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We briefly introduce through examples taken from the physics of fluids and con-

tinuous media, the concepts of self-similarity and singularity. We start with the

elementary formulation of dimensional analysis and its application to several prob-
lems in lubrication and nonlinear diffusion. We also treat the more subtle case of

second type similarity laws, related to the appearance of anomalous dimensions us-

ing a dynamical renormalization group approach. Singularities in physical systems
are presented using the example of shock formation for the simple wave equation.

The method of characteristics is explained and the similarity solutions are related

to the weak solutions of quasilinear equations using the dissipationless limit of the
Burgers equation.

1. Introduction

1.1. Thales and the origin of similarity

If one adopts the point of view that one of the most fundamental laws
of physics is that “a physical law establishes a relation between quantities
having the same dimensions”, and therefore these relations are independent
of the system of units (one may simplify the units on both sides of the
equation), one may affirm that science starts with Thales theorem relating
the ratio of lengths in similar triangles (figure 1) 39, 36, 31. The Thales
theorem is an example of similarity law, relating nondimensional quantities.
The only parameter is the angle α at A, between the straight lines, and
hence a length a must be related to other length b by a relation of the type

a = bf(α) ,

or as a relation between numbers a/b = f(α). This simple law permits
sometimes to solve completely a problem, or more importantly to iden-
tify the appropriate parameters to describe a phenomenon. One example
of a problem that can be solved using dimensional analysis, the theory
generalizing the Thales statement, is the Pythagoras relation between the
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Figure 1. Thales theorem is a first scientific example of a rigorous similarity law relating
lengths a, b, · · · , through some unknown function of the angle α. The Thales construction

takes the curvature radius r at A strictly equal to zero.

hypothenuse and the sides of a rectangular triangle. Using figure 2 one can
say that the area of ABC is S = c2f(α) (defining the hypothenuse c as
the length unit) and the areas of the two triangles ABF (hypothenuse a)
and BCF (hypothenuse b) are S1 = a2f(α) and S2 = b2f(α) respectively,
where f(α) is some function of the angle. Combining these expressions in
S = S1 + S2, one obtains Pythagoras theorem c2 = a2 + b2.

One important point that can already be mentioned in the framework of
the Thales theorem is the relation between self-similarity and the absence
of intrinsic scale. Imagine that the vertex A is in fact round, with curvature
radius r, as shown in figure 1. In such a case Thales theorem does not apply
and we have instead a relation of the more general form

a/b = g(α, r/b) .

In this case Thales theorem is recovered in the limit r → 0, if the limit
g(α, r/b) → g(α, 0) = f(α) exists and does not vanish. Therefore, we find
that the self-similar law is recovered when the intrinsic length r disappears
(or as usual in physics, can be neglected with respect to other lengths in
the system, here r � b, b being the length unit in this example).
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Figure 2. Demonstration of the Pythagoras theorem using dimensional analysis.

1.2. The selection of relevant parameters

The ideas of self-similarity play a central role in physics, they are related to
the scaling transformations, and as other symmetries, they reflect important
and deep properties of a system. However, self-similarity has a particular
status, different to other symmetries, as for instance continuous symmetries
that give rise to conservation laws, in the sense that most applications of
self-similarity are as intermediate asymptotics, and not as some exact prop-
erty of the system 2. The fact that self-similarity applies in some region of
scales is at the heart of its universality. This means that for systems hav-
ing a wide variety of scales, one can isolate a range of values between some
inner region (“microscopic” scale) and some outer region (“macroscopic”
scale), in between of which the system behaves almost scale invariant. One
simple example can illustrate this statement. When considering the oscilla-
tion period of a pendulum of length `, one obtains by dimensional analysis
that T =

√
`/gf(θ), where θ is the (initial) angle with respect to the ver-

tical, and g the acceleration of gravity. One can suppose that f(θ) is a
number of order one. However, this formula assumes implicitly that the
initial velocity v0 of the pendulum does not influence the period. If we add
v0 to the list of dimensional parameters, we obtain T =

√
`/gF (θ, v0/

√
g`),

with the additional nondimensional parameter Π = v0/
√

g`. It is custom-
ary to denote dimensionless quantities by a capital Π, in accordance with
the “Π-theorem” of dimensional analysis 35. That the period is given by
T =

√
`/g, supposes thus the limit F → f for Π � 1. This is effectively the

case as can be demonstrated by the complete solution of the problem and
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taken the limit of small oscillations; one knows, however, that for finite Π
nonlinear corrections of the pendulum period (depending on the oscillation
amplitude, Π) appear. Therefore, the simple formula T ≈

√
`/g, is valid

for a limited region of parameters in the limit Π → 0.
Obviously, many other physical effects can enter into the problem, the

difficulty is to determine the minimum number of relevant parameters. For
instance, in the present problem we are considering a particle moving in
a region much more smaller than the earth dimensions, and assume then
that the gravitational field can be approximated by a constant: θ` � R⊕,
with R⊕ the earth’s radius. We are also considering that the variations
∆` ≈ mg/k in the length ` related to the elasticity of the wire are negligible
(here we put m the mass of the pendulum and k the elastic constant of the
wire), and that the size d of the sphere m is small enough to air friction be
neglected during one period d � (m/6πµ)

√
θg/` (µ is the air viscosity). We

note then that the simple law for the period, even in the small oscillations
limit, holds only in the region limited by mg/k � ` � (m/6πµd)2g, and
a fortiori ` � R⊕. This analysis show how one can discard in principle, a
number of dimensional parameters R⊕, k, µ, etc., by implicitly assuming
that the corresponding dimensionless parameter leads to a finite limit when
neglected.

1.3. Similarity solution of the diffusion equation

A more interesting example is given by the diffusion equation,

ut = Duxx (1)

in an infinite domain, where u = u(x, t) is related to the concentration of
the solute, and D the diffusion coefficient (partial derivatives are denoted
by subscripts). Putting

u(x, 0) = Q
e−x2/`2

√
π`2

,

with Q and ` constants characterizing the amplitude and size of the initial
concentration distribution, the solution of (1) reads,

u(x, t) = Q
e−x2/(`2+4Dt)√

π(`2 + 4Dt)
. (2)

Alternatively, one can try to obtain a solution of the diffusion equation in
the limit of long times. Having a length unit, `, and a diffusion coefficient,
[D] = L2/T (we use L, T and M as the dimensions of length, time and mass,
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respectively), it is easy to form a diffusion time `2/4D. Then “long times”
means times much larger than this diffusion time, for which the solution
u can be thought to be independent of `. In such a case the method of
dimensional analysis gives us a general framework to find the form of u.
Taking into account that the only dimensional parameters of the problem
are [D] = L2T−1 and [Q] = UL, where we called U the units of u, together
with the variables [x] = L and [t] = T, only two dimensionless quantities
can be formed:

Π1 =
x√
Dt

, and Π2 =
√

Dtu

Q
,

implying the relationship,

Π2 = func(Π1) (3)

(we denote by func(·) an arbitrary function of its arguments). Equation (3)
is an example of similarity solution, that is a relation between dimensionless
parameters, where the invariance with respect to a change in the units of
measure, leads to a reduction in the number of the original independent
variables. Because of the mathematical structure of the physical units, that
are expressed as monomial functions, the similarity solution is generally in
the form of a power law.

