
Safeprocess 2006CRAN UMR 7039 1 / 19

Increasing effectiveness of modelIncreasing effectiveness of model--based fault diagnosis:based fault diagnosis:
A Dynamic Bayesian Network design for decision makingA Dynamic Bayesian Network design for decision making

Philippe WEBER°, Didier THEILLIOL°, Christophe AUBRUN°, 

Alexandre EVSUKOFF*

°Centre de Recherche en Automatique de Nancy 
(CRAN - UMR 7039) 
Nancy-University, CNRS, France

* COPPE/Universidade Federal 
do Rio de Janeiro, Brazil



Safeprocess 2006CRAN UMR 7039 2 / 19

System diagnosisSystem diagnosis

Problem statement

The diagnosis is composed of three stages: 

• Classically, decision making is realized by an elementary logic. 
Nevertheless, in this case, when multiple faults, false alarms and 
missing detections occur, the faults can not be isolated.

• In the spirit of (Isermann, 1994), fault isolation performance can 
increase through the integration of other knowledge in the diagnosis. 

residuals 
generation residuals 

evaluation decision 
making

Problem Statement
FDI decision making

a priori Reliability Model
Fusion

Application
Conclusion

uj Fn

rj
mi



Safeprocess 2006CRAN UMR 7039 3 / 19

Problem statementProblem statement

Increasing effectiveness of modelIncreasing effectiveness of model--based fault diagnosisbased fault diagnosis

Computed by means of stochastic process model, reliability analyComputed by means of stochastic process model, reliability analysis sis 
define define the the a prioria priori behavior of the probabilities distribution behavior of the probabilities distribution over the over the 
functioning and malfunctioning and mal--functioning states of the systemfunctioning states of the system

with the integration of reliability analysiswith the integration of reliability analysis
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In fault diagnosis the decision is then based on the fusion of 
information coming from residuals evaluation and an a prioria priori
behaviorbehavior computed by a computed by a probabilistic model of reliability

The probabilistic model of reliability must take into account must take into account 
the observations on the system, the observations on the system, this is new in reliability analysisthis is new in reliability analysis!?!?

Bayesian Networks (BN) are investigated to compute the 
decision => BN are able to model dynamic and probabilistic 
problems
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FDI decision making

a)     b) 
D(n,j) F1 Fn FN  D(n,j) F1 Fn FN 

u1 1 0 0  u1 0 1 1 

uj 0 1 0  uj 1 0 1 

uJ 0 0 1  uJ 1 1 0 
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The fault is the cause of the residual deviationThe fault is the cause of the residual deviation

The BN Structure is defined directly by the incidence matrix DD

a fault is modelled as a 
random variable Fn
defined over defined over two states 

{not Occurred, Occurred}

a symptom is represented 
also as uj defined over 
the states 

{not detected, detected}
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The Bayes theorem is applied in the BN inference to compute the probability 
that a fault occurred according to the states of the symptoms uj
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a priori distribution Conditional Probability Table

Online residual evaluation

The question is how to The question is how to 
define the a priori define the a priori 
distribution distribution PP((FFnn)) ??
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System reliability

)(tRS The probability that no failure occurred during the interval [0, t]
)(tSλ Failure rate of the system at time t








−= ∫
t

SS dtttR
0

)(exp)( λ

The probability that a failure occurred between  t and t+dt is 
approximated by

When the system is composed with several components

Then the failure rate           is defined for each component)(tnλ

dttp nn ⋅= )(λ

Markov Chain is a classic solution to model this sort of 
system Reliability when failure rates are constant 
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Then the inter-time slices CPT are 
equivalent to Markov Chain model of each 
component

Starting from an observed situation at time 
k=0, the probability distribution over the 
states is computed (simulation) using 
successive inferences

a time feedbacka time feedback
inter-time slices CPT

a priori Reliability Model
Dynamic Bayesian Network ParametersDynamic Bayesian Network Parameters
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Fusion Problem Statement
FDI decision making

a priori Reliability Model
Fusion

Application
ConclusionThe a priori Reliability of the component n is used to initialise the is used to initialise the 

a priori distribution distribution on the fault  Fn states

Hypothesis to simplify the model in this first 
work:

•• Only one component contribute to the Only one component contribute to the a 
priori distribution distribution on a fault.

• A component reliability is independent from 
the others components states
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Application

Water heater (Physical process)Water heater (Physical process)
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The goal of the process is to assure a constant water flow rate Qo
with a given controlled temperature To.
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Application
The decision DBN modelThe decision DBN model
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Application
The decision DBN modelThe decision DBN model
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Application
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Application
The decision DBN modelThe decision DBN model
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Application
Test scenarioTest scenario
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Application
Test scenarioTest scenario
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Proposed decision method is Proposed decision method is a new a new approachapproach

• To take into account a priori knowledge on the dynamic 
component degradation (in reliability analysis) and the online 
observations given by the residual evaluation

• The solution rests on the Dynamic Bayesian Network 
formalisation
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Stochastic Process Modelling
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Discrete Random Variables 
defined on a finite state space

A Markov Chain (MC) build 
from these states 

Markov Chain is defined by a Graph or a transition matrix

To Represent the process states

To Model the dynamics of a sequence 
taken by the process states
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The probability p12,24,13 that a failure occurred 
between  t and  t+dt is approximated by

Where           is the failure rate of the 
component n at time t

Example of application to reliability 
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failure states
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Operational states and failure states represent a system up or down
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The reliability computation needs the 
resolution of a differential equation system
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