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Abstract: This papers aims to design a new approach in order to increase the performance of the decision making in 
model-based fault diagnosis when signature vectors of various faults are identical or closed. The proposed approach 
consists on taking into account the knowledge issued from the reliability analysis and the model-based fault 
diagnosis. The decision making, formalised as a bayesian network, is established with a priori knowledge on the 
dynamic component degradation through Markov chains. The effectiveness and performances of the technique are 
illustrated on a heating water process corrupted by faults. Copyright © 2006 IFAC 
Keywords: Model-based fault diagnosis, Bayesian Networks, Reliability, Markov chains, Decision making. 
 

1. INTRODUCTION 
 
A large diversity of advanced methods for automated Fault 
Detection and Isolation (FDI) exists based on the fault 
diagnosis principle. Faults in systems are usually diagnosed 
using analytical redundancy when comparing measured 
and estimated outputs of the system. A short historical 
view on FDI can also be found in (Isermann and Ballé, 
1996) and currents developments can be observed in 
(Patton et al., 2000). The diagnosis procedure is composed 
of three stages: residuals generation, residuals evaluation 
and finally decision making. 
Classically, decision making is realized according to an 
elementary logic. Nevertheless, when multiple faults or 
false alarms occur, the faults can not be isolated (Korbick, 
et al., 2004). Some specific mathematics algorithms can 
improve the efficiency of the decision making, for instance:  
• (Gertler, 1998), (Chen and Patton, 1999), have proposed 

methods based on the principle of disturbance 
decoupling to increase the robustness of the residuals 
generation; 

• (Sauter et al., 1993) have developed a method based on 
adaptive threshold approach to reduce the sensitivity of 
the residuals evaluation against false alarms.  

However, in any cases the binary data produced by 
residuals evaluation are poor in information, consequently 
some other knowledge related to the residuals can be 
considered for isolation. (Theilliol et al., 1995) and 
(Evsukoff  and Gentil, 2005) shows that it can be useful to 
combine qualitative and quantitative knowledge to improve 
the fault diagnosis efficiency. In the spirit of (Isermann, 
1994), fault isolation performance can increase through the 
integration of other knowledge in the diagnosis procedure. 
Thus, reliability analyses classically computed by means of 
stochastic process model as Markov Chains (MC) define 
the a priori behavior of the probabilities distribution over 
the functioning and mal-functioning states of the system. 
Also this additional information is seldom used to improve 
decision making in model-based fault diagnosis (Anrig and 
Kohlas, 2002). The aim of the paper is to propose a new 
approach in order to increase the performance of the 
decision making in fault diagnosis by taking into account a 
priori knowledge of the system state through the dynamic 
Bayesian network. 

The paper is organized as follows: Section 2 is dedicated to 
recall the decision making in model-based fault diagnosis 
and fault isolation problem is stated. Section 3 explains the 
method to perform the decision making with the Bayesian 
network (BN) inference and is also devoted to the design of 
our solution to merge the FDI and the dynamic reliability. 
The proposed approach is illustrated through a simulation 
example in Section 4. Finally, conclusions and perspectives 
are presented in last Section. 
 

2. PROBLEM STATEMENT  
 

2.1 Symptoms generation 
Usually, the second step of the diagnostic procedure, 
Residuals evaluation, is based on the assumption that if a 
fault occurs, the statistical characteristic of the residuals is 
modified. The residuals evaluation involves statistical 
testing such as limit checking test, generalized likelihood 
ratio test, trend analysis test. The output vector of the 
statistical test, called coherence vector U, can be built 
according to a test applied to a set of J residuals: U = 
[u1,…uj,… uJ] where uj represents the status of the 
residuals: uj is equal to “0” when the residual signal is 
closed to zero in some sense and equal to “1” otherwise. uj 
is called the symptom associated to the residual rj.  
2.2 Incidence matrix 
While a single residual is sufficient to detect a fault, a set 
of evaluated residuals is required for fault isolation. Several 
approaches have been suggested to generate structured 
residuals and consequently incidence matrix (Frank, 1990). 
As a simple example, three different faults (F1, F2 and F3) 
can be isolated by designing three symptoms (u1, u2 and u3) 
using the following table: 

