

ν1

)
1

pσν1

+∞∑

ν2=0

(
ν2 + ℓ

ν2

)
1

prν2

≪m,ℓ
1

p2r
+

|z|
pr+σ

+
|z|2
p2σ

which leads to the result. �

Using (50) we similary can prove the

Lemma 8. Let m ≥ 1 and z ∈ C, then
∫

SU(2)
D(p−1,Symm, g)zD(p−1/2,St, g) dg = 1 +Om

( |z|
p1+m/2

)

for p ≥ (m+ 1)|z| + 3.

2.3. Dirichlet coefficients of a product of L-functions. The aim of
this section is to study the Dirichlet coefficients of the product

L(s,Sym2 f)L(s,Symm f)z.

Define λ1,z,ν

Sym2,Symm(g) for every g ∈ SU(2) by the expansion

D(x,Sym2, g)D(x,Symm, g)z =:

+∞∑

ν=0

λ1,z,ν

Sym2,Symm(g)xν . (60)

We have

λ1,z,ν

Sym2,Symm(g) =
∑

(ν1,ν2)∈Z2
≥0

ν1+ν2=ν

λ1,ν1

Sym2(g)λ
z,ν2

Symm(g) (61)

from that we deduce, using (51), that
∣∣∣λ1,z,ν

Sym2,Symm(g)
∣∣∣ ≤

(
(m+ 1)|z| + 2 + ν

ν

)
.

Since λ1,z,ν

Sym2,Symm is central, there exists (µ1,z,ν

Sym2,Symm,Symm′ )m′∈Z≥0
such that,

for all g ∈ SU(2) we have

λ1,z,ν

Sym2,Symm(g) =

+∞∑

m′=0

µ1,z,ν

Sym2,Symm,Symm′χSymm′ (g) (62)
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where

µ1,z,ν

Sym2,Symm,Symm′ =

∫

SU(2)
λ1,z,ν

Sym2,Symm(g)χ
Symm′ (g) dg

=
2

π

∫ π

0
λ1,z,ν

Sym2,Symm(g) sin[(m′ + 1)θ] sin θ dθ. (63)

The Clebsh-Gordan relation [Vil68, §III.8] is

χ
Symm′

1
χ

Symm′
2

=

min(m′
1,m′

2)∑

r=0

χ
Symm′

1+m′
2−2r .

In addition with (61) and (47), this relation leads to

µ1,z,ν

Sym2,Symm,Symm′ =
∑

(ν1,ν2)∈Z2
≥0

ν1+ν2=ν

2ν1∑

m′
1=0

mν2∑

m′
2=0

|m′
2−m′

1|≤m′≤m′
1+m′

2
m′

1+m′
2≡m′ (mod 2)

µ1,ν1

Sym2,Symm′
1
µz,ν2

Symm,Symm′
2
.

(64)
It follows immediately from (64) that

µ1,z,ν

Sym2,Symm,Symm′ = 0 if m′ > max(2,m)ν.

Using also (39), we obtain

µ1,z,0

Sym2,Symm,Symm′ = δ(m′, 0)

and (40) gives

µ1,z,1

Sym2,Symm,Symm′ = zδ(m′,m) + δ(m′, 2).

Finally, equation(64) and (48) give

µ1,z,ν

Sym2,Sym2m,Sym2m′+1
= 0.

By equations (61) and (43) we get

λ1,z,ν

Sym2,Symm[g(θ)] =

∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

∑

(ν′ ,ν′′)∈Z3
≥0×Zm+1

≥0

tr ν′=ν′

tr ν′′=ν′′




m∏

j=0

(
z + ν ′′j+1 − 1

ν ′′j+1

)
 cos[ℓ(2,m;ν′,ν′′)θ]

with

ℓ(2,m;ν′,ν′′) = 2ν ′ +mν ′′ − 2

2∑

k=1

kν ′k+1 − 2

m∑

k=1

kν ′′k+1. (65)
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We deduce then from (63) that

µ1,z,ν

Sym2,Symm,Symm′ =

1

2

∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

∑

(ν′ ,ν′′)∈Z3
≥0×Zm+1

≥0

tr ν′=ν′

tr ν′′=ν′′




m∏

j=0

(
z + ν ′′j+1 − 1

ν ′′j+1

)
∆(2,m,m′;ν′,ν′′)

with

∆(2,m,m′;ν′,ν′′) :=
4

π

∫ π

0
cos[ℓ(2,m;ν′,ν′′)θ] sin[(m′+1)θ] sin θ dθ. (66)

From
max(2,m)ν∑

m′=0

|∆(2,m,m′;ν′,ν′′)| ≤ 2

we then have
max(2,m)ν∑

m′=0

|µ1,z,1

Sym2,Symm,Symm′ | ≤
∑

(ν′,ν′′)∈Z2
≥0

ν′+ν′′=ν

(
2 + ν ′

ν ′

)(
(m+ 1)|z| + ν ′′ − 1

ν ′′

)

≤
(

(m+ 1)|z| + 2 + ν ′′

ν ′′

)
.