Hence, for times much longer than the diffusion time, one can try a
similarity solution of (1) in a form like (3):

u(x, t) = A
Φ(X)√

4Dt
, X = x/

√
4Dt , (4)

where A is a dimensional constant, X is the independent nondimensional
variable, and Φ the nondimensional diffusion field. Inserting (4) into (1),
and noting that Φ satisfies an ordinary differential equation Φ + XΦX =
(XΦ)X = −2ΦXX , one obtains the function

Φ(X) =
e−X2

√
π

,

where the normalization is such that
∫

dXΦ = 1. In terms of the original
variables,

u(x, t) = A
e−x2/4Dt

√
4πDt

. (5)
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The arbitrary constant A, can be related to the initial condition: one can
put ∫ ∞

−∞
dxu(x, t) = Q

because this integral is independent of time, with u = u(x, 0). Therefore,
when t � `2/4D we retrieve the similarity solution(2), provided that Q =
A =

∫
dxu(x, 0). This example shows that the similarity solution (5) is in

fact an asymptotic solution, valid for long enough times, irrespectively of
the details of the initial condition: for long enough times the dependency
of the solution on the characteristic length `, related to the shape of the
initial solute distribution, disappears.

Another more interesting method, alternative to the method of dimen-
sional analysis, to obtain similarity solutions of the kind of (4), is by the
use of a scaling transformation,

x → x = ax′, t → t = bt′, x → u = cu′ .

When this transformation is inserted into Eq. (1), it gives u′t′ = u′x′x′ and∫
u′dx′ = 1, provided that the constants a, b and c satisfy

a =
√

Db, c = Q/
√

Db .

Further application of a similar scaling transformation would left the form
of the equations unchanged, showing that (1) is invariant with respect to
the one-parameter b family transformation. This means that x and t are
in fact not independent variables, but for instance, when t is multiplied by
2, x is multiplied by

√
2, and simultaneously the amplitude is rescaled by

a factor
√

2: the graph of the function is the same at any time, if the x

and the u axes are conveniently rescaled (this is the property allowing the
expression of “similarity” or “self-similar” solution). The existence of such
a similarity relationship allows us to choose b in a convenient form, in order
to reduce the number of variables: b = t. With this choice we find,

u = cu′(x′, t′) = cu′(x/a, t/b) = (Q/
√

Dt)u′(x/
√

Dt, 1) ,

which is of the form (4).
The methods of similarity applied to variety of physical problems are

extensively treated in the literature, we just mention some relevant refer-
ences: the classical book by Sedov 35, the book by Ames 1 containing some
interesting mathematical issues, and the important book by Barenblatt 2,
where the author thoroughly discusses the difficult subject of second kind
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similarity; the reader can also consult with some profit the review by Grat-
ton 20, and the paragraph on implosion in the Landau and Lifshitz book on
fluid mechanics 29. A deep relation exists between self-similarity and the
renormalization group, this relation is investigated and clearly exposed in
the book by Goldenfeld 18.

2. Free surface problems in the lubrication approximation

2.1. Thin film equations

We consider the flow of a viscous thin film, driven by gravity and surface
tension. We assume that the typical length scale of the free surface defor-
mation ` is much larger than the film depth L. Under such conditions one
can introduce the so called lubrication approximation of the Navier-Stokes
equations, in order to obtain a simplified description of the interface h(x, t)
motion 8, 32. We refer to figure 3 for the definition of the geometry and the
notation.

h(x,t) 

u(x,t) 

σ, ρ, µ y,v 

x,u 

g 

L<<l 

l 

Figure 3. A thin liquid liquid film. The interface is described by the function h(x, t)

and the velocity u(x, t); σ is the surface tension, ρ the density, and µ the viscosity; g is

the acceleration of gravity; L is the typical depth and l the typical deformation length
of the interface; we assume L � l. In two dimensions, coordinates are (x, y), and the

bulk velocity is (u, v) = v(x, y, t).

The Navier-Stokes equations of a thin layer of liquid over a solid sub-
strate, in two dimensions, are

ux + vy = 0 ,

ρ(ut + uux + vuy) = −px + µ(uxx + uyy) ,

ρ(vt + uvx + vvy) = −py − ρg + µ(vxx + vyy) ,

(6)

These equations are completed with the kinematic boundary conditions{
u = v = 0, at y = 0 ,

ht + uhx = v, at y = h(x, t) ,
(7)
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and the dynamical conditions at the free surface y = h(x, t),

−pn̂ + S · n̂ = σκn̂, S = µ

(
2ux uy + vx

uy + vx 2vy

)
(8)

where κ = −∇ · n̂ is the interface curvature, n̂ = (−hx, 1)/n is the unit
normal vector at (x, h(x, t)), with n = (1+h2

x)1/2, and S is the stress tensor.
The normal component n̂ · S · n̂ of (8) gives,

−p +
2µ

n2

[
vy(1− h2

x)− hx(uy + vx)
]

= σ
∂

∂x

hx

(1 + h2
x)1/2

, (9)

when µ = 0 this equation reduces to the Laplace formula relating the
pressure jump at the interface between two fluids due to surface tension.
The tangential component t̂·S ·n̂ of (8), with t̂ = (1, hx)/n the unit tangent
vector to the interface, gives,

(uy + vx)(1− h2
x)− 4hxux = 0 . (10)

The set of equations (6) with the boundary conditions (7-9-10) form a
complete system describing the dynamics of the liquid film. It can be
greatly simplified for slow and viscous flow in the limit of large wavelength
L � `.

Indeed, let us assume that inertia is negligible with respect to viscous
terms, and, in accordance with the geometrical condition L � `, that gra-
dients in the vertical direction are sharper than in the horizontal direction
(ux � uy). In such a case, the x component of the Navier-Stokes equation
(6) would reduce to

0 = −px + µuyy . (11)

Assume in addition, that in the vertical direction the fluid is essentially in
hydrostatic equilibrium,

0 = −py − ρg . (12)

Using the same approximation one would neglect hx with respect to 1, and
write the boundary conditions in the simple form:

ht + uhx = v, uy = 0, p = −σhxx , (13)

at y = h, and u = v = 0 at y = 0, where we suppose capillary effects of the
same order as gravitational ones. These qualitative considerations can be
put in a more rigorous level by introducing the small parameter ε = L/`,
together with the nondimensional parameters: Re = ρU0L/µ = ερU0`/µ

the Reynolds number based on the characteristic velocity U0 and the mean
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depth of the film L, it would tend to zero for ε → 0; Ca = µU0/ε3σ the
capillary number, that compares the viscous and capillary terms, and that
we scaled conveniently in ε−3 to keep it of the same order as the pressure;
and Gr = ρgL2ε/µU0 the “gravity” number, a ratio between gravity and
viscous effects, also conveniently scaled to make it of the same order as the
pressure term in the vertical component of the Navier-Stokes equation. In
order to make these choices clear, we introduce the dimensionless variables,

X = x/`, Y = y/L = y/ε`, T = (U0/`)t, U = u/U0, V = v/εU0 , (14)

(note the different scalings in the x and y directions) and replace they in
the continuity equation:

UX + VY = 0 ,

showing that the scaling of v ensures that these two terms are of the same
order, and in the x-component of the motion equation:

ρ
U2

0

`
(UT + UUX + V UY ) = −1

`
pX +

µU0

ε2`2
(ε2UXX + UY Y ) ,

or equivalently

εRe(UT + UUX + V UY ) = −PX + ε2UXX + UY Y ,

where

P = (ε`/U0µ)p , (15)

gives the convenient scaling of the pressure: when ε → 0 we obtain −PX +
UY Y = 0, the nondimensional version of (11). Using now Eqs. (14) and
(15) in the vertical component of the Navier-Stokes equation, we obtain

ε3Re(VT + UVX + V VY ) = −PY −Gr + ε2VY Y + ε4VXX ,

which reduces to (12) for vanishing ε (this justifies the choice of Gr). Ob-
viously, one can also consider the case g = 0, in which the gravitational
effects are negligible. This does not change the scaling in the pressure and
we simply would obtain PY = 0: the pressure is determined by the capillary
boundary condition at the interface.