Table 1. Incidence matrix example 

 F1 F2 F3 
u1 0 1 0 
u2 1 0 0 
u3 1 0 1 

In this table, a "1" denotes that a symptom uj is sensitive to 
a fault (F1, F2 or F3), while a "0" denotes insensitivity. This 
table is called an incidence matrix and can be considered as 
an a priori knowledge. Each column of the incidence 
matrix represents a fault signature: the vector [0 1 1]T 



corresponds to the signature of the faulty element F1. In 
this paper, incidence matrix is annotated D with different 
elements D(n,j) where n is the number of elements 
suspected to be faulty (n=1...N) and j is the number of 
residuals (j=1...J). 
2.3 Fault Isolation 
Usually, a very simple logic test between each fault 
signature and each coherence vector is used to isolate the 
faulty component. In practical cases false alarms occur and 
corrupt the logic decision. The coherence vector can be 
different from all signatures. Therefore, the goal of 
decision making is to minimize the false alarms and 
missing alarm rates due to the effects of modelling 
uncertainties and unknown disturbances that affect the 
residuals. Moreover, in spite of the robustness of residuals 
generation and evaluation, a simple logic rule is not 
efficient enough to isolate faults when simultaneous 
multiple faults occur (Weber et al., 1999). This is justified 
by the fact that if D(n,j)=0, then uj cannot bring any 
information about the occurrence of fault Fn, because the 
residual rj might be different from 0 due to noise or 
modelling errors or another fault Fk (with D(k,j)=1) 
affecting the system. Notice that, in spite of using a fault 
indicator or a better integration of residual generation in 
diagnostic decision, as demonstrated by (Combastel et al., 
2003) the effectiveness of the decision making in FDI 
scheme can not be improved. Thus, the reliability analysis 
for the fault diagnosis has been recently proposed by 
(Boniventi et al., 2003). Therefore, a new source of 
information should be integrated in FDI procedure. System 
reliability analysis allows to determine the degree of 
degradation of the system components. The paper aims to 
develop a method in order to integrate a dynamic reliability 
estimation of the system component with the objective of 
increasing the quantity of information taking into account 
to achieve an efficient decision making.  
 

3. DECISION MAKING DESIGN 
 

3.1 Bayesian network equivalent to incidence matrix 
a) Bayesian Network: BN are probabilistic networks based 
on graph theory. They are directed acyclic graphs used to 
represent uncertain knowledge in Artificial Intelligence 
(Jensen, 1999). Each node represents a discrete variable 
defined over several states and the arcs indicate direct 
probabilistic relations between the nodes. Thus a discrete 
random variable X  is represented by a node n  with a 
finite number of mutually exclusive states. States are 
defined on { }n

M
n

n ss ,...: 1S . The vector )(np  denotes a 

probability distribution over these states, and )( n
msnp =  

[ ]( )M1,...,m∈∀  is the marginal probability of n  being in 
state n

ms . In the graph depicted in Figure 1, nodes in  and 

jn  are linked by an arc, in  is considered as a parent of jn .  

 ni  nj

 
Figure 1: Elementary Bayesian network 
 
A conditional probability distribution quantifies the 
probabilistic dependency between jn  

and its parent in  and 
is defined through a Conditional Probability Table (CPT). 
Therefore, the nodes in  and jn  are defined over the sets 

{ }ii
i

n
M

n
n ss ,...: 1S  and { }jj

j

n
L

n
n ss ,...: 1S . The CPT of jn  is 

then defined by the conditional probabilities )( ij nnp  over 
each jn  state according to its parents in  states as 
presented in the following table:

  