To conclude this study, define the multiplicative function n 7→ λ1,z

Sym2 f,Symm f
(n)

by the expansion

L(s,Sym2 f)L(s,Symm f)z =:

+∞∑

n=1

λ1,z

Sym2 f,Symm f
(n)n−s. (67)

The preceding results imply the

Proposition 9. Let N be a squarefree integer, f ∈ H∗
2(N) ; let ν ≥ 0 and

m > 0 be integers and z be a complex number. Then

λ1,z

Sym2 f,Symm f
(pν) =





ν∑

ν′=0

τz(p
ν′

)λf (pmν′
)pν′−ν if p | N

max(2,m)ν∑

m′=0

µ1,z,ν

Sym2,Symm,Symm′λf (pm′
) if p ∤ N .

Moreover, ∣∣∣λ1,z

Sym2 f,Symm f
(pν)

∣∣∣ ≤ τ(m+1)|z|+3(p
ν)

µ1,z,0

Sym2,Symm,Symm′ = δ(m′, 0)

µ1,z,1

Sym2,Symm,Symm′ = zδ(m′,m) + δ(m′, 2)

µ1,z,ν

Sym2,Sym2m,Sym2m′+1
= 0,
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and
max(2,m)ν∑

m′=0

|µ1,z,ν

Sym2,Symm,Symm′ | ≤
(

(m+ 1)|z| + 2 + ν

ν

)
.

2.4. Trace formulas. In this section, we establishe a few mean value results
for Dirichlet coefficients of the different L–functions we shall encounter.

Let f ∈ H∗
2(N). Denote by εf (N) := ε(Sym1 f) the sign of the functional

equation satisfied by L(s, f). We have

εf (N) = −µ(N)
√
Nλf (N) ∈ {−1, 1}. (68)

The following trace formula is due to Iwaniec, Luo & Sarnak [ILS00,
Corollary 2.10].

Lemma 10. Let N ≥ 1 be a squarefree integer and m ≥ 1, n ≥ 1 two

integers satisfying (m,N) = 1 and (n,N2) | N . Then
∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n) = δ(m,n) +O(Err)

with

Err :=
τ(N)2 log2(3N)

N

(mn)1/4 τ3[(m,n)]√
(n,N)

log(2mnN).

We shall need a slightly different version of this trace formula (we actually
only remove the condition (n,N) = 1 from [ILS00, Proposition 2.9]).

Lemma 11. Let N ≥ 1 be a squarefree integer and m ≥ 1, n ≥ 1 two

integers satisfying (m,N) = 1 and (n,N2) | N . Then

∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λf (m)λf (n) = δ(m,n) +O(Err)

with

Err :=
δ(n,mN)√

N

+
τ(N)2 log2(3N)

N3/4

(mn)1/4

√
(n,N)

log(2mnN)

[
τ3 [(m,n)]

N1/4
+
τ [(m,n)]√

(n,N)

]
.

Proof. By lemma 10, it suffices to prove that

∑

f∈H∗
2(N)

ω∗(f)εf (N)λf (m)λf (n) ≪

δ(n,mN)√
N

+
τ(N)2 log2(3N)

N3/4

(mn)1/4

(n,N)
τ [(m,n)] log(2mnN).

Since εf (N) = −µ(N)
√
Nλf (N), we shall estimate

R :=
√
N

∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n)λf (N).
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The multiplicativity relation (31) and equation (32) give

R =
√
N

∑

f∈H∗
2(N)

ω∗(f)λf (m)λf (n(N))λf (nN )2 λf

(
N

nN

)

=

√
N

nN

∑

d|(m,n(N))

∑

f∈H∗
2(N)

ω∗(f)λf

(
mn(N)

d2

)
λf

(
N

nN

)
.

Then, lemma 10 leads to the result since mn(N)/d2 = N/nN implies N =

nN , m = n(N) and d = m. �

We also prove a trace formula implying the Dirichlet coefficients of the
symmetric power L-functions.

Lemma 12. Let N be a squarefree integer, (m,n, q) be nonnegative integers

and z be a complex number. Then

∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λz
Symm f (n)λf (q) = wz

m(n, q) +O(Err)

with

wz
m(n, q) := τz(nN )

�(nm
NqN)√
nm

NqN

∏

1≤j≤r

∑

0≤ν′
j≤mνj

p
ν′
1

1 ···pν′r
r =q(N)

µ
z,νj

Symm,Sym
ν′
j

(69)

where

n(N) =

r∏

j=1

p
νj

j , (p1 < · · · < pj)

and

Err :=
τ(N)2 log2(3N)

N3/4
nm/4τ(m+1)|z|(n)τ(q)q1/4 log(2Nnq).