One easily verifies that the boundary conditions become

HT + UHX = V,

UY = 4ε2
[
HXUX/(1− ε2H2

X)− VX

]
,

−P + Ca−1
(
HX/n1/2

)
X

= (2ε2/n2)
[
VY (1− ε2H2

X)−HX(UX + ε2VX)
]

,
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where n2 = 1 + ε2H2
X , at Y = H(X, T ), and U = V = 0 at Y = 0.

These conditions reduce to Eqs. (13) in the limit ε → 0. In summary, the
lubrication approximation of the Navier-Stokes equations are:

UX + VY = 0, −PX + UY Y = 0, −PY −Gr = 0,

HT + UHX = V, UY = 0, P = −Ca−1HXX , at Y = H(X, T ),
U = V = 0, at Y = 0 ,

(16)

These equations depend on two nondimensional parameters: Gr and Ca−1;
Gr determines the contribution of hydrostatic effects to the pressure and
Ca−1 determines the magnitude of the pressure jump due to surface ten-
sion. The condition that gravitational and capillary effects are of the same
order Gr ∼ Ca−1, can be written as a condition on the characteristic length
`. Indeed, assuming CaGr = O(1) gives ` ∼ a = (σ/ρg)1/2, a is the capil-
lary length (independent to viscosity). Otherwise, further simplification is
obtained by putting Ca−1 = 0 or Gr = 0, for the gravitational or capillary
dominated regimes, respectively.

The system (16) can be reduced to a single equation for the interface
H(X, T ), by direct integration. We first use the condition of hydrostatic
equilibrium PY = −Gr = 0, to obtain the pressure P as a function of Y :
P (X, Y, T )−P0(X, T ) = −GrY , where we introduced the reference pressure
P0, independent of Y . Noting that PX = P0X , the dependence of U on the
coordinate Y , is given by

−P0X + UY Y = 0, U(0) = 0, UZ(H) = 0 ⇒ U = P0X(Y 2/2−HY ) .

In order to evaluate P0 we use the normal-stress balance equation P (H) =
−Ca−1HXX , from which we can write P0 = P (H) + GrH, or

P0 = GrH − Ca−1HXX .

We integrate now the continuity equation between Y = 0 and Y = H(X, T ),
noting that

∫ H

0
dY VY = V (H) − V (0) and using V (H) = HT + UHX , we

find

HT + UHX +
∫ H(X,T )

0

dY UX = 0 ⇒ HT +
∂

∂X

∫ H(X,T )

0

dY U = 0 ,

where we applied the formula for the derivation of a definite integral:
(d/dx)

∫ h(x)

0
dy f(x, y) =

∫ h

0
dyfx + hxf . Substituting U into the last inte-

gral, and replacing the expression for the pressure, we finally get the desired
thin film equation 8:

HT =
Gr
3

(
H3HX

)
X
− Ca−1

3
(
H3HXXX

)
X

. (17)
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We already discussed the relevant regime of this equation, when the char-
acteristic length of the motion ` is of the order of the capillary length a.
If ` � a gravity effects can be neglected and the first term in (17) can be
dropped. In the opposite case, if ` � a, the first term in (17) dominates,
and the thin film equation reduces to a nonlinear diffusion equation.

One can easily generalize Eq. (17) for three dimensional flows, where
the interface is the surface z = h(x, y, t). It is enough to note that the
exterior derivative is a divergence, coming from the continuity equation;
the following derivative comes from the pressure gradient ; and the double
derivative in the capillary term comes from a laplacian (given the curva-
ture). Therefore, we can write:

HT =
Gr
3
∇ ·

(
H3∇H

)
− Ca−1

3
∇ ·

(
H3∇∆H

)
, (18)

where ∇ is the two-dimensional gradient operator.

2.2. Nonlinear diffusion and the spreading of a drop

In the limit ` � a the interface dynamics is governed by gravity, and
Eq. (18) reduces to,

ht =
ρg

3µr

(
rh3hr

)
r

, (19)

in dimensional variables, for the axisymmetric case (z = h(r, t) as shown in
figure 4). It is analogous to a nonlinear diffusion problem, with a diffusion
coefficient proportional to the cube of the “concentration”, h3. Equations
of the form

ut = ∇ · (D(u)∇u) , (20)

arise in a great diversity of physical systems 1, 2. A classical system de-
scribed by a nonlinear diffusion equation is the heat conduction, when the
conductivity depends on the temperature, as for instance in a collisional
plasma; in this case u represents the plasma temperature and the conduc-
tivity is essentially due to radiation, giving the power law D ∼ T 5/2 37.
Another example is the fluid flow through a porous medium, where the
mathematical description is based on Darcy law, relating the mean velocity
to the pressure gradient:

v = − b2

12µ
∇p , (21)
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(b is a length characteristic of the pore size, and b2/12 is the “permeability”
of the medium) and the continuity equation is

∇ · (ρv) = −(αρ)t (22)

where α is the “porosity” of the medium, it takes into account the volume
occupied by the pores, such that αρ gives the actual mass of fluid per
unit volume (α might be variable, for instance if the pore is deformed by
the fluid). Therefore, v in Eq. (21) is determined by the mass flux Qn̂
through a section of unit area in the flow direction, of the porous medium:
v = (Q/ρ)n̂. The system (21) and (22) is closed with the equation of
state p = func(ρ), which for instance in the case of a gas is of the form
p/p0 = (ρ/ρ0)γ , with γ the ratio of specific heats (ρ0, p0 are density and
pressure reference constants, respectively). Using the equation of state in
(21) and replacing in (22) on obtains a nonlinear diffusion equation with
D ∝ ργ .

R(t)

g

    

σ

r

z
ρ,µ

Figure 4. The spreading flow of a drop; the axisymmetric shape of the drop is given by

z = h(r, t), and the edge moves according to the law r = R(t). We distinguish between

the capillary σ/ρg � R2 and the gravitational σ/ρg � R2 regimes.

An interesting application of Eq. (19) is to the study of the creeping flow
of a drop, draining under the action of gravity. We want to compute the
motion of the edge r = R(t) (figure 4 defines the geometry of the problem).
The family of self-similar solutions of (19) can be obtained using the scale
transformation x → x = ax′, t → t = bt′, and h → h = ch′, as in the case
of the heat equation, leading to the relations,

c/b = kc4/a2, ca2 = Q/2π ,

where we introduced the notation k = ρg/3µ and supposed that the integral
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constraint

Q = 2π

∫ ∞

0

rdr h(r, t) , (23)

is satisfied. Hence, one gets a = [(Q/2π)3kb]1/8, and c = (Q/2πkb)1/4,
taking b = t,

h(r, t) =
(

Q

2πkt

)1/4

H(X), X =
r

[(Q/2π)3kt]1/8
. (24)

If instead of having the constraint (23), which fix the similarity expo-
nents, the physical problem under consideration depends on a dimensional
variable q having the dimensions [q] = [x/tα], a one-parameter family of
self-similar solutions would be obtained. The power α is a constant depend-
ing on the initial or boundary conditions, but, more generally, it can be
arbitrary, or even unknown, and be determined by a solvability condition,
given some relevant asymptotic behavior of the system. General power law
solutions are obtained from the invariance condition of the system under a
one-parameter group transformation,

x → x = νax′, t → t = νt′, h → h = νch′ ,

where ν is the group parameter, and a and c powers to be determined (we
choose the exponent of the t scale factor equal to one). Upon substitution
into (19) of the scaling transformation, the condition c − 1 = 4c − 2a, or
c = (2a−1)/3, guarantees that the ν factors can be eliminated. This means
that the ratios h/tc and x/ta are invariant under the scale transformation:

h(r, t) = t(2a−1)/3 func(x/ta) .