Table 2 : Conditional Probability Table for nj. 
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Concerning the root nodes, i.e. those without parent, the 
CPT contains only a row describing the a priori probability 
of each state. Various inference algorithms can be used to 
compute marginal probabilities for each unobserved node 
given information on the states of a set of observed nodes. 
The most classical one relies on the use of a junction tree. 
Inference in BN then allows to take into account any state 
variable observation (an event) so as to update the 
probabilities of the other variables. Without observation, 
the computation is based on a priori probabilities. When 
observations are given, this knowledge is integrated into 
the network and all the probabilities are updated. 
Knowledge is formalised as evidence. A hard evidence of 
the random variable X  indicates that the state of the node 
n is one of the states { }n

M
n

n ss ,...: 1S . For instance X  is in 

state ns1 : 1)( 1 == nsnp  and 0)( 1 == ≠
n
msnp . Moreover, 

when this knowledge is uncertain, soft evidence can be 
used to define the distribution over n.  

a)     b) 
D(n,j) F1 Fn FN  D(n,j) F1 Fn FN 

u1 1 0 0  u1 0 1 1 
uj 0 1 0  uj 1 0 1 
uJ 0 0 1  uJ 1 1 0 
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Figure 2 : Bayesian network structured 
 
b) BN model FDI decision making: we propose to define 
the relationship between symptoms and faults as a graph. 
Effectively, a fault can be considered as the cause of the 
residual deviation. Therefore, some connections can be 
established from the fault to the symptoms in order to 
define the relation of causality between fault occurrence 
and the symptom states. Whereupon, a BN can define 
directly an incidence matrix D(n,j) as illustrated in the two 
cases of Figure 2. The probability of fault occurrence is 
modelled as a random variable Fn associated to each fault 
considered in the problem. The description of Fn is made 
by two states {not Occurred, Occurred}. Moreover, the 
symptoms are represented also as random variable uj 



defined over the set of tow states: {not detected, detected} 
with p(sj=detected), if the fault affects the system and the 
residual rj is detected different from 0. 
The probability distribution over the symptoms states 
depends on the false alarms and missing detections. Using 
BN model, a CPT is used to model the relation among 
variables. To compute the symptoms uj distribution of 
probability, a CPT is defined according to the fault Fn 
parent of uj. For instance, when only one symptom is 
associated to one fault, as presented in Figure 2a, then the 
CPT has the following structure: 

Table 3 : CPT for node uj case a) Figure 2 

uj  
Fn not detected  detected  

not occurred nc-1  nc  
occurred nb  nb-1  

where 

( )
( )dnotoccurreFdetectedupc

occurredFdnotdetecteupb

njn

njn

===

===
 (1) 

In other words, nb  defines the probability of missing 
detection for the fault Fn; nc  the probability of false alarms 
for the fault Fn. Generally, there are several faults 
associated to one symptom; as presented in Figure 2b. In 
this case, the CPT is a more difficult to obtain. As 
presented in Table 4, generated according to the incidence 
matrix defined in Figure 2b, ( )Nj ,FFup 1  is defined 

according to the miss detection b1 (resp. bN) and the false 
alarm c1 (resp. cN) for the fault F1 (resp. FN). 

Table 4 : CPT for the node uj case b) Figure 2 

uj  
F1 FN not detected  detected  

not occurred 1-(c1+cN-c1.cN) c1+cN-c1.cN not occurred occurred bN-c1.bN 1-(bN-c1.bN) 
not occurred b1-cN.b1 1-( b1-cN.b1) occurred occurred b1.bN 1- b1.bN 

Therefore, the probability distribution over the states of the 
symptom is deduced from the result of the residual 
evaluation. The nodes uj are defined as hard evidence. If 
the residual is detected, also p(uj = (detected)) = 1 and  
p(uj = (notdetected)) = 0, but if the residual is not detected, 
p(uj = (detected)) = 0 and p(uj = (notdetected)) = 1.  
The Bayes theorem is applied in the BN inference 
algorithm to determine ( )jN uFp  from the states of the 

symptom uj. The following eq. presents this formula 
relatively to the figure 2a):  

)(
)()(

)(
j

NjN
jN up

FupFp
uFp =  (2) 