The implicit constant is absolute.

Proof. Let

S :=
∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λz
Symm f (n)λf (q).

Writing nm
NqN = g2h with h squarefree, equation (32) and proposition 2 give

S =
τz(nN )

g

∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]




r∏

j=1

µ
z,νj

Symm,Sym
ν′
j




×
∑

d|
(

q(N),
∏r

j=1 p
ν′
j

j

)

∑

f∈H∗
2(N)

ω∗(f)[1 + εf (N)]λf (h)λf


q

(N)

d2

r∏

j=1

p
ν′

j

j


 .
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Then, since h | N , lemma 11 gives S = P + E with

P =
τz(nN )

g

r∏

j=1

mνj∑

ν′
j=0

µ
z,νj

Symm,Sym
ν′
j

∑

d|
(

q(N),
∏r

j=1 p
ν′j
j

)

q(N)p
ν′1
1 ···pν′r

r /d2=h

1

and

E ≪
τ(N)2 log2(3N)

N3/4

nm/4τ|z|(nN )

n
m/2
N

q1/4τ(q)

q
1/2
N

log(2Nnq)

g1/2

r∏

j=1

mνj∑

ν′
j=0

∣∣∣∣µ
z,νj

Symm,Sym
ν′
j

∣∣∣∣ .

Using (52), we obtain

E ≪ τ(N)2 log2(3N)

N3/4
nm/4q1/4τ(q) log(2Nnq)τ(m+1)|z|(n).

We transform P as the announced principal term since q(N)p
ν′
1

1 · · · pν′
r

r /d2 = h

implies p
ν′
1

1 · · · pν′
r

r = q(N) = d and h = 1. �

Similary to lemma 12, we prove the

Lemma 13. Let k, N , m, n be positive integers, k even, N squarefree. Let

z ∈ C. Then
∑

f∈H∗
2(N)

ω∗(f)λ1,z

Sym2 f,Symm f
(n) = w1,z

2,m(n) +Ok,m(Err)

with

Err :=
τ(N)2 log2(3N)

N
nmax(2,m)ν/4r1,z

2,m(n) log(2nN)

where w1,z
2,m and r1,z

2,m are the multiplicative functions defined by

w1,z
2,m(pν) :=





ν∑

ν′=0

τz(p
ν′

)�(pmν′
)

pν−ν′+mν′/2
if p | N

µ1,z,ν

Sym2,Symm,Sym0 if p ∤ N

and

r1,z
2,m(pν) :=





ν∑

ν′=0

τ|z|(pν′
)

pν−ν′+mν′/2
if p | N

((m+1)|z|+ν+2
ν

)
if p ∤ N .
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2.5. Mean value formula for the central value of L(s, f). Using the
functional equation of L(s, f) (see hypothesis Sym1(N), which is proved in
this case) and contour integrations (see [IK04, Theorem 5.3] for a beautiful
explanation) we write

L

(
1

2
, f

)
= [1 + εf (N)]

+∞∑

q=1

λf (q)√
q

exp

(
− 2πq√

N

)
. (70)

From (70) and lemma 11 we classically deduce the

Lemma 14. Let N be a squarefree integer, then

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
= ζN (2) +O

(
τ(N)2 log(2N) log2(3N)

N3/8

)
.

Remark 15. For N squarefree, we have

ζN (2) = 1 +O

(
τ(N)

P−(N)2

)
.

Note that the “big O” term may be not small: for all ω ≥ 1, let Nω be the
product of the ω first prime numbers, then Mertens theorem implies that

ζNω(2) ∼ ζ(2)

as ω tends to infinity.

Proof of lemma 14. Equation (70) leads to

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
=

+∞∑

q=1

1√
q

exp

(
− 2πq√

N

) ∑

f∈H∗
2(N)

ω∗(f) [1 + εf (N)]λf (q).

Writing q = mℓ2n with (m,N) = 1, ℓ2n having same prime factors as N
and n squarefree, we deduce from the multiplicativity of n 7→ λf (n), its
strong multiplicativity of numbers with support included in that of N and
(32) that

λf (q) =
1

ℓ
λf (m)λf (n).

Then lemma 11 gives

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
= P (N) +O

(
E1 + τ(N)2 log2(3N)(E2 + E3)

)

where

P (N) =

+∞∑

ℓ=1

1N (ℓ)

ℓ2
exp

(
−2πℓ2√

N

)

and

E1 =
1

N

+∞∑

ℓ=1

1

ℓ2
exp(−2πℓ2

√
N) ≪ 1

N
,
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E2 =
1

N

+∞∑

q=1
q=mℓ2n

1N (ℓn)1(N)(m)µ(n)2 log(2mnN)

m1/4ℓ2n3/4
exp

(
−2πmℓ2n√

N

)

≪ 1

N

+∞∑

q=1

log(2qN)

q1/4
exp

(
− 2πq√

N

)

≪ log(2N)

N5/8

and

E3 =
1

N3/4

+∞∑

q=1
q=mℓ2n

1N (ℓn)1(N)(m)µ(n)2 log(2mnN)

m1/4ℓ2n5/4
exp

(
−2πmℓ2n√

N

)

≪ log(2N)

N3/8
.

