Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making

<u>Philippe WEBER</u>[°], Didier THEILLIOL[°], Christophe AUBRUN[°],

Alexandre EVSUKOFF*

°Centre de Recherche en Automatique de Nancy (CRAN - UMR 7039) Nancy-University, CNRS, France

* COPPE/Universidade Federal do Rio de Janeiro, Brazil

Problem statement

System diagnosis

Problem Statement FDI decision making a priori Reliability Model Fusion Application Conclusion

The diagnosis is composed of three stages:

• Classically, decision making is realized by an elementary logic. Nevertheless, in this case, when multiple faults, false alarms and missing detections occur, the faults can not be isolated.

• In the spirit of (Isermann, 1994), fault isolation performance can increase through the integration of other knowledge in the diagnosis.

Problem Statement FDI decision making a priori Reliability Model Fusion Application Conclusion

Increasing effectiveness of model-based fault diagnosis with the integration of reliability analysis

Computed by means of stochastic process model, reliability analysis define the *a priori* behavior of the probabilities distribution over the functioning and mal-functioning states of the system

In fault diagnosis the decision is then based on the fusion of information coming from residuals evaluation and an *a priori* behavior computed by a **probabilistic model of reliability**

The **probabilistic model of reliability** must take into account the observations on the system, this is new in reliability analysis!?

Bayesian Networks (BN) are investigated to compute the decision => BN are able to model dynamic and probabilistic problems

The fault is the cause of the residual deviation

a) **b**) F_N F_1 F_n F_N F_1 F_n D(n,j)D(n,j)1 1 0 0 0 1 \mathcal{U}_1 u_1 0 0 1 0 1 1 \mathcal{U}_i \mathcal{U}_i 0 0 1 1 1 0 \mathcal{U}_I \mathcal{U}_I F_1 \mathcal{U}_1 F_1 u_1 F_n u_i F_n u_j F_N \mathcal{U}_J F_N \mathcal{U}_I

Problem Statement **FDI decision making** *a priori* Reliability Model Fusion Application Conclusion

a fault is modelled as a random variable F_n defined over two states

{not Occurred, Occurred}

a symptom is represented also as u_j defined over the states

{not detected, detected}

The BN Structure is defined directly by the incidence matrix D

Bayesian Network Parameters

Problem Statement FDI decision making

a priori Reliability Model Fusion Application Conclusion

Problem Statement FDI decision making

a priori Reliability Model Fusion Application Conclusion

Bayesian Network Parameters

Problem Statement FDI decision making

a priori Reliability Model Fusion Application Conclusion

Bayesian Network Parameters

The Bayes theorem is applied in the BN inference to compute the probability that a fault occurred according to the states of the symptoms u_i

a priori distribution Conditional Probability Table $P(F_n | u_j) = \frac{P(F_n)P(u_j | F_n)}{P(u_j)}$ Online residual evaluation

The question is how to define the a priori distribution $P(F_n)$?

CRAN UMR 7039

a priori Reliability Model

System reliability

Problem Statement FDI decision making *a priori* Reliability Model Fusion Application Conclusion

 $R_{S}(t)$ The probability that no failure occurred during the interval [0, *t*] $\lambda_{S}(t)$ Failure rate **of the system** at time *t*

$$R_{S}(t) = \exp\left(-\int_{0}^{t} \lambda_{S}(t)dt\right)$$

When the system is composed with several components

Then the failure rate $\lambda_n(t)$ is defined for each component

The probability that a failure occurred between t and t+dt is approximated by

$$p_n = \lambda_n(t) \cdot dt$$

Markov Chain is a classic solution to model this sort of system Reliability when failure rates are constant

a priori Reliability Model

Dynamic Bayesian Network Parameters

Problem Statement FDI decision making a priori Reliability Model Fusion Application Conclusion

inter-time slices CPT

CPT	$n_i(k)$	
$n_i(k-1)$	ир	down
ир	$1-p_{12}$	p_{12}
down	0	1

Starting from an observed situation at time k=0, the probability distribution over the states is computed (simulation) **using successive inferences**

Then the *inter-time slices CPT* are equivalent to Markov Chain model of each component

Fusion

Problem Statement FDI decision making a priori Reliability Model Fusion Application Conclusion

The *a priori* Reliability of the component *n* is used to initialise the *a priori* distribution on the fault F_n states

Hypothesis to simplify the model in this first work:

• Only one component contribute to the *a priori* distribution on a fault.

• A component reliability is independent from the others components states

	F_n	not occured	occured
$n_{k}(k)$	up	1	0
$n_i(\kappa)$	down	0	1

Problem Statement FDI decision making *a priori* Reliability Model Fusion Application Conclusion

Water heater (Physical process)

The goal of the process is to assure a constant water flow rate Qo with a given controlled temperature To.