 
3.2 Dynamic model of reliability: a Dynamic BN solution 

(Weber and Jouffe, 2003) 
In order to model dynamic behaviour of the system 
degradation, Dynamic BN has been considered in our 

approach, let us recalled some fundamental Markov Chain 
(MC) model.  
In the framework of decision making, we considered a 
discrete random variable X  with two states {up, down} 
for the sake of simplicity. These states represent 
respectively the operational and failure state of the 
component. Associated to a discrete random variable X , a 
matrix XP  defines the probabilistic state transitions 
between (up) and (down):  








 −
=
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pp1

P dudu
X  (3) 

Where dup  represents the failure probability of the 
component between sample (k-1) and (k) 

( )upXdownXpp 1kkdu === − . In reliability analysis, λ  
represents the failure rate of the component with 

∆kλpdu ×≈  where ∆k  represents the time interval 
between (k-1) and (k). It can be reminded that for a 
constant failure rate, the Mean Time To Failure (MTTF) is 
equal to λ1 . Based on this elementary definition, a 
discrete-time Markov chain is defined when the initial state 
probability vector is specified 

)]()([)( downXp  upXpXp 000 === . The transient 
analysis of the MC based on the Chapman-Kolmogorov 
equation (Cassandras and Lafortune, 1999) provides an 
expression for )( kXp  with k

Xk PXpXp )()()( 0 ⋅=  for 
k=1,2,… Under dynamic consideration in a Bayesian 
network, the state of the ith variable iX  is represented at 
sample k by a node ni(k) with a finite number of 
states { }ii

i
n
M

n
n ss ,...: 1S . ))(( knp i  denotes the probability 

distribution over these states at time step k. The Dynamic 
Bayesian Networks allow to represent random variables 
and their impacts on the future distribution of other 
variables (Weber and Jouffe 2003). Beginning from an 
observed situation at sample k=0, the probability 
distribution ))(( knp i  over M states for the component iX  
associated to the node in  is computed by the Dynamic BN 
inference. Indeed, it is possible to compute the probability 
distribution of any variable iX  at sample k based on the 
probabilities defined at sample k-1 as represented in the 
elementary network presented in Figure 3. The first slice 
contains the nodes corresponding to the current time step 
(k-1), the second one those of the following time step (k). 
Observations, introduced as hard evidence or probability 
distributions, are only realised in the current time slice. The 
time increment is carried out by setting the computed 
marginal probabilities of the node at sample k as 
observations for its corresponding node in the previous 
time slice. The CPT in DBN is defined equivalent to XP . 
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Figure 3 : Dynamic Bayesian Network for Xi 
 
3.3. Fusion of the Incidence Matrix and the DBN: a 

solution for a decision making more efficient  
As presented previously, the Dynamic BN models the 
component reliability which takes into account the time 



degradation of the component. The representation of 
Incidence Matrix as a graph, presented at the beginning of 
the paper, provides a formalism to make the fusion 
between fault diagnosis and reliability model. The decision 
making is made after fusion of information issued from the 
residual analyses and the reliability estimation. Therefore, 
based on the BN representation, image of the incidence 
matrix, the dynamic evolution of the component reliability 
is taken into account on the nodes Fi as presented in Figure 
4. This relationship involves the definition of a CPT (see 
Table 5). The CPT of Fi is very simple to define if the 
component is modelled with the states “up” or “down” 
which is a common case in fault diagnosis. 
 

 
 
 

 1u  

 Ju  

 iF  

)(kni
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Figure 4 : FDI Scheme with DBN for decision making 
dedicated to the failure Fi. 

Table 5: CPT of the node Fi. 

 Fi 
)(kni  NotOccured Occured 

up 1 0 
down 0 1 

The computation of ( ))(,,1 knuuFp iJi  is performed thank 
to the inference algorithm in BN. 