We conclude by expressing P (N) via the inverse Mellin transform of exp
and doing a contour integration obtaining

P (N) = ζN (2) +Oε(N
−1/2+ε)

for all ε > 0. �

3. Twisting by L(1/2, f)

The goal of this section is the proof of theorem A and proposition B.

3.1. Proof of theorem A. Let z ∈ C and x ≥ 1, define

ωz
Symm f (x) :=

+∞∑

n=1

λz
Symm(n)

n
e−n/x (71)

for all f ∈ H∗
2(N) and proves the

Lemma 16. Let N be a squarefree integer, m ∈ Z>0, x ≥ 1 and z ∈ C.

Then

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x)

=

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x +O(Err)

where

Err := N−3/8[log(2N)]2 log2(3N)xm/4[log(3x)]zm+1(zm +m+ 1)!.

The implicit constant is absolute.
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Proof. Using (70) and lemma 12, we get

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x)

=

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x +O

(
τ(N)2 log2(3N)

N3/4
R

)

with

R :=
+∞∑

q=1

τ(q) log(2Nq)

q1/4
e−2πq/

√
N

+∞∑

n=1

nm/4−1 log(2n)τ(m+1)|z|(n)e−n/x.

By using

∑

n≤t

τr(n)

n
≤ [log(3t)]r (t ≥ 1, r ≥ 1, integers),

we have
∑

n≤x

log(2n)

n1−m/4
τ(m+1)|z|(n)e−n/x ≤ xm/4[log(3x)]zm+1

and an integration by parts leads to

∑

n≥x

log(2n)

n1−m/4
τ(m+1)|z|(n)e−n/x ≪m K

where

K =

∫ +∞

x

[log(3t)]zm+1

t1−m/4
e−t/x

(
1 +

t

x

)
dt

≤ xm/4

∫ +∞

1
[log(3ux)]zm+1um/4e−u(1 + 1/u) du

≪m xm/4[log(3x)]zm+1

∫ ∞

1
um/4+zm+1e−u(1 + 1/u) du

≪m xm/4[log(3x)]zm(zm +m+ 1)!.

We conclude with

+∞∑

q=1

τ(q) log(2Nq)

q1/4
e−2πq/

√
N ≪ N3/8[log(2N)]2.

�

The main term appearing in lemma 16 is studied in the next lemma.

Lemma 17. Let m ≥ 1 an integer. There exists c such that, for all N
squarefree, 1 ≤ xm ≤ N1/3, z ∈ C, and σ ∈ [0, 1/3] we have

+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x = L1,z

(
1

2
, 1; St,Symm;N

)
+Om(R),
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where

R := N−1/12ec(|z|+1) log2(|z|+3)

+ x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

The implicit constant depends only on m.

Proof. Let

S :=
+∞∑

q=1

1√
q
e−2πq/

√
N

+∞∑

n=1

wz
m(n, q)

n
e−n/x.

By the definition of S, we have S = S> + S≤ with

S> :=
∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

qN |N∞

�(nm
NqN )

qN

∑

n(N)>x/nN

(n(N),N)=1

e−nN n(N)/x

n(N)

×
∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]

{


r∏

j=1

µ
z,νj

Symm,Sym
ν′
j

p
ν′

j/2

j


 exp


−

2πqN
∏r

j=1 p
ν′

j

j√
N



}

and

S≤ :=

∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

n(N)≤x/nN

(n(N),N)=1

e−nNn(N)/x

n(N)

∑

(ν′
i)1≤i≤r∈Xr

i=1[0,mνi]




r∏

j=1

µ
z,νj

Symm,Sym
ν′
j

p
ν′

j/2

j




×
∑

qN |N∞

�(nm
NqN )

qN
exp


−

2πqN
∏r

j=1 p
ν′

j

j√
N




where n(N) :=
∏r

j=1 p
νj

j . We have

S> ≪ R2 :=
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ>x/n

w̃
z,1/2
m,N (ℓ)

ℓ
. (72)

Moreover, if n(N) ≤ x/nN then

r∏

j=1

p
ν′

j

j ≤ xm ≤ N1/3

and

∑

qN |N∞

�(nm
NqN )

qN
exp


−

2πqN
∏r

j=1 p
ν′

j

j√
N


 =

∑

qN |N∞

�(nm
NqN )

qN
+O

(
τ(nm

N )

N1/12

)
.