Application

The decision DBN model

Incidence matrix Sensor faults T Q Η 0 0 1 *u*₁ 1 0 0 u_2 *u*₃ *1 1* 0

CRAN UMR 7039

Safeprocess 2006

Problem Statement FDI decision making a priori Reliability Model Fusion **Application** Conclusion

Safeprocess 2006

Application

The decision DBN model

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

	ul	
Fault T	not detected	detected
not occured	95	5
occured	2	98

Safeprocess 2006

14/19

The decision DBN model

Application

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

Problem Statement FDI decision making *a priori* Reliability Model Fusion Application

Conclusion

	u	l
Fault T	not detected	detected
not occured	95	5
occured	2	98
	uí	2
Fault Q	not detected	detected
not occured	95	5
occured	2	98

15/19

The decision DBN model

For all faults of the system, it is assumed that the probability of miss detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

BayesiaLab - C:\USERS\Weber\RAPPORTS\2006\Safeprocess	u1			
Jetwork Data sources Edit View Learning Inference Options Help	Fault T	not detected	detected	
ပြားမ်ားမြေးပြီး ကြားပြားမျိုး ကြားပြားပြီး ကြီးကြားပြီး ကြီးကြားပြီး ကြီးကြားပြီး ကြီးကြီးကြီး ကြီးကြီးကြီးကြ ကြီးကြားကြိုက်ကြီးကြီးကြီးကြီးကြီးကြီးကြီးကြီးကြီးကြီး	not occured	95	5	
	occured	2	98	
			u2	
	Fault Q	not detected	detected	
u1 Fault H	not occured	95	5	
	occured	2	98	
			u3	
u2 Fault Q	Fault H	Fault Q	not detected	
		not occured	90.25	
	not occurrea –	occured	1.9	
u3 Fault T		not occured	1.9	
V decisio	Occurrea —	occured	0.04	

Safeprocess 2006

Application

Problem Statement FDI decision making a priori Reliability Model Fusion **Application** Conclusion

detected

9.75

98.1

98.1

99.96

Application

The decision DBN model

Problem Statement FDI decision making *a priori* Reliability Model Fusion Application Conclusion

CRAN UMR 7039

Problem Statement FDI decision making a priori Reliability Model Fusion **Application** Conclusion

ncidence matrix			
Sensor faults			
	H	Q	T
<i>u</i> ₁	0	0	1
<i>u</i> ₂	1	0	0
<i>u</i> ₃	1	1	0

CRAN UMR 7039

17/19

Conclusion

Problem Statement FDI decision making *a priori* Reliability Model Fusion Application **Conclusion**

Proposed decision method is a new approach

• To take into account a priori knowledge on the dynamic component degradation (in reliability analysis) and the online observations given by the residual evaluation

• The solution rests on the Dynamic Bayesian Network formalisation

Increasing effectiveness of model-based fault diagnosis: A Dynamic Bayesian Network design for decision making

<u>Philippe WEBER</u>[°], Didier THEILLIOL[°], Christophe AUBRUN[°],

Alexandre EVSUKOFF*

°Centre de Recherche en Automatique de Nancy (CRAN - UMR 7039) Nancy-University, CNRS, France

* COPPE/Universidade Federal do Rio de Janeiro, Brazil

Dynamic Reliability Model

Problem Statement FDI decision making Dynamic Reliability Model Fusion Application Conclusion

Discrete Random Variables defined on a finite state space

 $X_t \qquad \left\{s_1, \dots s_M\right\}$

A Markov Chain (MC) build from these states

To Represent the process states

To Model the dynamics of a sequence taken by the process states

Markov Chain is defined by a Graph or a transition matrix

$$\mathbf{P}_{12} \qquad \mathbf{P}_{24} \qquad \mathbf{P}_{MC} = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1M} \\ p_{21} & & \dots & \dots \\ \dots & & \dots & \dots \\ p_{M1} & p_{11} & \dots & p_{MM} \end{bmatrix}$$

CRAN UMR 7039

Safeprocess 2006

Stochastic Process Modelling

→

≥

Dynamic Reliability Model

Example of application to reliability

Operational states and failure states represent a system up or down

The probability $p_{12,24,13}$ that a failure occurred between t and t+dt is approximated by

 $\lambda_n(t) \cdot dt$

Where $\lambda_n(t)$ is the failure rate of the component *n* at time *t*

The reliability computation needs the resolution of a differential equation system

$$\left[\frac{dX_t}{dt}\right]^T = X_t \cdot (\mathbf{I} - \mathbf{P}_{MC}) \qquad R_S(t) = \sum_{i \in \{1,2\}} P(X_t = s_i)$$

CRAN UMR 7039

Safeprocess 2006

Problem Statement

Fusion Application

Conclusion

FDI decision making

Dynamic Reliability Model