In order to simplify this equation we use the dimensional parameter q to-
gether with k = ρg/3µ, to introduce the dimensionless variables X = x/qtα

(we must have a = α), and H = h(r, t)/(q2/k)1/3t(2α−1)/3:

h(r, t) =
(

q2

kt1−2α

)1/3

H(X), X = x/qtα . (25)

(We note that under the change of variables h → h = u/k1/3 the equation
for u does not contain dimensional parameters: ut = (1/r)(ru3ur)r.) Re-
turning to the constraint (23), we see that the integral

∫
rdrh = Q/2π,

is independent of time if (2α − 1)/3 + 2α = 0, thence α = 1/8 and
q = [(Q/2π)3k]1/8, which are the results of (24).
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Once the self-similar form (24) of the solution of (19) obtained, it is an
easy task to find the ordinary differential equation satisfied by H = H(X).
Compute first the derivatives of h:

ht = − 1
4t

(
Q

2πkt

)1/4

H − 1
8t

(
Q

2πkt

)1/4

HXX ,

and

hr =
(

Q

2πkt

)1/4
HX

[(Q/2π)3kt]1/8
.

Then, derivatives with respect to r are computed by the substitution rule:

∂n

∂rn
=

1

[(Q/2π)3kt]n/8

∂n

∂Xn
.

Using these formulas, we realize that all dimensional and time dependent
terms disappear, and obtain the nonlinear differential equation:

−XH/4−X2HX/8 = (XH3HX)X . (26)

The left hand side is a total derivative XH/4 + X2HX/8 = (1/8)(X2H)X ,
allowing us to integrate (26) once, to get −XH/8 = H3HX (the integration
constant vanishes, by symmetry, at X = 0, HX = 0, moreover we have to
satisfy H → 0 for X →∞, in such a way that

∫
XdXH converges). Direct

integration of −X/8 = H2HX leads to,

H(X) =
(

3
16

)1/3 (
X2

0 −X2
)1/3

, (27)

where X0 is the integration constant, which corresponds to the condition
H(X0) = 0, then giving the edge position X = X0, or in the dimensional
variables,

R(t) = X0

[
(Q/2π)3kt

]1/8
. (28)

The shape (27) of the drop is shown in figure 5. The actual value of X0 is
determined by the integral constraint:

1 =
∫ X0

0

XdXH(X) =
(

3
16

)1/3

X
8/3
0

∫ 1

0

ydy (1−y2)1/3 =
3
8

(
3
16

)1/3

X
8/3
0 ,

which gives the numerical result

X0 =
(

8
3

)3/8 (
16
3

)1/8

≈ 1.78 , (29)
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Figure 5. Shape of the drop in the gravitational regime, the position of the edge is given

by the self-similar variable X = X0, giving a power law R ∼ t1/8.

completing the solution of the creeping flow equation for the gravitational
spreading of a viscous drop.

There is an extensive literature on the self-similar solutions of (19), see
for example the works by Gratton et al. 21, 10, 22, where cases of second
kind similarity, arising for convergent currents, are also treated.

2.3. The capillary regime of drop spreading

The capillary regime of spreading is described by Eq. (17),

−ht =
σ

3µ

(
h3hxxx

)
x

, (30)

where we retained the second term in the right hand side and restored
dimensional variables. We consider situations where the mass of liquid is
constant: ∫ ∞

−∞
dxh(x, t) = Q . (31)

(We discuss the one dimensional case, but similar considerations are valid
for the axisymmetric case.) The capillary driving spreading is by far a
more complicated physical regime than the gravity dominated regime. The
reason is that near the contact line, the edge of the drop where the liquid
joins the solid and gas, (30) fails in giving a satisfactory physical solution.
The energy integral associated to Eq. (30) is

E =
σ

2

∫ ∞

−∞
dxh2

x , (32)
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proportional to
∫

dx(1 + h2
x)1/2 the surface of the drop (per unit length,

in the one dimensional case). The time evolution of the energy is easily
computed using Eq. (30),

Ė = −σ2

3µ

∫ ∞

−∞
dxh3h2

xxx = −3µ

∫ ∞

−∞
dx

u2

h
= −D , (33)

where we introduced the interface velocity,

u = u(x, t) = (σ/3µ)h2hxxx ;

with this definition (30) takes the simple form ht+(hu)x = 0 of a continuity
equation. Equation (33) allows us to define a dissipation rate −Ė = D. The
difficulty appears clearly in Eq. (33): in the neighborhood of the contact
line x = x0 and h(x0) = 0, we can put h ∼ ξα, for x = x0 − ξ, and the
condition of finite interface velocity u ∼ h3hxxx ∼ ξ2αξα−3 gives α ≥ 1;
under such conditions the dissipation integral

D ∼
∫ x0−ξ

dxu2/h ∼ − ln ξ ,

(α = 1 for u = const.) diverges logarithmically, and as a consequence
Eq. (30) is incompatible with the spreading at constant velocity of a drop!.
This is the well known problem associated to the moving contact line (see
the reviews by de Gennes 9, Oron 32 and Pomeau 33, and the papers in
references 23, 11, 38, 17, 14).

We can see an important difference with respect to the gravity case,
in which the energy is of the form

∫
dxh2, and the dissipation rate D =∫

h3h2
x ∼

∫
u2/h with u = −h2hx; taking h ∼ ξα, and u ∼ ξ2αξα−1, we find

α ≥ 1/3, the lower limit coinciding with the self-similar solution α = 1/3.
The dissipation integral is convergent: D ∼ −

∫
0
dξ/ξ1/3 < ∞. Therefore,

the self-similar solution preserves the mass of the drop, and the dissipation
rate is finite, thus giving an acceptable physical picture. This not the case
for the capillary regime, for which solutions having finite contact angles
(hx at x = x0), in order to move at a finite velocity, lead to diverging
stresses. This divergence must be regularized by some additional physical
process, that modifies the shape of the interface in the neighborhood of
the contact line. The actual form of the regularization, no slip condition,
phase transition at the contact line, van der Waals forces, are the object
of debate. We limit ourselves to some general prescription by introducing
an additional length, b, characteristic of the process in the vicinity of the
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contact line, where Eq. (30) breaks down:

−ht =
σ

3µ

[(
h3 + b3−nhn

)
hxxx

]
x

, (34)

where the power 0 < n < 3 depends on the model details. The problem
is therefore to investigate self-similar solutions in the framework of inter-
mediate asymptotics. Indeed, we cannot expect a simple power law in the
form x ∼ tα to be valid for all times, in particular for long enough times
the hight of the interface decreases, and will attain the small value h ∼ b,
for which the usual scaling fails. We expect thus that if some self-similar
regime exists, it would be valid for lengths much larger than h � b and
times much shorter that the time for which h(x, t)/b ∼ 1.