(73)
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Equations (72) and (73) give S = P +O(N−1/12R1 +R2) with

P :=
∑

nN |N∞

τz(nN )

n
m/2+1
N

∑

qN |N∞

�(nm
NqN )

qN

∑

n(N)≤x/nN

(n(N),N)=1

̟
z,1/2
m,N (n(N))

n(N)
e−n(N)/(x/nN )

and

R1 :=
∑

n|N∞

τ|z|(n)τ(nm)

nm/2+1

∑

ℓ≤x/n

w̃
z,1/2
m,N (ℓ)

ℓ
.

Writing

∑

n(N)≤x/nN

(n(N),N)=1

̟
z,1/2
m,N (n(N))

n(N)
e−n(N)/(x/nN ) = W

z,1/2
m,N (1)

−
∑

ℓ>x/nN

(ℓ,N)=1

̟
z,1/2
m,N (ℓ)

ℓ
+

∑

ℓ≤x/nN

(ℓ,N)=1

̟
z,1/2
m,N (ℓ)

ℓ

[
e−ℓ/(x/nN ) − 1

]

we get, by lemma 3,

P = L1,z

(
1

2
, 1; St,Symm;N

)
+O(R2 +R3)

with

R3 :=
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ≤x/n
(ℓ,N)=1

w̃
z,1/2
m,N (ℓ)

ℓ

[
1 − e−ℓ/(x/n)

]
.

Lemma 6 gives

R1 ≪ exp [c(zm + 3) log2(zm + 3)] .

We have

R3 ≪
∑

n|N∞

τ|z|(n)

nm/2+1

∑

q|N∞

�(nmq)

q

∑

ℓ≤x/n

w̃
z,1/2
m,N (ℓ)

ℓ
· ℓn
x

≪ x−σ
∑

n|N∞

τ|z|(n)

nm/2+1−σ

∑

q|N∞

�(nmq)

q

+∞∑

ℓ=1

w̃
z,1/2
m,N (ℓ)

ℓ1−σ

for all σ ∈ [0, 1/2[ and lemma 6 gives

R3 ≪ x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

Next, for all σ ∈ [0, 1/2[ , Rankin’s method and lemma 6 give

R2 ≪ x−σ log2(3N) exp

{
c(zm + 3)

[
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

]}
.

�
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Next, given η ∈]0, 1/100[, denote by H+
m(N ; η) the subset of H∗

2(N) con-
sisting of forms f such that L(s,Symm f) has no zeros in the half strip

ℜe s ≥ 1 − 4η |ℑm s| ≤ 2[log(2N)]3

and H−
m(N ; η) the complementary subset. By [CM04, Proposition 5.3], for

all m ≥ 1, there exists ξ > 0 and A > 0 (both depending on m) such that
for all η ∈]0, 1/100[ and squarefree N we have

#H−
m(N ; η) ≤ ξNAη[log(2N)]ξ .

By [CM04, Lemmas 4.1 and 4.2] there exists, for all m ≥ 1, a constant B
(depending on m) such that, for all z ∈ C and f ∈ H−

m(N ; η), we have

L(1,Symm f)z ≪m [log(2N)]B| ℜe z| (74)

Using the convexity bound (see [Mic02, Lecture 4] for better bounds that
we do not need here)

L

(
1

2
, f

)
≪ N1/4

and

ω∗(f) =
π2

ϕ(N)L(1,Sym2 f)
≪ log(2N) log2(3N)

N

and by (74) we get

∑

f∈H−
m(N ;η)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z ≪m NAη−3/4[log(2N)]B| ℜe z|+C ,

A, B and C being constants depending only on m so that

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z

=
∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z

+Om

(
NAη−3/4[log(2N)]B| ℜe z|+C

)
.

Next, there exists a constant D > 0, depending only on m, such that

L(1,Symm f)z = ωz
Symm f (x) +O(R1),

with

R1 := x−1/ log2(3N)eD|z| log3(20N)[log(2N)]3 + eD|z| log2(3N)−[log(2N)]2

(see [CM04, Proposition 5.6]) and, since by positivity (see [Guo96] and
[FH95]) and lemma 14 we have

∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
≪ 1,
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we obtain

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z

=
∑

f∈H+
m(N ;η)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x) +Om(R2)

with
R2 := R1 +NAη−3/4[log(2N)]B| ℜe z|+C .

Now, since |ωz
Symm f (x)| ≤ ι(ε)| ℜe z|xε, where ι(ε) > 1 depends on ε and m,

we reintroduce the forms of H−
m(N ; η) obtaining

∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
L(1,Symm f)z

=
∑

f∈H∗
2(N)

ω∗(f)L

(
1

2
, f

)
ωz

Symm f (x) +Om(R3)

with

R3 := x−1/ log2(3N)eD|z| log3(20N)[log(2N)]3

+ xεNAη−3/4[ι(ε) log(2N)]B| ℜe z|+C + eD|z| log2(3N)−[log(2N)]2 .

