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The diagnosis is composed of three stages:
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generation —»| decision

evaluation )
making
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» Classically, decision making is realized by an elementary logic.
Nevertheless, in this case, when multiple faults, false alarms and
missing detections occur, the faults can not be isolated.

* In the spirit of (Isermann, 1994), fault isolation performance can
Increase through the integration of other knowledge in the diagnosis.
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Increasing effectiveness of model-based fault diagnosis  cororsion

with the integration of reliability analysis

Computed by means of stochastic process model, reliability analysis
define the a priori behavior of the probabilities distribution over the
functioning and mal-functioning states of the system

N\ In fault diagnosis the decision is then based on the fusion of
Information coming from residuals evaluation and an a priori
behavior computed by a probabilistic model of reliability

N The probabilistic model of reliability must take into account
the observations on the system, this is new in reliability analysis!?

E] Bayesian Networks (BN) are investigated to compute the
decision => BN are able to model dynamic and probabilistic
problems
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The fault is the cause of the residual deviation Application

Conclusion

b
a) ) a fault is modelled as a

D(n,j) I:1 I:n I:N D(n,j) I:1 I:n
u L 0 0 u 0 1 random variable F,
y 0 1 0 y 1 0 defined over two states
uj 0 0 1 U, 1 1

Fn
1
1
0
e {not Occurred, Occurred}

a symptom is represented
also as Ui defined over

\ the states

{not detected, detected}

& ©
®
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The BN Structure is defined directly by the incidence matrix D
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@ ’@ u not detected | detected
P(u|F,) | Mot occured 1-c, C]
"| occured D, 1-b,
C; = P(u ; = detected ‘Fn = notoccurre d) false alarms
b, = P(uj = notdetecte d|F,, = occurred ) missing detection
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b, = P(uj = notdetecte d|F,, = occurred ) missing detection

The Bayes theorem is applied in the BN inference to compute the probability
that a fault occurred according to the states of the symptoms Ui

a priori distribution Conditional Probability Table ™ ti is h t
p(|: )P(U- F ) e question IS now 10
P(Fn|U,-) — ”P N define the a priori
u. i : :
( l) Online residual evaluation distribution P(Fn) ?
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System reliability Application

Conclusion

R;(t) The probability that no failure occurred during the interval [O, 1]

As(t) Failure rate of the system at time t
t
R (t) = exp(— j)ls(t)dtj
0

When the system is composed with several components

Then the failure rate A_(t) is defined for each component

The probability that a failure occurred between t and t+dt is
approximated by
P, =A,(t) Lat

Markov Chain is a classic solution to model this sort of
system Reliability when failure rates are constant
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a priori Reliability Model

Dynamic Bayesian Network Parameters

Inter-time slices CPT

a time fe-édback

CPT n; (k)
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down 0 1
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Application

Conclusion

Starting from an observed situation at time  a priori Reliability of the component n

k=0, the probability distribution over the :
states is computed (simulation) using
successive inferences R.(®)

0,4

Then the inter-time slices CPT are
equivalent to Markov Chain model of each 0

0,2
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Applicat?on

The a priori Reliability of the component N is used to initialise the Conclusion

a priori distribution on the fault F, states

Hypothesis to simplify the model in this first
work:

« Only one component contribute to the a
priori distribution on a fault.

» A component reliability is independent from
the others components states

F. not occured | occured
u 1 0
n; (k) D
down 0) 1
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Application

Water heater (Physical process)

Qi v
Ti :><—‘ T sensor
T - Q sensor
R
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Application
Conclusion

The goal of the process is to assure a constant water flow rate Qo

with a given controlled temperature To.
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Application

The decision DBN model

1
Bayesialab - C:\USERS\Weber\RAPPORT5\1006\Safeprocess... |_ | D IXI
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The decision DBN model Application
For all faults of the system, it is assumed that the probability of miss Conclusion
detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05
BayesialLab - C:\USERS\Weber\RAPPORTS\I006\5afeprocess... r;]@lg] Ul
Network Datasources Edit Wiew Learning Inference  Options Help | Fault T not detected detected
- not occured 95 5
decisionih.xbl
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u3 FaItT
@decisiu...
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The decision DBN model Application
Conclusion

For all faults of the system, it is assumed that the probability of miss
detection is fixed to 0.02 and the probability of false alarms is fixed to 0.05

BayesialLab - C:\USERS\Weber\RAPPORTS\I006\5afeprocess... |:]@IEI Ul
Metwoark  Data sources  EdiE Wiew Learninu.g. IRFerence Optiu:uns Help | FaultT not detectaj detected
— not occured 95 5
deciziond5 . xbl
occured 2 98
u2
Fault Q not detected detected
not occured 95 5
occured 2 98
(=) u3
Fault 0 Fault H Fault Q not detected detected
not occured 90.25 9.75
not occurred
5 occured 1.9 98.1
| ¥ _ not occured 1.9 98.1
] deaisio... Occurred
occured 0.04 99.96
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CO”C' USIOn FDI decision making
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Application
Conclusion
i’) Proposed decision method is a new approach
 To take into account a priori knowledge on the dynamic
component degradation (in reliability analysis) and the online
observations given by the residual evaluation
e The solution rests on the Dynamic Bayesian Network
formalisation
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Stochastic Process Modelling Application
Conclusion
gé?ﬁ]r:;eoiaanﬁﬁiﬁ \s/?aﬂzbslzzce To Represent the process states
Xi  {Sp-Su]
A Markov Chain (MC) build To Model the dynamics of a sequence

from these states taken by the process states

Markov Chain is defined by a Graph or a transition matrix

D _ )
P12 @ 24 Pu Pz - Pim

P21
Puc =

| Pv1 P - Pwm
=)
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Example of application to reliability Appicaton
Operational states and failure states represent a system up or down
Opera’[iona| states The prObablllty p12’24’13 that a failure occurred
between t and t+dt is approximated by

A () [dt

Where A_(t) is the failure rate of the
component Nattime t

// failure states
p13/// @ The reliability computation needs the

/ resolution of a differential equation system

ax. T
{%} =Xt Wl =Puc)  Rg(t) = m%:;’(xt = Si)
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