Let us apply first the usual method for the search of a similarity solution
to the original Eq. (30). In order to simplify the notation we absorb the
dimensional constants in the definition of variables, and note that (30) is
invariant under the two-parameter scale transformation: x → x = ax′,
t → t = (a4/c3)t′, x → h = ch′; taking also into account (31), the one-
parameter family x → x = ax′, t → t = a7t′, x → h = (1/a)h′ remains,
showing that the self-similar form of the solution is

h(x, t) =
1

t1/7
H(X), X = x/t1/7 , (35)

(in the axisymmetric case the same reasoning gives r ∼ t1/10). The modified
Eq. (34) possesses an additional dimensional parameter, thus h(x, t) =
(1/t1/7)H(X, x/b), and the problem is to find the behavior of H(X, x/b)
for b → 0. We introduce now the position of the contact line x = R(t),
the position for which h = 0. The condition that h � b, means that R �
Q/b, from the Q constraint (31); simultaneously the time condition derives
from h ∼ b, leading to t � (3µ/σ)(Q4/b7). In summary, the intermediate
asymptotics are√

Q � R(t) � Q/b, (3µ/σ)
√

Q � t � (3µ/σ)(Q4/b7) ,

where we estimated the length and time necessary to make the evolution
independent to the initial condition. For this range of values we assume
that h can be written in the form

h(x, t) =
1

R(t)
H

(
x

R(t)

)
, for h � 1, R � 1 , (36)

the approximate self-similar variable is X = x/R(t) (therein we use the
dimensionless expressions, with the choice b = O(1)). The time scale is
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given by the rate Ṙ/R, meaning that the velocity can be estimated by

u ∼ (Ṙ/R)x .

The energy is then given by

−Ė = −1
2

d

dt

∫
dxh2

x = −1
2

d

dt

1
R3

∫
dXH2

X ∼ Ṙ/R4 ,

and the dissipation rate,

D = 2
∫ x(h=1)

0

dxu2/h ,

where we cutoff the integral at the position for which h = 1. To compute
this position we develop h(x) = h(R)+hx(R)(x−R) = (HX/R2)(x−R) = 1,
to obtain x(h = 1) = R(1 − R/θ), where θ = |HX(R)| is the contact
angle (θ ∼ O(1) is finite). Therefore, the above integral is logarithmically
divergent in the limit X → 1 (this is consistent with the assumption R �
1 for the validity of the intermediate asymptotics). Using the change of
variable ξ = 1 − X and the development H(X) = θ(1 − X) = θξ, the
dissipation integral can be estimated as

D = 2R4(Ṙ/R)2
∫ 1−R/θ

0

dXX2

H(X)
∼ −R2Ṙ2

∫ R/θ dξ

θξ
∼ R2Ṙ2 ln

(
1
R

)
,

where we discarded the numerical and order one factors. The energy bal-
ance reduces to

R6 ln
(

1
R

)
Ṙ = 1 ,

which leads, after a simple manipulation, to the scaling factor:

R(t) =
[

t

ln(1/t)

]1/7

, (37)

for R � 1 and t � 1, completing formula (36). Result (37) shows that
the naive scaling x ∼ t1/7 acquires a logarithmic correction, whose physical
origin can be traced back to the divergence of the dissipation rate at the
contact line.

It is worth noticing that Eq. (37) is independent of n, or equivalently,
of the microscopic model details (it depends however on the microscopic
scale b). The spreading law (37) is valid until the film height is h ≈ 1, for
thinner film regions the dominant term in (34) becomes bnh3−n � h3. The
relevant equation in this region is thus −ht = (h3−nhxxx)x, and the usual
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dimensional analysis should hold (remember that n < 3), leading to the
self-similar solution,

h(x, t) =
1

t1/(4+n)
H(X), X = x/t1/(4+n), for h . 1, t � 1 , (38)

equivalent to Eq. (35), but with the similarity exponent 1/(4 + n) instead
of 1/7.

3. Second type similarity in a porous medium

3.1. The renormalization group

We related the invariance of a physical system under a scale transformation
to the existence of a self-similar evolution, at least in some asymptotic limit.
The scaling group of transformation we used implied an arbitrary change
in magnitudes, such as in the relation x → ax, for which x is changed by
the arbitrary amount a. However, one may also consider the behavior of
the system under infinitesimal changes in a continuous parameter.

Let us consider a system described by the function x = x(t), and
satisfying some differential equation ẋ(t) = F (x(t)). From the solution
x = X(t;x0, t0) of this equation with the initial condition x(t0) = x0, we
can generate a family of trajectories x = X(t;x0(t0), t0) parameterized by
t0, which can be interpreted as the time at which we compute the ini-
tial condition x(t0). It is obvious that if we choose the values of t0 and
x0(t0) in such a way that X(t;x0(t0), t0) belongs to some particular tra-
jectory X(t;x0(0), 0), then the family collapses to this unique trajectory
X(t;x0(0), 0) = X(t;x0(t0(t)), t0(t)). Note that this is a kind of invariance
condition on the trajectory X, with respect to changes in the value of t0.

From a geometrical point of view, the condition for this invariance is
that the envelope of the family coincides with the function itself. We recall
that the envelope xE of a family of curves F = X(t;x0(t0), t0) − x = 0
depending on a parameter t0, is simply the curve satisfying simultaneously
F = 0 and dF/dt0 = 0. These conditions allow to determine the function
t0(t), which gives the envelope X(t;x0(t), t0(t)) − xE = 0. Therefore, the
envelope trajectory is determined by the solution of the equation,

d

dt0
X(t;x0(t0), t0) =

∂X

∂t0
+

∂X

∂x0

dx0

dt0
= 0 ⇒ t0 = t0(t) . (39)

thus giving xE = X(t;x0(t), t0(t)). Equation (39) can be interpreted as
being a “flow equation” of the initial condition “field” (to borrow the field
theory jargon). The important point is that it establishes the invariance
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of the trajectory under a change in the reference time t0 (invariance not
to be confused with time translation symmetry!). However, in general the
trajectory is not known a priori, and then it is impossible to solve (39).
The interest of the method is that (39) can in fact be used to construct
the trajectory from the knowledge of its perturbation expansion. This
approach to the renormalization group was developed by Kunihiro 26, 25, 15,
as a natural development of the dynamical renormalization group originally
devised by Chen, Ono and Goldenfeld 19, 4, 5.

Figure 6. Scheme showing the actual AB trajectory of a system (dashed line) and its
neighborhood of size ε (gray zone); the family of perturbation trajectories approach

AB only near t ≈ t0 (t0 labels each member of the family). The envelope of these
perturbation trajectories approach globally AB (within the tube ε).

Indeed, if only an approximation of the trajectory is known Xε, com-
puted from a perturbation expansion in a small parameter ε, around t = t0,
the family of these trajectories are close to the actual exact one only for a
time t ∼ O(ε) (see figure 6). Therefore, the envelope equation

d

dt
Xε(t;x0(t0), t0) =

∂Xε

∂t0

∣∣∣∣
t0=t

+
∂Xε

∂x0

dx0

dt0

∣∣∣∣
t0=t

= 0 ⇒ t0 = t0(t, ε) , (40)

will give a global approximation X = Xε(t; t0(t, ε)) to the exact solution.
Equations (39) or (40) are of the usual renormalization group form if one
interprets t0 as the logarithm of a scale parameter t0 = ln a, hence dX/dt0 =
a dX/da, gives the rate of change in X following a change in scale a; if this
rate vanishes, X is scale invariant. In other words, if the system is described
by the function x(a) (we forget all other arguments) at scale a, and we
change the scale by a factor λ, to get x(λa), the scale transformation T
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allows to relate the system at two different scales: x(λa) = Tλx(a); now let
us assume that the change in scale is infinitesimal λ = 1 + ε, we can write

dx(a)
da

= lim
ε→0

x(1 + εa)− x(a)
εa

=
1
a

dTλx(a)
dλ

∣∣∣∣
λ=1

= 0 ,

where the last equality is the condition of scale invariance, an equation hav-
ing the same form as (39), once we realize that TλX(a) is the prescription
to compute the trajectory x = X(t;x0(t0), t0).