Lemmas 16 and 17 with η = ε = 1/(100m), xm = N1/10 and

σ = c′(m)/ log(|z| + 3)

with c′(m) large enough and depending on m leads to theorem A.

3.2. Proof of proposition B. For the proof of proposition B, we write

L1,z

(
1

2
, 1; St,Symm;N

)
= L1,z

(
1

2
, 1; St,Symm

)

× Ξz
m(N)

∏

p|N

(∫

SU(2)
D(p−1/2,St, g)D(p−1,Symm, g)z dg

)−1

.

We use

Ξz
m(N) = 1 +O

(
(|z| + 1)ω(N)

P−(N)min{m/2+1,2}

)

which is uniform for all z andN such that (|z|+1)ω(N) ≤ P−(N)min{m/2+1,2}

and lemma 7 to get

L1,z

(
1

2
, 1; St,Symm;N

)
= L1,z

(
1

2
, 1; St,Symm

)
× [1 +Om(Err)]

where

Err :=
ω(N)

P−(N)
+

(|z| + 1)ω(N)

P−(N)3/2
+

(|z| + 1)2ω(N)

P−(N)2

uniformely for
{
N ∈ N

(
max

{
ω(·)1/2, [(|z| + 1)ω(·)]2/3, [|z|2ω(·)]1/2

})
,

z ∈ C.
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4. Twisting by L(1,Sym2 f)

In this section, we sketch the proofs of theorem C and proposition D. The
proof of theorem C is very similar to the one of theorem A.

Let z ∈ C and x ≥ 1, define

ω1,z

Sym2 f,Symm f
(x) :=

+∞∑

n=1

λ1,z

Sym2 f,Symm f
(n)

n
e−n/x. (75)

for all f ∈ H∗
2(N) and obtains the

Lemma 18. Let N be a squarefree integer, m ∈ Z>0, x ≥ 1 and z ∈ C.

Then

∑

f∈H∗
2(N)

ω∗(f)ω1,z

Sym2 f,Symm f
(x) =

ϕ(N)

N

+∞∑

n=1

w1,z
2,m(n)

n
e−n/x +O(Err)

with

Err :=
τ(N)2 log(2N) log2(3N)

N
xm/4(log 3x)zm+3(zm +m+ 4)!.

The implicit constant is absolute and w1,z
2,m(n) has been defined in lemma 13.

Next, we have the

Lemma 19. Let m ≥ 1 an integer. There exists c such that, for all N
squarefree, 1 ≤ xm ≤ N1/3, z ∈ C, and σ ∈ [0, 1/3m] we have

+∞∑

n=1

w1,z
2,m(n)

n
e−n/x = L1,z

(
1, 1; Sym2,Symm;N

)
+Om(R),

where

R :=
log2(3N)

xσ
exp

{
c(zm + 3)

(
log2(zm + 3) +

(zm + 3)σ/(1−σ) − 1

σ log(zm + 3)

)}
.

The implicit constant depends only on m.

The conclusion of the proof of theorem C is the same as the one of theo-
rem A after having introduced the exceptional set

H−
2,m(N ; η) := H∗

2(N) \
(
H−

2 (N ; η) ∩ H+
m(N ; η)

)
.

The proof of proposition D follows from lemma 7 in the same way as propo-
sition B.

5. Asymptotics of the moments

5.1. Proof of proposition F. We give the proof for L1,±r
(

1
2 , 1; St,Symm

)

since the method is similar in the two cases.
Write

ψ±r
m,1(p) :=

∫

SU(2)
D(p−1/2,St, g)D(p−1,Symm, g)±r dg.

By lemma 8, we have
∑

p≥(m+1)r+3

logψ±r
m,1(p) ≪m

r

log r
.
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By (33) we get

(
1 +

1√
p

)−2

D(p−1,Symm, g) ≤ ψ±r
m,1(p) ≤

(
1 − 1√

p

)−2

D(p−1,Symm, g)

and then
∑

p≤(m+1)r+3

logψ±r
m,1(p) =

∑

p≤(m+1)r+3

log Υ±r
m,1(p) +Om

(√
r log2(3r)

)
(76)

with

Υ±r
m,1(p) :=

∫

SU(2)
D(p−1,Symm, g)±r dg.

The right hand side of (76) has been evaluated in [CM04, §2.2.1] and was
founded to be

Symm
± r log2 r + Symm,1

± r +Om

(
r

log r

)

which ends the proof.

5.2. Proof of corollary G. Let r ≥ 0. Define

Θ(N) :=
∑

g∈H∗
2(N)

ω(g)L

(
1

2
, g

)
and Ω(f) :=

ω(f)L
(

1
2 , f
)

Θ(N)
.