 
4. ILLUSTRATION EXAMPLE 

 
4.1. Process description and fault diagnosis 
 
To illustrate our approach, we proposed to consider a 
simulation example: a heating water process. The proposed 
approach has been designed with the help of the software 
BayesiaLab (www.bayesia.com). The process, presented in 
Figure 5, is composed of a tank equipped with two heating 
resistors R1 and R2. The inputs are the water flow rate Qi, 
the water temperature Ti and the heater electric power P. 
The outputs are the water flow rate Qo and the temperature 
T which is regulated around an operating point. The 
temperature of the water Ti is assumed to be constant. The 
objective of the thermal process is to assure a constant 
water flow rate with a given temperature. In this analysis 
only sensor and components failures are considered: level 
sensor H, output temperature sensor T and output flow rate 
sensor Qo. From model-based fault diagnosis, a classical 
observer scheme approach is considered. Based on a state 
space representation of the system around an operating 
condition where output vector is equal to [ ]TTH and input 

vector [ ]TPQi , structured residual are generated and 
evaluated in order to detect when H level sensor or T 
temperature sensor faults occur. Moreover according to the 
physical equation between output flow rate Qo and liquid 
level H, other residual could be established, the fault 
incidence matrix is defined Table 6. 

Table 6: Incidence matrix 
 H Qo T 

 u1 0 0 1 
 u2 1 0 0 
 u3 1 1 0 

 
V

R1

R2

Qi 
Ti 

Qo 
T 

H P

H sensor

T sensor 

Qo sensor

 
Figure 5: heating water process. 
 

 
Figure 6: Graphical model of the decision making with 
DBN 
 
4.2. Dynamic BN design for decision making 

Table 7: CPT of the node u1. 

 u1 
Fault T not detected detected 

not occured 95 5 
occured 2 98 

Table 8: CPT of the node u3. 

                             u3 
Fault H Fault Q not detected detected 

not occured 90.25 9.75 not occured occured 1.9 98.1 
not occured 1.9 98.1 occured occured 0.04 99.96 

 
The incidence matrix, defined in Table 6, leads to a 
corresponding DBN model presented in Figure 6. For all 
faults of the system, it is assumed that the probability of 
miss detection is fixed to 0.02 and the probability of false 
alarms is fixed to 0.05. Consequently presented in §3.1 the 
CPT of u1; defined in Table 7 is deduced from Table 3, and 
also the CPT of u3 (Table 8) from Table 4. 
In order to defined the dynamic reliability model, Figure 7 
to Figure 9 present the Mean Time To Failure (MTTF) to 



determine the failure rates λ which quantify the transition 
between the states of 3 considered faulty components and 
associated probabilistic state matrix XP  defined in eq. (3). 
The Markov Chains of the components are supposed to be 
independent. It should be noted that two states {up, down} 
are considered for sensors Qo and H, but one more state 
{dgd} is considered for sensor T which corresponds to a 
degradation state of the component. 
 

MTTF1=45 000 h 
λ 1=0.22 10-4 

 
up down 

λ1 

 

Figure 7: Reliability MC model for sensor Qo. 
 

MTTF1=5 000 h 
λ 1=2 10-4 

 
up down 

λ1 

 

Figure 8: Reliability MC model for sensor H. 
 
MTTF1=8 000 h 
λ 1=1.25 10-4  
MTTF2=3 000 h 
λ 2=3.3 10-4  
MTTF3=45 000 h 
λ 3=0.22 10-4 

 
up dgd 

λ1 
down

λ2 

λ3  

Figure 9: Reliability MC model for sensor T. 
 
For instance as defined in §3.2., the CPT to simulate the 
MC for the sensor H (resp. T) reliability described in 
Figure 8 (resp. Figure 9) is presented in Table 9 (resp. 
Table 10). 

Table 9: CPT of the node H_sensor(k). 

 H_sensor(k) 
H_sensor(k-1) up down 

up 99.98 0.02 
down 0 100 

Table 10: CPT of the node T_sensor(k). 