One simple example might be the single function x = X(a) sat-
isfying X(λa) = λαX(a), thus x = λ−αX(λa) = λ−αX(ξ), with
ξ = λa. Direct differentiation gives: d lnx/d lnλ = ∂ lnx/∂ lnλ +
(∂ lnX/∂ ln ξ)(d ln ξ/d lnλ) = 0, condition of scale invariance in which we
recognize the “renormalization group” equation. Noting that d ln ξ/d lnλ =
1, and ∂ lnx/∂ lnλ = −α, this condition writes −α + ∂ lnX/∂ ln ξ = 0, or
after integration, X(ξ) = ξα = (λa)α, or x = X(a) = aα (up to a mul-
tiplicative constant), that is the basic monomic function satisfying scaling
invariance.

3.2. The Barenblatt equation

The renormalization group is usually applied in statistical physics as a “non-
perturbative” method allowing the computation of “anomalous” exponents
in phase transitions 18, 45. In the framework of dynamical systems these
anomalous exponents can be related to the departure of the system’s scaling
properties to the “normal” exponents given by dimensional analysis, the
second kind similarity in the classification of Barenblatt 2. In order to
illustrate these ideas we study the flow in an elasto-plastic porous medium
of a liquid, using a simple nonlinear diffusion equation. This medium is
characterized by an irreversible deformation of the pores in response to the
flow of the fluid through it. The flow is described by Darcy’s equation (21)
and the continuity equation (22), where the porosity (volume) is related to
the pressure (stress) by a linear constitutive relation α = α0 + (p− p0)/κ,
with κ a constant depending on the elastic properties of the medium (when
κ →∞ the medium is rigid), and p0 a reference fluid pressure. The plastic
properties of the pores are taken into account through a variation of κ with
the pressure: κ = κ1 if the fluid enters into the pore pt > 0, and κ = κ0 < κ1

if the fluid leaves the pore pt < 0. Within the same order of approximation,
the equation of state can be written as ρ = ρ0 + β(p − p0), which takes
into account the weak compressibility β of the medium. Replacing these
relations, using the excess pressure u = p0 − p as the new variable, and
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retaining only the linear terms in u, we arrive at:

ut = D∆u, D =
b2ρ

12µ


κ0

α0βκ0 + ρ0
, for ut > 0

κ1

α0βκ1 + ρ0
, for ut < 0

, (41)

or after nondimensionalization,

ut =
1
2

[1 + εΘ(−ut)]∆u , (42)

where Θ is the Heaviside function; the small parameter ε is proportional
to the difference κ1 − κ0. Equation (42) is the Barenblatt equation for the
diffusion in an elasto-plastic medium, the main difference with the usual
diffusion equation is that the diffusion coefficient is a discontinuous func-
tion, although the pressure (the diffusing field in this case) is continuous
and with continuous derivatives up to second order. As a consequence, the
conservation law (d/dt)

∫
dxu = 0 is no more valid, meaning that Q = Q(t)

becomes a function of time. Form the dimensional analysis point of view,
Barenblatt equation has the same properties as the diffusion equation, and
in principle one may expect a similarity solution of the type (4). However,
due to the variation of Q with time, one may suspect an influence of the
actual value of Q(t0) at time t0, and thus the contribution of an additional
parameter t0 related to the initial conditions, to the list of dimensional
parameters of the problem:

u = u(x, t; t0, ε) = (Q/
√

t)U(x/
√

t, t0/t, ε) .

In dimensional analysis the usual assumption is that U → const. 6= 0 for
t0/t → 0, in such a way that for long times the system trajectory is in-
dependent of the scale t0. Situations where this reasoning fails are well
known in statistical physics. In the neighborhood of a phase transition
fluctuations of all scale lengths are present, meaning that the lattice size
(or some other length cutoff) will play a role, even if the system’s size
tends to infinity. The influence of the length cutoff reflects in the appear-
ance of anomalous exponents. Mimicking these considerations, in our case
we can infer that for t0/t → 0 the dimensionless excess pressure behaves
anomalously, U → (t0/t)α,

u =
M

t1/2+α(ε)
U(X, ε), X =

x√
t
, (43)

where we note the ε dependence of the anomalous exponent, here M is
a constant of the form M = Q(t0)tα0 . The power law dependence of P
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explains the failure of dimensional analysis, which implicitly assumes that
the asymptotic limit, when some scale becomes irrelevant, would be a simple
(finite) constant.

3.3. Perturbation expansion and renormalization group

solution

We apply the method described above, that starts with the computation of
a perturbative solution, valid locally around some fixed time t0, over which
the renormalization group, based on the invariance of the system with re-
spect to the “scale” t0, allows to find a global solution. We use a slightly
improved version of the method introduced by Kunihiro 25, and Golden-
feld 19, which do not need a renormalization step to eliminate divergences
in the perturbation series. Therefore, we try to perturbatively solve the
Barenblatt equation using an expansion in powers of ε. When ε vanishes
the equation reduces to the diffusion equation, whose general solution can
be given in terms of the Green function,

G(x, t) =
e−x2/2t

√
2πt

, (44)

allowing to formally write the solution of (42), as

u(x, t) =
∫ ∞

−∞
dy G(x− y, t− t0)u(y, t0) +

ε

2

∫ t

t0

ds

∫ ∞

−∞
dyG(x− y, t− s)Θ (−us(y, s))uyy(y, s) .

We develop u in powers of ε to obtain the expansion u = u(0) + εu(1). At
zero order, the solution of the diffusion type equation is the Gaussian (cf.
Eq. (5)),

u(0)(x, t; t0) = Q(t0)
e−x2/2t

√
2πt

, u(0)(x, t0; t0) = Q(t0)
e−x2/2t0

√
2πt0

, (45)

where we explicitly take into account the dependence of Q on the choice of
the initial time t0. The first order equation, relating u(1) to u(0), can be
written as,

u(1) =
1
2

∫ t

t0

ds√
2π(t− s)

∫ ∞

−∞
dy exp

[
− (x− y)2

2(t− s)

]
Θ(−u(0)

s )u(0)
yy , (46)

where we used the Green function (44). Using the zero order result, and
introducing the position x0(t) where u

(0)
t = 0 (we do not need to know this
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position at higher orders in ε), we compute

Θ(−u(0)
s )u(0)

yy = Q

(
y2

s
− 1

)
e−y2/2s

s
√

2πs
Θ(x0(s)− |y|) ,

and substitute it into Eq. (46), to obtain after the change of variable Y =
y/
√

s,

u(1) =
Q

4π

∫ t

t0

ds

s
√

(t− s)

∫ 1

−1

dY e−Y 2/2
(
Y 2 − 1

)
exp

[
− (x− Y

√
s)2

2(t− s)

]
,

where we have taken into account that x0(s) = ±
√

s, or Y = ±1 in the
new variable (to this order in ε). We remark in the above expression that
logarithmic terms will arise due to the pole at s = 0. We then try to
isolate the contribution to the integral of this term with respect to the
other secular terms (proportional to t− t0 in the perturbation series). The
logarithmic term is the dominant one in limiting the validity region of
the expansion in the vicinity of t0, expressing the fact that initially u(0)

is, in same sense, infinitely far from the actual initial state. The role of
the renormalization group is to remove this divergence, using the scaling
properties of the system at some finite distance from the initial state. The
most straightforward way to extract the logarithmic term is to see what
happens for s = 0. The dominant part of the integral around s = 0 is

u(11) =
Q

2
√

2π

e−x2/2t

√
2πt

∫ t

t0

ds

s

∫ 1

−1

dY e−Y 2/2
(
Y 2 − 1

)
,

the remaining part is,

u(12) =
Q

4π

∫ t

t0

ds

s

∫ 1

−1

dY e−Y 2/2
(
Y 2 − 1

)
×[

e−(x−Y
√

s)2/2(t−s)√
(t− s)

− e−x2/2t

√
t

]
.