For N ∈ N
(
log1/2

)
, we have

Θ(N) ∼ 1 (N → +∞)

(see lemma 14). Since L
(

1
2 , f
)
≥ 0, by theorem A, and propositions B and F

we get

∑

f∈H∗
2(N)

L( 1
2
,f)>0

Ω(N)L(1,Symm f)r =
1

Θ(N)

∑

f∈H∗
2(N)

ω(f)L

(
1

2
, f

)
L(1,Symm f)r

= [1 + o(1)]e
Symm

+ r log

{
[1+o(1)] exp

(
Sym

m,1
+

Symm
+

)
log r

}

uniformly for all r ≤ c logN/ log2(3N) log3(20N). Since
∑

f∈H∗
2(N)

L( 1
2
,f)>0

Ω(N) =
∑

f∈H∗
2(N)

Ω(N) = 1

we obtain, by positivity,a function f ∈ H∗
2(N) such that

L(1, symmf)r ≥ {1 + o(1)}eSymm
+ r log{[1+o(1)] exp(Symm,1

+ / Symm
+ ) log r}

and L
(

1
2 , f
)
> 0.

We obtain the announced minoration with r = c logN/(log2(3N))2. The
majoration is obtained in the same way, taking the negative moments.
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6. Hecke eigenvalues

6.1. Proof of proposition H. Following step by step the proof given by
Granville & Soundararajan in the case of Dirichlet characters [GS01, Lemma
8.2], we get under Grand Riemann Hypothesis

logL(1,Symm f) =
∑

2≤n≤log2(2N) log4
2(3N)

ΛSymm f (n)

n log n
+Om (1)

where ΛSymm(n) is the function defined by

−L
′(s,Symm f)

L(s,Symm f)
=:

+∞∑

n=1

ΛSymm(n)

ns
(ℜe s > 1)

that is

ΛSymm(n) =





χSymm [g(θf,p)
ν ] log p if n = pν with p ∤ N

λf (p)mν log p if n = pν with p | N
0 otherwise.

If ν > 1, then ∣∣∣∣
ΛSymm f (pν)

pν log(pν)

∣∣∣∣ ≤
m+ 1

pν

hence

logL(1,Symm f) =
∑

p≤log2(2N) log4
2(3N)

ΛSymm f (p)

p log p
+O(1).

From ΛSymm f (p) = λf (pm) log p we deduce

logL(1,Symm f) =
∑

p≤log2(2N) log4
2(3N)

λf (pm)

p
+O(1).

Since
∑

log(2N)≤p≤log2(2N) log4
2(3N)

|λf (pm)|
p

≤ (m+ 1)
∑

log(2N)≤p≤log2(2N) log4
2(3N)

1

p

≪m 1

we get

logL(1,Symm f) =
∑

p≤log(2N)

λf (pm)

p
+O(1). (77)

Let N ∈ N
(
log3/2

)
and f ∈ H∗+

2 (N ;C,Symm), equation (77) then leads to

∑

p≤log(2N)

λf (pm)

p
≥ Symm

+ log3(20N) +O(1)

and we deduce
∑

p≤log(2N)

Symm
+ −λf (pm)

p
≪ 1.
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For ξ(N) ≤ log3(20N), we get

∑

p≤log(2N)
λfm (pm)≥Symm

+ −ξ(N)/ log3(20N)

1

p
=

∑

p≤log(2N)

1

p

−
∑

p≤log(2N)
λfm(pm)<Symm

+ −ξ(N)/ log3(20N)

1

p

= log3(20N)

{
1 +Oε,k

(
1

ξ(N)

)}
.

We conclude by using

∑

logε(3N)<p<log(2N)

1

p
≪ 1.

6.2. Proof of proposition I. Let N ∈ N
(
log3/2

)
. Taking m = 2 in (77)

gives
∑

p≤log(2N)

λf (p2)

p
+O(1) = logL(1,Sym2 f).

Since Sym2
− = 1, if f ∈ H∗−

2 (N ;C,Sym2), we deduce

∑

p≤log(2N)

λf (p2)

p
≤ − log3(20N) +O(1).

If p | N , then λf (p2) = λf (p)2 and

∑

p≤log(2N)
p|N

1

p
= O(1);

if p ∤ N , then λf (p2) = λf (p)2 − 1. We thus have

∑

p≤log(2N)

λf (p)2 − 1

p
≤ − log3(20N) +O(1)

hence
∑

p≤log(2N)

λf (p)2

p
≪ 1. (78)

For ξ(N) ≤ log3(20N), we deduce

∑

p≤log(2N)

|λf (p)|≥[ξ(N)/ log3(20N)]1/2

λf (p)2

p
≪ log3(20N)

ξ(N)

which leads to the announced result.
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7. Simultaneous extremal values

7.1. Proof of proposition J. Prove the first point. Let C > 0, N ∈
N (log) and f ∈ H∗

2(N) such that

L(1,Sym2 f) ≤ C [log2(3N)]− Sym2
−

and

L(1,Sym4 f) ≤ C [log2(3N)]− Sym4
− .