 T_sensor(k) 
T_sensor(k-1) up D1 Down 

up 99.985 0.012 0.002 
dgd 0 99.967 0.033 

down 0 0 100 
 
4.3 Results and comments 
Based on the incidence matrix, (see Table 6), and under 
any assumptions of the number of fault, then if the 
coherence vector issued from the residual evaluation at 
sample k is equal to [0 0 1]T or to [1 1 1]T, for example, the 
fault indicators I generated by a logic test is as follows: 
 

Table 11: Fault indicators 
U IH IT IQo 

[0 0 1]T 0 0 1 
[1 1 1]T 1 1 1 

 
Due to the fact, the H and T fault signatures are different, 
and the Qo fault signature is included in the H fault 
signature, the fault isolation is not easily to perform. To 

summarise the decision and maintenance action, when the 
coherence vector is equal to [0 0 1]T, the sensor Qo is down 
then a maintenance action is performed to repair this 
sensor. If the coherence vector is equal to [1 1 1]T, the three 
sensors are suspected to be down with the same possibility. 
However, based on our approach, it could be possible to 
optimize the maintenance action.  
In order to illustrate the performance and also the limitation 
of the proposed method, various faults scenari have been 
considered as illustrated in Figure 10: 
 Scenario A) A false alarm occurs at sample k=700h 
which appears as an outlier on the first symptom who 
switched to “1” during one sample. 
 Scenario B) A failure on the sensor Qo is occurred. 
According to the structured residuals defined in the 
incidence matrix (see Table 6), only the third symptom 
switched to “1”. Few samples after the third symptom 
switched to “0” due to a maintenance action which 
corresponds to use a novel sensor. 
 Scenario C) During this period, no fault occurs. The 
system is in a fault-free case. 
 Scenario D) T and H sensors faults are supposed to 
occur simultaneously. Based on their fault signatures, all 
symptoms switched simultaneously to “1”.  
The failure probabilities for the three sensors are presented 
in Figure 11 without taking into account the dynamic 
reliability of components. Otherwise, Figure 12 is devoted 
to the method illustration through the evolution of the 
failure probabilities including the dynamic reliability of 
components. 
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Figure 10: Symptoms scenario 
 
Scenario A) The outlier generates a false alarms, the CPT 
for T can only reduced the value of failure probability (see 
Figure 11). However, in Figure 12, the reliability of 
components is similar as a sliding window and therefore 
annihilates the false alarm.  
Scenario B) The two BN methods isolate the fault. It could 
be noted that a time delay is observed for the second one 
due to reliability consideration. 
Scenario C) When a maintenance action is taken, the 
decision making is back to a fault free case. 
Scenario D) This scenario highlights the proposed 
approach. Without reliability consideration, it is not 
possible to generate a suitable decision making. For 
multiple faults, all fault signatures can be suspected: the 



symptom u3 is explained by the failure on sensor H, then 
the Qo failure probability is set to “0.5156” based on the 
Baye’s theorem (see Figure 11). However, according to the 
DBN, then the Qo failure probability increases by taking 
into account the reliability of components (Figure 12). 
With the proposed method, it is possible to plan a 
maintenance action without visiting the Q sensor at the first 
place due the low level of failure probability. Then, the 
maintenance action can be focused to the others, T and H 
sensors, showing a higher level of failure probability. 
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Figure 11: Failure probabilities for the three sensors with 
BN. 
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Figure 12: Failure probabilities for the three sensors with 
DBN. 
 

5. CONCLUSION 
 

This paper presents a new strategy to increase the 
performance of the decision making in model-based fault 
diagnosis. The developed approach consists in taking into 
account in FDI scheme a priori knowledge on the system 
functioning and malfunctioning by a Markov chains 
modelling. Therefore, for complex systems, the problem of 
the decision making when various fault signatures vectors 
are identical or closed can be allayed by using a suitable 
dynamic Bayesian network. The simulation example, a 
heating water process, has highlighted the performances of 
the method but also the limitations: the design of the DBN 
requires the false alarms and miss-detection probabilities of 
the residual evaluation methods which are not always 

possible to assess. Nevertheless, the results, obtained in this 
paper, are encouraging and allow us to advocate our 
method in order to optimize the maintenance actions. 
Therefore, for a system which is liable to various faults 
simultaneously or which is defined through an incidence 
matrix with similar fault signatures, the fault probabilities, 
provided by our method, will enable to plan the 
maintenance actions. 
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