Therefore, we write u(1) = u(11) + u(12), where the first term gives, after
performing the integral, a logarithmic contribution

u(11) = −Qe−x2/2t

√
2πt

1√
2πe

ln
t

t0
, (47)

and the second term, when developed around t = t0, reveals secular terms
in powers of (t− t0)/t,

u(12) ≈ −Qe−x2/2t

√
2πt

[
erf

(
1√
2

)
− 2√

2πe

](
1− x2

t

)
t− t0

t
+O

(
t− t0

t

)2

.
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(We used a series in s of the term in brackets of u(12), and performed
the Gaussian integrals.) In fact, these terms in u(12) are irrelevant in the
asymptotic limit of large times, and are negligible with respect to u(11) near
t0, thus we will neglect them in the following. In summary, collecting the
contributions to u up to first order we arrive at,

u(x, t; t0) ≈ Q(t0)
e−x2/2t

√
2πt

[
1− ε√

2πe
ln

t

t0

]
. (48)

This is the result of the perturbation expansion in powers of ε, and is valid
only in a neighborhood of t ∼ t0, as a consequence of the secular terms. In
spite of these limitations, this perturbation expansion is all what we need
to apply the renormalization group, using the free parameter t0. Therefore,
we compute using formula (40) the envelope of the family of trajectories
given by Eq. (48), in order to find the form of the global approximation
u(x, t) ≈ u(x, t; t0 = t0(t)):

0 =
du

dt0

∣∣∣∣
t0=t

=
∂u

∂t0
+

∂u

∂Q

dQ

dt0

∣∣∣∣
t0=t

, (49)

Hence, we deduce the flow equation for the initial conditions,

Q̇ +
α

t0

∣∣∣∣
t0=t

= 0, α =
ε√
2πe

⇒ Q(t) = M/tα , (50)

where M is the integration constant. Using this result in the envelope
u(x, t; t0(t)), we finally obtain the result:

u(x, t) ≈ u(x, t; t0(t)) =
M

t1/2+α(ε)

e−X2/2

√
2π

, X =
x√
t
, (51)

in accordance with the second kind similarity analysis of Eq. (43), and
where the anomalous exponent α = ε/(2πe)1/2 was computed to the first
order in ε.

Equation (50) is a kind of amplitude equation, giving a recipe to “opti-
mally” (at order ε) define the better amplitude at each time, which depends
on the scaling factor, such that uε approaches u. The optimal choice cor-
responds to replacing the unknown exact solution, by the envelope of a
one-parameter family of curves, at the given time. The final result is per-
turbative in the sense that |u−uε| ∼ O(ε2), and simultaneously asymptotic,
in the sense that it is valid only for times large enough to “forget” the spe-
cific form of the initial state (this is consistent with the neglect of higher
order secular terms).
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4. Shocks, Burgers equation and finite time singularities

Physical systems develops sometimes singularities, such as shocks and dis-
continuity surfaces, transitions between states of different topologies, like
in a variety of interface phenomena, or in vortex dynamics 43. Sometimes
singularities appear during the evolution of a regular initial state, in a finite
time: a physical quantity like acceleration, curvature, pressure, blows up to
infinity, signaling perhaps the transition to a new state or the emergence of
new characteristic scales, not directly related to external, initial or bound-
ary conditions 24. Singularities appear in a wealth of physical phenomena
as a relevant processes, around which the whole system is organized. In the
same way as in the geometrical description of mechanics, using the prop-
erties of the phase space trajectories, the global properties of the system
can be inferred from the nature of singular points, the evolution of systems
undergoing a singular behavior, is determined be the nature of the singu-
larity. We exclude to our analysis “trivial” singularities, arising because of
a lack of accuracy in the physical description, and not directly related to
the structure of the system. Relevant physical singularities are robust with
respect to the addition of regularization processes 13. In the simple case of
a shock wave, a discontinuity in pressure, velocity and density, the propa-
gation properties do not depend on the small scale structure of the shock,
determined by dissipation processes (heat, viscosity) 29. Analogously, when
a thread of water breaks into a series of drops, the drop sizes are not di-
rectly related to the microscopic effects (van der Waals forces, for example)
playing a role during the break up, whereas the topology change (from a
connected surface to a multiple connected one) is related to a finite time
singularity 12. In recent years the investigation of singularities in physical
systems received a great deal of interest, as for instance in vortex dynamics
34, 30, 7, or in Hele-Shaw cell flows 6, 3, or in fluid interfaces 12, 28, 40, 41.

We start our study of singularities by a simple example taken from the
physics of shock waves in compressible flows. Consider the one-dimensional
continuity and motion equations of a gas,{

ρt + (ρu)x = 0
ut + uux = −px

ρ
+ νuxx

, (52)

where, as usual, ρ = ρ(x, t), p = p(x, t), and u = u(x, t) are the density,
pressure and velocity of the fluid; we included the effect of the kinematic
viscosity ν, but we assume in the following the limit ν → 0. The simplest
situation produces for isobaric flows px = 0; the velocity equation reduces
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to Burgers’ equation 44:

ut + uux = νuxx , (53)

which in the inviscid limit writes,

ut + uux = 0 . (54)

Equation (54) describes the propagation of simple waves; it is straightfor-
ward to verify that the general solution is of the form,

u(x, t) = U(x− u(x, t)t) , (55)

by substitution into (54), where U is an arbitrary function of its argument
X = x−u(x, t)t, that can be associated with the initial condition u(x, 0) =
U(x). The nonlinearity of the simple wave equation manifests in the implicit
character of (55), indeed, the argument of U contains the unknown u, and
to obtain an explicit solution one needs to invert U . However, inversion
is not always possible, in particular, it becomes conceivable that even for
a smooth function U the inversion fails at some finite time t∗, revealing
the appearance of some infinite derivative of u. Let us compute the spatial
derivative of u,

ux =
UX

1 + UXt
,

which allows us to identify the singularity time t∗ as the first time for which
UX = −1/t, or,

1/t∗ = max
x
{−UX > 0} . (56)

At t = t∗ the velocity gradient diverges, for t > t∗ the velocity becomes a
multivalued function of x, showing that the description based on the simple
wave equation ceases to be valid. Using these results for the velocity, we
can also compute the density,

ρ =
G(X)

1 + UXt
, (57)

where ρ(x, 0) = G(x − u(x, t)t)|t=0 gives the initial density distribution.
We note that at the singularity time t∗, simultaneously to the divergence
in the velocity gradient, the density tends to infinity (provided that G is
positive for t = t∗). These are rather esoteric properties for a normal gas,
ensuing from the hypothesis of isobaric flow, however they may be relevant
for pressureless gases like galaxy systems used in cosmology 16, or even
in some regimes of modified hydrodynamic models undergoing finite time
singularities 27.
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From a mathematical point of view, Eq. (54) pertains to the category of
quasilinear partial differential equations, and can be also solved using the
method of characteristics. The characteristics of the simple wave equation
are dt/ds = 1, dx/ds = u, and du/ds = 0, where s is the parameter of
the characteristic line; hence u(s) = u(x(s), t(s)) = u(0) = const., on the
straight lines x(s) = x(0) + u(0)s, and t = s (we put t = 0, for s = 0).
Taking u(0) = u(x(0), t(0)) = U(x(0)) = U(x(s) − u(0)s) = U(x(s) −
u(s)s) = u(s) we arrive at u = U(x − ut). Sometimes it is easier to give
the family of characteristic lines, instead of the explicit solution of the
quasilinear equation. In the simple wave case, the characteristics are a
family of straight lines whose slopes are the initial values of the function
u(x, 0) = U(x). It is obvious that if the slope decreases in some x interval
for s = 0, the emerging lines will intersect at some finite s, the singularity
time, above which the u function is no more uniquely valued.