Equation (77) with m = 4 gives

∑

p≤log(2N)
p∤N

λf (p4)

p
+O(1) ≤ − Sym4

− log3(20N)

since the contribution of p dividing N is bounded (using (32)). Expanding
λf (p4) thanks to (31) we deduce

∑

p≤log(2N)
p∤N

λf (p)4 − 3λf (p)2 + 1

p
+O(1) ≤ − Sym4

− log3(20N).

Reinserting (78) (again, we remove easily the contribution of p dividing N),
we are led to

∑

p≤log(2N)
p∤N

λf (p)4 + 1

p
≤ − Sym4

− log3(20N) +O(1).

The right hand side tends to −∞ while the left one is positive, so we get a
contradiction.

Prove next the second point. Assume that

L(1,Sym2 f) ≥ C [log2(3N)]Sym2
+ .

By Cauchy-Schwarz inequality and (77), we have

(Sym2
+)2[log2(3N) +O(1)] ≤

∑

p≤log(2N)
p∤N

λf (p2)2

p
. (79)

Further, from X4 = X2
2 −X2 − 1, we deduce

∑

p≤log(2N)
p∤N

λf (p4)

p
=

∑

p≤log(2N)
p∤N

λf (p2)2 − λf (p2) − 1

p

and (79) and |λf (p2)| ≤ Sym2
+ imply

∑

p≤log(2N)
p∤N

λf (p4)

p
≥ [(Sym2

+)2 − Sym2
+ −1] log3(20N) +O(1)

which leads to the result by (77) since

(Sym2
+)2 − Sym2

+ −1 = Sym4
+ .
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7.2. Proof of proposition K. From

X2
m =

m∑

j=2

X2j +X2

we deduce
∑

p≤log(2N)
p∤N

λf (pm)2

p
=

∑

p≤log(2N)
p∤N

m∑

j=2

λf (p2j)

p
+

∑

p≤log(2N)
p∤N

λf (p)2

p

≤ (m+ 3)(m + 1) log3(20N) +O(1)

by (78) and |λf (p2j)| ≤ 2j + 1. Furthermore

[Symm
+ log3(20N)]2 =




∑

p≤log(2N)
p∤N

λf (pm)

p




2

≤ [log3(20N) +O(1)]
∑

p≤log(2N)
p∤N

λf (pm)2

p

so that
(Symm

+ )2 ≤ (m+ 3)(m− 1)

which contradicts Symm
+ = (m+ 1)2.

8. An index of notations

γ∗, eq. (23)
δ( , ), § 1.6
∆( , , ), eq. (46)
∆( , , ; , ), eq. (66)
εf (N), eq. (68)

ζ(N), eq. (9)
λf ( ), eq. (3)
λz

Symm f ( ), eq. (54)

λz,ν
Symm f ( ), eq. (34)

λ1,z

Sym2,Symm( ), eq. (67)

λ1,z,ν

Sym2,Symm( ), eq. (60)

µz,ν

Symm,Symm′ , eq. (37)

µ1,z,ν

Sym2,Symm,Symm′ , eq. (62)

Ξz
m(N), eq. (7)

Ξ1,z
2,m(N), eq. (15)

ρ, § 1.6

σ, § 1.6
τz( ), eq. (8)
χ, page 3
ω∗, eq. (12)
ωz

Symm f (x), eq. (71)

ω1,z

Sym2 f,Symm f
( ), eq. (75)

̟z,ρ
m,N ( ), eq. (56)

w̃z,ρ
m,N ( ), eq. (57)

D( , , ), eq. (4)
g( ), eq. (5)
H∗

2(N), page 2
H+

m(N ; η), page 33
H−

m(N ; η), page 33
H∗+

2 (N ;C,Symm), eq. (26)
ℓ(m,ν, eq. (42)
ℓ(2,m;ν,ν′), eq. (42)
L1,z

(
1
2 , 1; St,Symm;N

)
, eq. (10)

L1,z
(

1
2 , 1; St,Symm

)
, eq. (11)

L1,z
(
1, 1; Sym2,Symm, N

)
, eq. (16)

L1,z
(
1, 1; Sym2,Symm

)
, eq. (17)

nN , § 1.6
n(N), § 1.6
N ( ), eq. (13)
P−( ), eq. (1.1)
Symm

± , eq. (24)

Symm,1
± , eq. (25)

wz
m( , ), eq. (69)

w1,z
2,m( ), lemme 13

W z,ρ
m,N ( ), eq. (55)

Xm, eq. (35)
zm, eq. (59)
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�, § 1.6
�N( ), eq. (9)

1N , § 1.61(N), § 1.6
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