Let us take the simple profile,

u(x, 0) =
Ax

x2 + a2
, ⇒ u(x, t) = A

x− u(x, t)t
(x− u(x, t)t)2 + a2

, (58)

(with [A] = L2T−1 and [a] = L), applying Eq. (56) one finds t∗ = 8a2/A.
We can see in figure 7 a series of velocity profiles for different times, up
to the singularity time, and the corresponding family of characteristic lines
(figure 8). We note that the x = 0 point, where the velocity is zero, remains
fixed; this happens because u = 0 is an exact solution of the simple wave
equation: if the function u vanishes in some interval it will remain zero
at later times on this interval. Moreover, the “interior” region (the region
between the origin and the velocity maximum) evolves towards an almost
straight line. This remark suggest us that a given initial form, say a bump,
will evolve at large times, into a straight line, at least over a finite range,
irrespectively of what happens near the breaking front of the wave.

In summary, we obtained an exact solution of the simple wave equation
valid up to the singularity time. After this time the nature of the system’s
evolution remains unknown, but we suspect that the shape of the solu-
tion approaches a straight line, and presume that at the breaking point a
shock is formed, whose structure should depends on dissipation processes.
Therefore, we try to solve the simple wave equation using the method of
similarity, in order to investigate a class of asymptotic solutions, valid for
times larger than the singularity time t∗, in the form of localized waves, van-
ishing outside some interval. We assume that in addition to the differential
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Figure 7. Profiles of the velocity for different times: at t = t∗ the velocity gradient
diverges and the wave breaks. (Only the x > 0 region is shown, since u is an odd

function of x; time is measured in units of a2/A.)
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Figure 8. Family of characteristics of the simple wave equation for the initial lorentzian

velocity (58). The singularity time occurs at the first intersection of lines at t = 8 (in

units of a2/A); after this time the envelope of the family forms a caustic line.

equation (54) we have the constraint,

Q =
∫ R(t)

0

dxu(x, t) = const. ,
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related to the conservation law (d/dt)
∫

dx u = 0, where R(t) is the shock
position, satisfying u(R(t), t) = 0. The only dimensional parameter of the
problem is [Q] = L2T−1, hence we seek for a self-similar solution of the
form u =

√
Q/tU(X), with X = x/

√
Qt. This gives the simple solution:

u(x, t) =

{ x

t
, for 0 < x < R(t) =

√
2Qt

0, outside
, (59)

having the form of a ramp, whose area is constant, and extending in space
following the law R ∼ t1/2. The shock velocity is thus Ṙ =

√
Q/2t. This

solution, although discontinuous, is physically more satisfactory than the
“exact” solution which develops a singularity in finite time, for times much
larger that the singularity time.

In order to resolve the structure of the shock, as well as the dynamics of
the wave, we return to Burgers equation (53). It is well known that it can
be solved using a simple nonlinear transformation which lead to the heat
equation 44. However, it could be more illuminating, and easier, to study a
special family of solutions related to the so called “pole decomposition” 42.
One remarkable property of Burgers equation is that it admits the following
decomposition,

u(x, t) = −2ν

2N∑
n=1

1
x− zn(t)

, (60)

where the pole positions are the complex zn coming by conjugate pairs (u
is of course real). Once (60) is inserted into (53), one finds that the poles
must move in accordance with the equations,

żn = −2ν
∑
k 6=n

1
zn − zk

, (61)

in order to satisfy the Burgers equation. This condition follows from the
identity, ∑

n

∑
k 6=n

1
x− zn

1
x− zk

= 2
∑

n

∑
k 6=n

1
zn − zk

1
x− zn

,

as can be demonstrated using an expansion in simple fractions. The sim-
plest solution of the Burgers equation is given by the N = 1 pair of poles
z(t) = a(t) + ib(t). In this case Eqs. (61) reduce to the real differential
equations,

ȧ = 0, ḃ =
ν

b
, ⇒ a = a0, b =

√
b2
0 + 2νt ,
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from which one finds,

u(x, t) = −4ν
x− a0

(x− a0)2 + b2
0 + 2νt

. (62)

In the inviscid limit ν → 0, this solution describes the formation of a shock
around the central position x = a0 (the function (62) vanishes for ν = 0,
except when x = a0). Computing the gradient we notice that the maxima
locate at |x − a0| =

√
2νt, from which we deduce that the shock width δ,

is of the order of δ =
√

2νt. This is the usual diffusive behavior related to
the term νuxx in Burgers equation. Outside the shock region, |x− a0| � δ

the function slowly decays towards zero.
A slightly more rich case is for N = 2, the superposition of two pairs

of symmetric poles with z1 = a + i b, and z3 = −a + i b. The pole motion
equations are:

ȧ =
ν

a
+

2νa

a2 + b2
, ḃ =

ν

b
+

2νb

a2 + b2
, ⇒ a2 + b2 = const. + 8νt ,

the integration constant is chosen so that a(0) = a0 and b(0) = 0 (this
allows us, to avoid dimensional constants, to define a0 as the unit of length
and a2/ν as the unit of time). In dimensionless form the solution is then,

a(t) =
√

1 + 8t− b(t)2, b(t)2 =
1
3

(
1 + 8t− (1 + 8t)1/4

)
,

which finally leads to the velocity,

u(x, t) = −4
x− a(t)

(x− a(t))2 + b(t)2
− 4

x + a(t)
(x + a(t))2 + b(t)2

. (63)

The shape of the velocity (63) is depicted in figure 9. We observe that
this solution describes the propagation of two opposite shocks. The shock
structure is the same as in the single pair of poles solution. In addition,
there is now a central region, far from the shock region, which evolves
almost independently of the dissipation mechanism. Indeed, the central
region has the asymptotic form u ≈ x/t, independent of the dissipation
constant ν, for t � 1 and x �

√
t. This is precisely the behavior found

using the similarity solution.
In conclusion, one may think that a “typical” solution of the simple wave

equation, regularized with a small viscosity term, will consists in a series
of ramps separated by sharp shocks, where matter concentrates (remember
the behavior of the density). This qualitative description coincides with
the filamentary distribution of large structures of the universe 16. It is
also worth noticing the independence of the system global behavior, to
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the microscopic scales associated to shock structures: the singularities are
genuine in the sense that they organize the large scale shape of the system,
and persists in the limit of vanishing viscosity.
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Figure 9. The four poles solution of the Burgers equation: two shocks around x = ±1

propagates away, leaving a central straight region.
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